diff options
Diffstat (limited to 'Analog_Communication_by_V_Chandrasekar/4-Angle_Modulation.ipynb')
-rw-r--r-- | Analog_Communication_by_V_Chandrasekar/4-Angle_Modulation.ipynb | 614 |
1 files changed, 614 insertions, 0 deletions
diff --git a/Analog_Communication_by_V_Chandrasekar/4-Angle_Modulation.ipynb b/Analog_Communication_by_V_Chandrasekar/4-Angle_Modulation.ipynb new file mode 100644 index 0000000..76acf6d --- /dev/null +++ b/Analog_Communication_by_V_Chandrasekar/4-Angle_Modulation.ipynb @@ -0,0 +1,614 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Angle Modulation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10_A: Angle_Modulation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"\n", +"//f(t)=5cos(Wc*t+3sin(2000*t)+5sin(2000*pi*t))\n", +"\n", +"fm=2000*%pi/(2*%pi); //bandwidth is the highest frequency component\n", +"\n", +"//a)\n", +"\n", +"Freq_dev=(6000+10000*%pi)/(2*%pi);\n", +"\n", +"//b)\n", +"\n", +"B=Freq_dev/fm;\n", +"\n", +"//c)\n", +"Phase_dev=8;//Highest value of[3sin(2000t)+5sin(2000*pi*t)]\n", +"\n", +"//d)\n", +"Bw= 2*(fm+Freq_dev);\n", +"\n", +"disp(Freq_dev,' a) Frequency Deviation(in Hz)=');\n", +"disp(B,' b) Devaition Ratio=');\n", +"disp(Phase_dev,' c) Phase Deviation( in rad)=');\n", +"disp(Bw,' d) Bandwidth( in Hz)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1_A: Frequency_Deviation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clc;\n", +"clear;\n", +"Freq_dev=6; //Frequency Deviation in kHz\n", +"Vm=3; //Modulating Voltage in V\n", +"\n", +"Dev=Freq_dev*10^(3)/Vm;\n", +"\n", +"// for Vm=6V\n", +"\n", +"Vm=6;\n", +"Freq_dev_new=Dev*Vm;\n", +"\n", +"disp(Freq_dev_new,'the new deviation( in Hz)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: phase_and_frequency_deviation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"\n", +"t=0:0.01:1; \n", +"Freq=2*%pi*10^(5)+3*2*%pi*100*cos(2*%pi*100*(t));//Phase=2*%pi*10^(5)*t+3*sin(2*%pi*100*t);\n", +"\n", +"t1=0.4;// time in ms\n", +"Ang_Freq=2*%pi*10^(5)+3*2*%pi*100*cos(2*%pi*100*(t1*10^(-3)));\n", +"Freq=Ang_Freq/(2*%pi); \n", +"\n", +"//change in answer due to calculation error in book\n", +"disp(Freq,'Instantaneous Frequency(in Hz) at (t=0.4ms)N =');\n", +"\n", +"\n", +"Max_pha_Dev=3; //max(3sin(2*%pi*100t))\n", +"\n", +"disp(Max_pha_Dev,' Maximum Phase Deviation(in rad) =');\n", +" \n", +"Max_fre_Dev=6*%pi*100;//max(6*pi*100*cos(2*pi*100t))\n", +"\n", +"\n", +"\n", +"disp(Max_fre_Dev/(2*%pi),'MAximum Frequency Deiation(in Hz)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2_A: Power_in_FM_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"Wc=8*10^(8);// Angular Frequency of Carrier Signal\n", +"fc=Wc/(2*%pi);\n", +"\n", +"Wm=1300;//Angular Frequency of Message Signal\n", +"fm=Wm/(2*%pi);\n", +"\n", +"B=3;//Modulation Index\n", +"R=12;\n", +"Vc_rms=15/sqrt(2);\n", +"\n", +"Max_dev=B*fm; \n", +"Power=Vc_rms^(2)/R;\n", +"\n", +"disp(Power,'Power Dissipated (in W) is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Peak_Frequency_Deviation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"a=3;//amplitude in volts\n", +"Dev_sen=4;// deviation sensitivity in KHz/volts\n", +"fm=1.5;// frequency modulating signal in KHz\n", +"\n", +"f=Dev_sen*10^(3)*3;//peak frequency deviation\n", +"B=f/(fm*10^3);\n", +"\n", +"disp(f,'Peak Frequency Deviation( in Hz) ');\n", +"disp(B,'modulation index ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3_A: BAndwidth_of_FM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"fm=3; //Modulating Frequency in kHZ\n", +"Max_Dev=18; //MAximum Deviation in kHz\n", +" \n", +" B=Max_Dev/fm; //modulation index\n", +" \n", +" J=12;//from Bessel Table, for B=6\n", +" Bw=fm*J*2*10^(3);\n", +" \n", +" disp(Bw,'The Bandwidth (in Hz) is') ;" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Peak_Phase_Deviatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"Dev_sen=3.5;// Deviation Sensitivity in rad/volt\n", +"a=2.5;// amplitude in volts\n", +"\n", +"B=a*Dev_sen; //Peak Phase Deviation\n", +"\n", +"disp(B,'Peak Phase Deviation( in rad)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4_A: Peak_Deviation_in_FM.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"Wm=18850;//Angular Frequency of message signal\n", +"fm=Wm/(2*%pi);\n", +"a=3;// amplitude of message signal\n", +"\n", +"Dev_sen=6;//Deviation Sensitivity in kHz/V\n", +"Max_Freq_Dev=a*Dev_sen*10^(3);\n", +"\n", +"B=Max_Freq_Dev/(fm);\n", +"\n", +"disp(Max_Freq_Dev,'Maximum Frequency Deviation(in Hz)');\n", +"disp(B,'Modulation Index');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Frequency_Modulation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"a=3; //amplitude in Volts\n", +"Dev=4;// Deviation in kHz\n", +"fm=1;// modulating frequency in kHz\n", +"\n", +"Dev_sen=Dev*10^(3)/a; //Deviation Sensitivity\n", +"B=Dev/fm; // Modulation Index\n", +"\n", +"disp(Dev_sen,'Deviation Sensitivity(in kHz/V)');\n", +"disp(B,'Modulation Index');\n", +"\n", +"//a)\n", +"a=5;\n", +"Dev_sen_1=a*Dev_sen;\n", +"B=Dev_sen_1/(fm*10^(3));\n", +"\n", +"disp(Dev_sen_1,'Deviation Sensitivity for 5V (in Hz)');\n", +"disp(B,'Modulation index');\n", +"\n", +"\n", +"//b)\n", +"a=10;\n", +"fm=400;\n", +"Dev_sen_2=a*Dev_sen;\n", +"B=Dev_sen_2/fm;\n", +"\n", +"\n", +"disp(Dev_sen_2,'Deviation Sensitivity for 10V (in Hz)');\n", +"disp(B,'Modulation index');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5_A: side_frequencies_and_Aplitudes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"disp('for B=2, The number of significant frequencies are 6');\n", +"disp('They are J1,J2,J3,J4,J5 and J6');\n", +"disp('Their amplitudes with carriers are');\n", +"J0= 0.224*8;\n", +"J1= 0.577*8;\n", +"J2= 0.353*8;\n", +"J3= 0.129*8;\n", +"J4= 0.034*8;\n", +"J5= 0.007*8;\n", +"J6= 0.001*8;\n", +"disp(J6, J5,J4,J3,J2,J1,J0,'they are (in V)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: CArson_Bandwidth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"fm=3; //Modulating Frequency in kHZ\n", +"Max_dev=15;// Maximum Deviatin in kHZ\n", +"\n", +"B=Max_dev/fm;\n", +"\n", +"J=8; // Bessel table,the highest J coefficient\n", +"BW=J*fm*10^(3);//Bandwidth in kHz\n", +"\n", +"BW1=2*(fm+Max_dev)*10^(3);// According to carson rule, BAndwidth\n", +"\n", +"disp(BW,'Bandwidth required (in Hz)');\n", +"disp(BW1,'According to Carsons rule, Bandwidth(in Hz)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6_A: Carson_Bandwidth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"Max_Freq_Dev=12; //Maximum Frequency Deviation in kHZ\n", +"fm=6; //Modulating frquency in kHz\n", +"\n", +"B=Max_Freq_Dev/fm;// Modulation index\n", +"\n", +"J=6;//From Bessel Table, for B=2\n", +"\n", +"Bw=2*J*6*10^(3);\n", +"BW_carson=2*(fm + Max_Freq_Dev)*10^(3);\n", +"\n", +"disp(Bw,' Minimum Bandwidth (in Hz) is');\n", +"disp(BW_carson,' Approximate Minimum Bandwidth according to carson rule( in Hz) is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Average_Power_of_signal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"a=10; //Amplitude in V\n", +"Pt=a*(0.18^2 +2*(0.33^2 +0.05^2+0.36^2+0.39^2+0.26^2+0.13^2+0.05^2+0.02^2+0.01^2));\n", +"\n", +"disp(' For B=5 from the Bessel table,The Bessel Function is taken upto J9');\n", +"disp(Pt,' Hence the average power of the modulated signal (in W) is');\n", +"disp('Hence, the average power of the modulated signal is equal to ');\n", +"disp('unmodulated carrier power');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7_A: Unmodulated_Carrier_Power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"a=8;// amplitude in V\n", +"r=30; //resistance in ohms\n", +"\n", +"Pc_unmodulated=a^2/(2*r);\n", +"Pt=1.792^2/(2*30)+2*(4.616)^2/(2*30)+2*(2.824^2)/(2*30)+2*(1.032)^2/(2*30)+2*(0.272)^2/(2*30)+2*(0.056)^2/(2*30)+2*(0.008)^2/(2*30);\n", +"\n", +"// change in answer due to approximations in the book\n", +"\n", +"disp(Pc_unmodulated,'Unmodulated Power Carrier(in W)=');\n", +"disp(Pt,'Total Power in modulated wave(in W)=');\n", +"disp('Power in the modulated wave is equal to');\n", +"disp('power in the unmodulated wave');\n", +"disp('Small error due to rounded off values in Bessel functions');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Phase_Modulatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"syms t pi;\n", +"\n", +"Pha_dev=3; //Phase_Deviation constant in rad/V\n", +"\n", +"// Phase Modulation Function \n", +"\n", +"Pha_function=Pha_dev*4*sin(2*pi*1.5*10^(3)*t); \n", +"Mod_wave=8*cos(2*pi*10^(4)*t) +Pha_function\n", +"\n", +"disp( Pha_function,'the Phase Modulation Function = ');\n", +"\n", +"disp(Mod_wave ,'The Modulated Wave Function = ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8_A: Balanced_Modulator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"\n", +"initial_Freq_Dev=5; //frequency in kHz\n", +"B_initial=0.5; //modulation index\n", +"fm_initial=10;// message signal frequency in kHz\n", +"fc_initial=800; //carrier frequency in kHz\n", +"\n", +"disp('The outputs of the balanced modulator for these parameters');\n", +"disp('are same as the inputs');\n", +"disp('They remain unaltered');\n", +"\n", +"//at the output of the multiplier\n", +"\n", +"m=12;// multiplication factor\n", +"\n", +"final_Freq_Dev=initial_Freq_Dev*m;\n", +"B_final=0.5*m;\n", +"fm_final=10; //modulating signal remains unaltered\n", +"fc_final=800*m;\n", +"\n", +"disp('At the output of the Multiplier,');\n", +"disp(fc_final,'Fc(in kHz)=',fm_final,'Fm(in kHz)=',B_final,'B=');\n", +"disp(final_Freq_Dev,' Frequency Deviation(in kHz)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9_A: Frequency_Deviation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"ft=100.2; //final carrier frequency in MHz\n", +"Freq_Dev_ft=60;// Frequency Deviation in KHz at power amplifier\n", +"fm=10;//modulating frequency in KHz\n", +"m=25;//multiplication factor\n", +"\n", +"//a)\n", +"fc=ft/25;\n", +"\n", +"//b)\n", +"Freq_Dev=Freq_Dev_ft/25;\n", +"\n", +"//c)\n", +"B=Freq_Dev/fm;\n", +"\n", +"//d)\n", +"Bt=B*m;\n", +"\n", +"disp(fc,'a) MAster Oscillator Centre Frequency(in MHz) =');\n", +"disp(Freq_Dev, 'b) Frequency Deviation at the output of modulator(in KHz)=');\n", +"disp(B,'c)Devaition ratio at the output of modulator');\n", +"disp(Bt,'d)deviation ratio at power amplifier');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |