diff options
Diffstat (limited to 'Algebra_by_P_Abbott_And_M_E_Wardle/15-Fractions.ipynb')
-rw-r--r-- | Algebra_by_P_Abbott_And_M_E_Wardle/15-Fractions.ipynb | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/Algebra_by_P_Abbott_And_M_E_Wardle/15-Fractions.ipynb b/Algebra_by_P_Abbott_And_M_E_Wardle/15-Fractions.ipynb new file mode 100644 index 0000000..3f0eb8d --- /dev/null +++ b/Algebra_by_P_Abbott_And_M_E_Wardle/15-Fractions.ipynb @@ -0,0 +1,364 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Fractions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.10: Conversion_of_R_in_terms_of_R1_and_R2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//1/R=1/R1-1/R2. get R\n", +"clear;\n", +"clc;\n", +"close;\n", +"disp('R=R1R2/(R2-R1)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.11: solving_simple_equations_involving_algebraic_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=3/(x-2);\n", +"p2=5/(x-1);\n", +"// given, 3/(x-2)=5/(x-1)\n", +"for x=0.0:0.1:10.0\n", +"if(3*(x-1)==5*(x-2))\n", +" format(7)\n", +"x\n", +" break\n", +"end\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.12: Solving_algebraic_fraction_for_n.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear; \n", +"clc;\n", +"close;\n", +"n=poly(0,'n');\n", +"p1=1/(n-2);\n", +"p2=1/(n-3);\n", +"p=p1+p2;\n", +"q=2/n;\n", +"//given p=q\n", +" z1=numer(p)*denom(q);\n", +" z2=numer(q)*denom(p);\n", +"//As,z1=z2. cancel the terms common on both sides\n", +" a=z1-z2;\n", +" n=roots(a)\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Algebraic_fractio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//simplify (a+b)/(a^2-b^2)\n", +"clear;\n", +"clc;\n", +"close;\n", +"//as, by formula,(a^2-b^2)=(a+b)(a-b)\n", +"mprintf('\n (a+b)/((a+b)(a-b)) => 1/(a-b) \n')\n", +"\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Simplifying_the_factors.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=x^2+4*x-12;\n", +"p2=x^2+x-6;\n", +"p=p1/p2" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Reduction_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//simplify 3a(a^2-4ab+4b^2)/6a(a^2+3ab-10b^2)\n", +"clear;\n", +"clc;\n", +"close;\n", +"//the factors 3a(a-2b) are common to numerator & denominator.\n", +"mprintf('\n the fraction is :\n')\n", +"string('(a-2b)/(2a(a+5b))')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Division_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=x;\n", +"p2=x+1;\n", +"p=p1/p2;\n", +"q1=x^2;\n", +"q2=x^2-1;\n", +"q=q1/q2;\n", +"p/q" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Multiplication_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=x^4-27*x;\n", +"p2=x^2-9;\n", +"p=p1/p2;\n", +"q1=x^2+3*x+9;\n", +"q2=x+3;\n", +"q=q1/q2;\n", +"p/q" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: Subtraction_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//simplify a/(a-b) - a^2/(a^2-b^2)\n", +"clear;\n", +"clc;\n", +"close;\n", +"//as, (a^2-b^2)=(a+b)(a-b),substitute it.\n", +"mprintf('\n the fraction is :\n')\n", +"ans=string('ab/((a+b)(a-b))')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.7: Fraction_Subtraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//3/(a-b)-(2a+b)/(a^2-b^2)\n", +"clear;\n", +"clc;\n", +"close;\n", +"mprintf('\n on factorizing, the expression becomes \n');\n", +"//3/(a-b)-(2a+b)/(a+b)(a-b) => (3a+3b-2a-b)/(a+b)(a-b)\n", +"string('(a+2b)/((a+b)(a-b))')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.8: Subtraction_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear;\n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=x-1;\n", +"p2=x^2-x-2;\n", +"p=p1/p2;\n", +"q1=x+2;\n", +"q2=x^2+4*x+3;\n", +"q=q1/q2;\n", +"t=p-q;\n", +"y=numer(t) //numerator of t\n", +"z=factors(denom(t))//factors of denominator of t (more simplified form)\n", +"disp('val=(1+2x)/(1+x)(-2+x)(3+x)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.9: Division_of_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//x/(x-(1/x))\n", +"clear; \n", +"clc;\n", +"close;\n", +"x=poly(0,'x');\n", +"p1=x;\n", +"p2=1/x;\n", +"p3=p1-p2;\n", +"p=p1/p3" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |