summaryrefslogtreecommitdiff
path: root/Thermodynamics_for_Chemists_by_S_Glasstone
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Thermodynamics_for_Chemists_by_S_Glasstone
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Thermodynamics_for_Chemists_by_S_Glasstone')
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/1-Heat_work_and_energy.ipynb159
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/11-Phase_Equilibria.ipynb303
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/12-Fugacity_and_Activity.ipynb146
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/13-Free_Energy_and_Chemical_Reactions.ipynb438
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/14-The_Properties_of_Solution.ipynb189
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/15-Activities_and_Activity_coefficients.ipynb211
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/16-Solutions_of_Electrolytes.ipynb127
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/17-The_Debye_Huckel_Theory.ipynb84
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/18-Partial_Molar_Properties.ipynb260
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/19-EMF_and_the_thermodynamics_of_ions.ipynb238
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/2-Properties_of_thromodynamic_systems.ipynb211
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/3-The_first_law_of_thermodynamics.ipynb91
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/4-Heat_changes_and_heat_capacities.ipynb214
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/5-Thermochemistry.ipynb389
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/6-Calculation_of_energy_and_heat_capcity.ipynb306
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/7-The_second_law_of_thermodynamics.ipynb120
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/8-Entropy_relationships_and_applications.ipynb310
-rw-r--r--Thermodynamics_for_Chemists_by_S_Glasstone/9-Entropy_determination_and_Significance.ipynb148
18 files changed, 3944 insertions, 0 deletions
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/1-Heat_work_and_energy.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/1-Heat_work_and_energy.ipynb
new file mode 100644
index 0000000..7cf1dd3
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/1-Heat_work_and_energy.ipynb
@@ -0,0 +1,159 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Heat work and energy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"q= 26.45 //coloumbs\n",
+"e= 2.432 //volts\n",
+"//CALCULATIONS\n",
+"Q1= q*e\n",
+"Q2= Q1*1.0002*10^7\n",
+"//RESULTS\n",
+"printf ('Energy expenditure in joules = %.2f int.joules',Q1)\n",
+"printf ('\n Energy expenditure in ergs = %.2e ergs',Q2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"I= 0.565 //amp\n",
+"R= 15.43 //ohms\n",
+"t= 185 //secs\n",
+"Tr= 0.544 //C\n",
+"//CALCULATIONS\n",
+"Q1= I^2*R*t\n",
+"Q2= I^2*R*t/Tr\n",
+"//RESULTS\n",
+"printf ('Heat capacity = %.f int.joules deg^-1',Q2)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"I= 0.565 //amp\n",
+"R= 15.43 //ohms\n",
+"t= 185 //secs\n",
+"Tr= 0.544 //C\n",
+"//CALCULATIONS\n",
+"Q1= I^2*R*t\n",
+"Q2= I^2*R*t/(Tr*4.183)\n",
+"//RESULTS\n",
+"printf ('Heat capacity = %.1f calories',Q2)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"v= 1 //lit\n",
+"p= 1 //atm\n",
+"h= 76 //cm\n",
+"d= 13.595 //kg/cm^3\n",
+"g= 980.66 //dunes cm^-2\n",
+"j= 4.18 //joules\n",
+"//CALCULATIONS\n",
+"W= v*p\n",
+"W1= h*d*g\n",
+"W2= W1*10^-4\n",
+"W3= W2/j\n",
+"//RESULTS\n",
+"printf ('Work done in lit-atm = %.f lit-atm',W)\n",
+"printf ('\n Work done in dynes = %.2e dynes cm^-2',W1)\n",
+"printf ('\n Work done in ergs = %.2e ergs',W2)\n",
+"printf ('\n Work done in calories = %.2f calories',W3)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/11-Phase_Equilibria.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/11-Phase_Equilibria.ipynb
new file mode 100644
index 0000000..4c7b180
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/11-Phase_Equilibria.ipynb
@@ -0,0 +1,303 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Phase Equilibria"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 0 //C\n",
+"sv= 1.0001 //cc g^-1\n",
+"sv1= 1.0907 //cc g^-1\n",
+"R= 0.0242 //atm^-1 cc^-1 cal\n",
+"p= 79.8 //atm\n",
+"//CALCULATIONS\n",
+"r= (273.2+T)*(sv-sv1)*R/p\n",
+"//RESULTS\n",
+"printf ('rate of change of melting point = %.4f deg atm^-1',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 95.5 //C\n",
+"p= 1 //atm\n",
+"v= 0.0126 //cc g^-1\n",
+"a= 0.0242 //cal cc^-1 atm^-1\n",
+"r= 0.035 //K atm^-1\n",
+"//CALCULATIONS\n",
+"dH= (273.2+T)*v*a/r\n",
+"//RESULTS\n",
+"printf ('Heat of transition = %.1f cal g^-1',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 100 //C\n",
+"j= 0.0242 //cal cc^-1 atm6-1\n",
+"k= 539 //cal g^-1\n",
+"p= 1664 //cc g^-1\n",
+"//CALCULATIONS\n",
+"r= (273.2+T)*(p-1)*j/k\n",
+"//RESULTS\n",
+"printf ('Rise in temperature per unit of pressure= %.1f deg atm^-1',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T1= 100 //C\n",
+"T2= 90 //C\n",
+"p= 76 //cm of hg\n",
+"H= 542*18.02 //cal mole^-1\n",
+"//CALCULATIONS\n",
+"p1= p/10^((H/4.576)*((T1-T2)/((273.2+T1)*(273.2+T2))))\n",
+"//RESULTS\n",
+"printf ('Final vapour pressure of water = %.1f cm',p1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 239.05 //K\n",
+"r= 0.0242 //cal cc6-1 atm^-1\n",
+"Vv= 269.1 //cc g^-1\n",
+"Vl= 0.7 //cc g^-1\n",
+"r1= 3.343 //cm of mercury deg6-1\n",
+"p= 76 //cm\n",
+"//CALCULATIONS\n",
+"tbyp= r1/p\n",
+"dH= T*(Vv-Vl)*tbyp*r\n",
+"//RESULTS\n",
+"printf ('heat of vapourisation of liquid chlorine = %.1f cal g^-1',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Ta= 441 //C\n",
+"Tb= 882 //C\n",
+"Tb1= 1218 //C\n",
+"//CALCULATIONS\n",
+"Ta1= (273+Tb1)*(Tb+273)/(273+Ta)\n",
+"Tb= Ta1-273\n",
+"//RESULTS\n",
+"printf ('Normal boiling point of silver = %.f K',Ta1)\n",
+"printf ('\n Normal boiling point of silver in degrees = %.f degrees',Tb)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 40 //C\n",
+"T1= 80.1 //C\n",
+"//CALCULATIONS\n",
+"H= 2*(273.2+T1)\n",
+"p= %e^(-(H/(4.576*(273.2+T)))+4.59)/3.07\n",
+"//RESULTS\n",
+"printf ('vapour pressure = %.1f cm',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p= 23.76 //mm\n",
+"R= 0.082 //atm-lit deg^-1 mol^-1\n",
+"T= 25 //C\n",
+"vl= 18 //ml\n",
+"p1= 1 //atm\n",
+"//CALCULATIONS\n",
+"dP= 0.001*vl*p*p1/(R*(273+T))\n",
+"p2= p+dP\n",
+"//RESULTS\n",
+"printf ('vapour pressure = %.2f mm',p2)\n",
+"\n",
+"//ANSWER GIVEN IN THE TEXTBOOK IS WRONG"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 25 //C\n",
+"R= 8.314*10^7 //ergs /mol K\n",
+"st= 72 //dynes cm^-1\n",
+"mv= 18 //cc mole^-1\n",
+"r= 10^-5 //cm\n",
+"p= 23.76 //cm\n",
+"//CALCULATIONS\n",
+"p1= p*10^(2*st*mv/(r*R*2.303*(273.2+T)))\n",
+"//RESULTS\n",
+"printf ('vapour pressure = %.2f mm',p1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/12-Fugacity_and_Activity.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/12-Fugacity_and_Activity.ipynb
new file mode 100644
index 0000000..9e81e7f
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/12-Fugacity_and_Activity.ipynb
@@ -0,0 +1,146 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Fugacity and Activity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 50 //atm\n",
+"p2= 100 //atm\n",
+"p3= 200 //atm\n",
+"p4= 400 //atm\n",
+"p5= 800 //atm\n",
+"p6= 1000 //atm\n",
+"r1= 0.979\n",
+"r2= 0.967\n",
+"r3= 0.971\n",
+"r4= 1.061\n",
+"r5= 1.489\n",
+"r6= 1.834\n",
+"//CALCULATIONS\n",
+"f1= r1*p1\n",
+"f2= r2*p2\n",
+"f3= r3*p3\n",
+"f4= r4*p4\n",
+"f5= r5*p5\n",
+"f6= r6*p6\n",
+"//RESULTS\n",
+"printf ('fugacity of nitrogen gas = %.2f atm',f1)\n",
+"printf ('\n fugacity of nitrogen gas = %.1f atm',f2)\n",
+"printf ('\n fugacity of nitrogen gas = %.1f atm',f3)\n",
+"printf ('\n fugacity of nitrogen gas = %.1f atm',f4)\n",
+"printf ('\n fugacity of nitrogen gas = %.f atm',f5)\n",
+"printf ('\n fugacity of nitrogen gas = %.f atm',f6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 50 //atm\n",
+"p2= 100 //atm\n",
+"p3= 200 //atm\n",
+"p4= 400 //atm\n",
+"r1= 0.98\n",
+"r2= 0.97\n",
+"r3= 0.98\n",
+"r4= 1.07\n",
+"//CALCULATIONS\n",
+"f1= p1*r1\n",
+"f2= p2*r1\n",
+"f3= p3*r3\n",
+"f4= p4*r4\n",
+"//RESULTS\n",
+"printf ('fugacity of nitrogen gas = %.f atm',f1)\n",
+"printf ('\n fugacity of nitrogen gas = %.f atm',f2)\n",
+"printf ('\n fugacity of nitrogen gas = %.f atm',f3)\n",
+"printf ('\n fugacity of nitrogen gas = %.f atm',f4)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p= 3.66 //atm\n",
+"v= 6.01 //litre mole^-1\n",
+"T= 0 //C\n",
+"R= 0.082 //lit-atm mole^-1 K^-1\n",
+"//CALCULATIONS\n",
+"f= p^2*v/(R*(273+T))\n",
+"//RESULTS\n",
+"printf ('fugacity of liquid chlorine = %.2f atm',f)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/13-Free_Energy_and_Chemical_Reactions.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/13-Free_Energy_and_Chemical_Reactions.ipynb
new file mode 100644
index 0000000..fcfd517
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/13-Free_Energy_and_Chemical_Reactions.ipynb
@@ -0,0 +1,438 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Free Energy and Chemical Reactions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"F1= 24.423//cal deg^-1\n",
+"F2= 21.031 //cal deg^-1\n",
+"F3= 37.172 //cal deg^-1\n",
+"H1= 2.024 //kcal\n",
+"H2= 1.035 //kcal\n",
+"H3= 2.365 //kcal\n",
+"H= -57.8 //kcal\n",
+"T= 25 //C\n",
+"//CALCULATIONS\n",
+"dF= F3-F1-F2\n",
+"dH= H3-H1-H2\n",
+"Hf= H-dH\n",
+"F= Hf-((273.2+T)*dF*10^-3) \n",
+"//RESULTS\n",
+"printf ('Standard free energy = %.2f kcal',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.11: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 1000 //C\n",
+"j= 1.5\n",
+"Q= 35840 //cal\n",
+"I= 743*10^-40 //g cm^2\n",
+"w= 214 //cm^-2\n",
+"Kf= 0.184\n",
+"//RESULTS\n",
+"printf ('Equilibrium constant = %.3f ',Kf)\n",
+"\n",
+"//NO SOLUTION IS GIVEN TO SOLVE Kf\n",
+"//INCOMPLETE SOLUTION IN THE TEXTBOOK\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.12: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"dH= 83 //cal\n",
+"R= 1.98 //cal mole K^-1\n",
+"T= 25 //C\n",
+"M1= 128 //gms\n",
+"M2= 4 //gms\n",
+"M3= 2 //gms\n",
+"M4= 129 //gms\n",
+"I1= 4.31 //g cm^2\n",
+"I2= 0.920 //g cm^2\n",
+"I3= 0.459 //g cm^2\n",
+"I4= 8.555 // g cm^2\n",
+"//CALCULATIONS\n",
+"K= 10^((-dH/(2.303*R*(273.2+T)))+1.5*log10(M1^2*M2/(M3*M4^2))+log10(I1^2*I2/(I3*I4^2)))\n",
+"//RESULTS\n",
+"printf ('Equilibrium constant = %.2f ',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 4.576 //cal deg^-1 mole^-1\n",
+"T= 700 //C\n",
+"Kp= 0.71\n",
+"p1= 1.5 //atm\n",
+"p2= 5 //atm\n",
+"//CALCULATIONS\n",
+"dF= -R*(273+T)*(log(Kp)-log((p1*p2)/(10*p2)))*0.77\n",
+"//RESULTS\n",
+"printf ('Free energy = %.f cal',dF-10)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k1= 4600\n",
+"k2= -8.64\n",
+"k3= 1.86*10^-3\n",
+"k4= -0.12*10^-6\n",
+"k5= 12.07\n",
+"T= 600 //K\n",
+"//CALCULATIONS\n",
+"Kf= %e^(k1*(1/T)+k2*log10(T)+k3*T+k4*T^2+k5)\n",
+"//RESULTS\n",
+"printf ('Kf = %.3f ',Kf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k= -8810 //cal\n",
+"k1= -7.46 //cal K^-1\n",
+"k2= 3.69*10^-3 //cal K^-2\n",
+"k3= -0.47*10^-6 //cak K^-3\n",
+"T= 298 //K\n",
+"//CALCULAATIONS\n",
+"dH= k+k1*T+k2*T^2+k3*T^3\n",
+"//RESULTS\n",
+"printf ('Standard heat of reaction = %.f cal',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k1= -9130 //cal\n",
+"k2= 7.46 //cal K^-1\n",
+"k3= -3.69*10^-3 //K^-2\n",
+"k4= 0.235*10^-6 //K^-3\n",
+"k5= -12.07\n",
+"T= 298 //K\n",
+"R= 1.987 //cal deg^-1 mole^-1\n",
+"//CALCULATIONS\n",
+"dF= k1+k2*T*log(T)+k3*T^2+k4*T^3+k5*R*T\n",
+"//RESULTS\n",
+"printf ('Free energy = %.f cal',dF)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 25 //C\n",
+"dF1= 61.44 //kcal\n",
+"dF= 54.65 //kcal\n",
+"R= 4.576 //cal deg^-1 mole^-1\n",
+"//CALCULATIONS\n",
+"Kf= 10^(-(dF1-dF)*10^3/(R*(273.2+T)))\n",
+"//RESULTS\n",
+"printf ('Kf at this temperature = %.2e ',Kf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 4.576 //cal mole^-1 K^-1\n",
+"T= 25 //C\n",
+"p1= 122 //mm\n",
+"F1= -5.88 //kcal\n",
+"F2= -33 //kcal\n",
+"//CALCULATIONS\n",
+"dF= R*(273.2+T)*log10(p1/760)\n",
+"F= F2+F1+(dF/1000)\n",
+"//RESULTS\n",
+"printf ('Standard free energy change = %.f kcal',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"r= 3.38*10^-4 //volt deg^-1\n",
+"F= 23070 //cal volt^-1 deg^-1\n",
+"Sagcl= 23 //E.U.mole^-1\n",
+"Shg= 18.5 //E.U.mole^-1\n",
+"Sag= 10.2 //E.U.mole^-1\n",
+"//CALCULATIONS\n",
+"dS= F*r\n",
+"shgcl= 2*-(dS-Sagcl-Shg+Sag)\n",
+"//RESULTS\n",
+"printf ('dS = %.1f E.U.cal deg^-1',dS)\n",
+"printf ('\n molar entropy = %.f E.U.mole^-1',shgcl)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"s1= 44.5 //cal deg^-1 mole^-1\n",
+"s2= 49 //cal deg^-1 mole^-1\n",
+"s3= 51.06 //cal deg^-1 mole^-1\n",
+"s4= 16.75 //cal deg^-1 mole^-1\n",
+"h1= -17.9 //kcal mole^-1\n",
+"h2= 0 //kcal mole^-1\n",
+"h3= -94 //kcal mole^-1\n",
+"h4= -68.3 //kcal mole^-1\n",
+"T= 25 //C\n",
+"n= 2\n",
+"//CALCULATIONS\n",
+"dS= s3+2*s4-s1-n*s2\n",
+"dH= h3+n*h4-h1-n*h2\n",
+"dF= -0.001*(273.2+T)*dS+dH\n",
+"//RESULTS\n",
+"printf ('Entropy Change = %.1f E.U',dS)\n",
+"printf ('\n Enthalpy Change = %.1f E.U',dH)\n",
+"printf ('\n Standard free energy = %.1f kcal',dF)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"a= -15.84 \n",
+"b= 22.84*10^-3\n",
+"c= -80.97*10^-7 \n",
+"T= 25 //C\n",
+"H1= -48.1 //kcal\n",
+"H2= -26.4\n",
+"dS= 53.09\n",
+"T1= 327 //C\n",
+"r1= 0.58\n",
+"r2= 1.1\n",
+"r3= 1.13\n",
+"//CALCULATIONS\n",
+"dH= (H1-H2)*1000-a*(273.2+T)-0.5*b*(273.2+T)^2-0.33*c*(273.2+T)^3\n",
+"dF= (H1-H2)*1000+(273.2+T)*dS\n",
+"I= (dF-dH+a*(273.2+T)*log(273.2+T)+0.5*b*(273.2+T)^2+0.166*c*(273.2+T)^3)/(273.2+T)\n",
+"dF1= (dH-a*(273+T1)*log(273+T1)-0.5*b*(273+T1)^2-0.166*c*(273+T1)^3)+I*(273+T1)\n",
+"Kf= 10^(-dF1/(4.576*(273+T1)))\n",
+"Jr= r1/(r2^2*r3)\n",
+"Kp= Kf/Jr\n",
+"//RESULTS\n",
+"printf ('heat of formation = %.f cal',dH)\n",
+"printf ('\n Entropy = %.f cal',dF)\n",
+"printf ('\n Inertia = %.f gm cm^2',I)\n",
+"printf ('\n Entropy = %.f cal',dF1)\n",
+"printf ('\n Kf = %.1e ',Kf)\n",
+"printf ('\n Kp = %.1e ',Kp)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/14-The_Properties_of_Solution.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/14-The_Properties_of_Solution.ipynb
new file mode 100644
index 0000000..a9a84cd
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/14-The_Properties_of_Solution.ipynb
@@ -0,0 +1,189 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: The Properties of Solution"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"M2= 92 //gms\n",
+"M1= 78 //gms\n",
+"pb= 118.2 //mm\n",
+"pt= 36.7 //mm\n",
+"//CALCULATIONS\n",
+"n1= M2/(M1+M2)\n",
+"n2= 1-n1\n",
+"p1= n1*pb\n",
+"p2= n2*pt\n",
+"w= p1*M1/(p2*M2)\n",
+"//RESULTS\n",
+"printf ('partial pressure of benzene = %.f mm',p1)\n",
+"printf ('\n partial pressure of toulene = %.1f mm',p2)\n",
+"printf ('\n weight proportions = %.2f ',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"vpe= 42 //atm\n",
+"p2= 1 //atm\n",
+"//CALCULATIONS\n",
+"N2= p2/vpe\n",
+"//RESULTS\n",
+"printf ('Ideal solubility of ethane = %.3f mole fraction',N2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 25.7 //atm\n",
+"p2= 11.84 //atm\n",
+"T1= 173 //K\n",
+"T2= 153 //K\n",
+"T3= 25 //C\n",
+"//CALCULATIONS\n",
+"dH= log10(p1/p2)*4.579*T1*T2/(T1-T2)\n",
+"p= p1*10^((dH/4.576)*(273+T3-T1)/((273+T3)*T1))\n",
+"s= 1/p\n",
+"//RESULTS\n",
+"printf ('Heat of reaction = %.f cal mole^-1',dH)\n",
+"printf ('\n pressure = %.f atm',p)\n",
+"printf ('\n Solubility of methane = %.5f ',s)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T1= 20 //C\n",
+"T2= 80 //C\n",
+"H1= 4540 //cal mole^-1\n",
+"//CALCULATIONS\n",
+"n= 10^(H1*(-T2+T1)/(4.576*(273+T1)*(273+T2)))\n",
+"//RESULTS\n",
+"printf ('ideal solubility of napthalene = %.3f ',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.987 //cal mole^-1 K^-1\n",
+"T= 278.6 //K\n",
+"dH= 30.2 //cal g^-1\n",
+"m= 6.054 //gms\n",
+"a= 0.1263 //degrees\n",
+"//CALCULATIONS\n",
+"l= R*T^2/(1000*dH)\n",
+"m1= a/l\n",
+"M2= m/m1\n",
+"//RESULTS\n",
+"printf ('molal depression constant = %.2f ',l)\n",
+"printf ('\n molality = %.4f ',m1)\n",
+"printf ('\n molecular weight of solute = %.f gms',M2)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/15-Activities_and_Activity_coefficients.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/15-Activities_and_Activity_coefficients.ipynb
new file mode 100644
index 0000000..c165a3f
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/15-Activities_and_Activity_coefficients.ipynb
@@ -0,0 +1,211 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Activities and Activity coefficients"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 17.222 //mm\n",
+"p2= 17.535 //mm\n",
+"n= 1 //mole\n",
+"m= 1000 //gms\n",
+"M= 18.016 //gms\n",
+"//CALCULATIONS\n",
+"a= p1/p2\n",
+"N1= (m/M)/(n+(m/M))\n",
+"//RESULTS\n",
+"printf ('activity = %.4f ',a)\n",
+"printf ('\n activity coefficient = %.4f ',N1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"M= 0.1 //molal\n",
+"Tf= 0.345 //C\n",
+"k= -9.702*10^-3\n",
+"k1= -5.2*10^-6\n",
+"//CALCULATIONS\n",
+"a= %e^(k*Tf+k1*Tf^2)\n",
+"//RESULTS\n",
+"printf ('activity = %.4f ',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.98*10^-4 //cal mole^-1 deg^-1\n",
+"T= 20 //C\n",
+"E= -0.11118 //volt\n",
+"n2= 0.00326\n",
+"n21= 0.0986\n",
+"//CALCULATIONS\n",
+"r= 10^((-E/(R*(273.16+T)))-log10(n21)+log10(n2))+n21\n",
+"a2= r*n21\n",
+"//RESULTS\n",
+"printf ('a2/N2 = %.3f ',r)\n",
+"printf ('\n a2 = %.4f ',a2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n1= 0.424 //mole fraction\n",
+"a2= 3.268\n",
+"n= 8.3\n",
+"//CALCULATIONS\n",
+"r= a2/(n*n1)\n",
+"//RESULTS\n",
+"printf ('a2/N2 = %.3f ',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"e= 0.7865 //volt\n",
+"emf= 0.8085 //emf\n",
+"T= 500 //C\n",
+"R= 1.98*10^-4 //cal mol6-1 deg^-1\n",
+"n2= 0.5937\n",
+"//CALCULATIONS\n",
+"a2= 10^((e-emf)/(R*(273+T)))\n",
+"r= a2/n2\n",
+"//RESULTS\n",
+"printf ('activity coefficient = %.2f ',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"ac= 1.211\n",
+"n2= 0.5937\n",
+"//CALCULATIONS\n",
+"b= log10(ac)/(1-n2)^2\n",
+"//RESULTS\n",
+"printf ('Constant = %.4f ',b)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/16-Solutions_of_Electrolytes.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/16-Solutions_of_Electrolytes.ipynb
new file mode 100644
index 0000000..e4172ff
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/16-Solutions_of_Electrolytes.ipynb
@@ -0,0 +1,127 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Solutions of Electrolytes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"v= 1\n",
+"m= 0.5\n",
+"//CALCULATIONS\n",
+"m1 = 2*m\n",
+"m2 = 1*m\n",
+"v1 = 2*v\n",
+"v2 = 1*v\n",
+"M = (m1^2*m2)^(1/(v1+v2))\n",
+"//RESULTS\n",
+"printf ('mean ionic molality = %.1f ',m2)\n",
+"printf ('\n mean ionic molality = %.3f ',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n= 2\n",
+"m= 0.01422\n",
+"m1= 0.00869\n",
+"m2= 0.025\n",
+"//CALCULATIONS\n",
+"M = m2+m1\n",
+"M1= (M*m1)^(1/n)\n",
+"r= m/M1\n",
+"//RESULTS\n",
+"printf ('mean ionic molality = %.3f ',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"mu= 1\n",
+"mb= 2\n",
+"m= 1 \n",
+"m1= 2\n",
+"//CALCULATIONS\n",
+"ym1= 0.5*(mu*m^2+mu*m^2)\n",
+"ym2= 0.5*(mb*m^2+m*m1^2)\n",
+"ym3= 0.5*(mu*m1^2+mu*m1^2)\n",
+"//RESULTS\n",
+"printf ('ionic strength of solution = %.f *m',ym1)\n",
+"printf ('\n ionic strength of solution = %.f *m',ym2)\n",
+"printf ('\n ionic strength of solution = %.f *m',ym3)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/17-The_Debye_Huckel_Theory.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/17-The_Debye_Huckel_Theory.ipynb
new file mode 100644
index 0000000..6b9962e
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/17-The_Debye_Huckel_Theory.ipynb
@@ -0,0 +1,84 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: The Debye Huckel Theory"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"s= 1.771*10^-4 //mole litre^-1\n",
+"s1= 0.3252*10^-2 //mole litre^-1\n",
+"//CALCULATIONS\n",
+"S= s*10^(0.509*(sqrt(s+s1)-sqrt(s)))\n",
+"//RESULTS\n",
+"printf ('Solubility = %.2e mole litre^-1',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"a= 0.1\n",
+"//CALCULATIONS\n",
+"r= 10^(-0.509*sqrt(a)/(1+sqrt(a)))\n",
+"//RESULTS\n",
+"printf ('mean ionic acctivity coefficient = %.3f ',r)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/18-Partial_Molar_Properties.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/18-Partial_Molar_Properties.ipynb
new file mode 100644
index 0000000..dd93d72
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/18-Partial_Molar_Properties.ipynb
@@ -0,0 +1,260 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Partial Molar Properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k1= 16.4 //ml mole^-1\n",
+"k2= 2.5 //ml mole^-2\n",
+"k3= -1.2 //ml mole^-3\n",
+"m= 1 //molal\n",
+"//CALCULATIONS\n",
+"Ov= k1+k2*m+k3*m^2\n",
+"//RESULTS\n",
+"printf ('Apparent molar volume = %.1f ml mole^-1',Ov)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n= 1 //mole\n",
+"n1= 400 //mole\n",
+"T= 25 //C\n",
+"H1= 5410 //cal\n",
+"H2= -5020 //cal\n",
+"//CALCULATIONS\n",
+"dH= -(H1+H2)\n",
+"//RESULTS\n",
+"printf ('Heat required to remove the water = %.f cal',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n= 1 //mole\n",
+"n1= 400 //mole\n",
+"T= 25 //C\n",
+"H1= 23540 //cal\n",
+"H2= -5410 //cal\n",
+"//CALCULATIONS\n",
+"dH= -(H1+H2)\n",
+"//RESULTS\n",
+"printf ('Heat required to remove the water = %.f cal',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n1= 1 //mole\n",
+"n2= 400 //mole\n",
+"H1= 5638 //cal\n",
+"H2= 23540 //cal\n",
+"L= -1.54 //cal/mole\n",
+"l1= -2.16 //cal/mole\n",
+"l2= 5842 //cal/mole\n",
+"//CALCULATIONS\n",
+"Q1= n2*L+H1+H2\n",
+"Q2= n2*l1+2*l2\n",
+"Q= Q2-Q1\n",
+"//RESULTS\n",
+"printf ('Heat change = %.f cal',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"L2= 6000 //cal\n",
+"v= 3 \n",
+"T= 25 //C\n",
+"T1= 0 //C\n",
+"//CALCULATIONS\n",
+"R= ((L2/(v*4.576))*(T-T1)/((273+T1)*(273+T)))\n",
+"r= 10^((L2/(v*4.576))*(T-T1)/((273+T1)*(273+T)))\n",
+"//RESULTS\n",
+"printf ('Ratio = %.3f ',R)\n",
+"printf ('\n Relative change in mean ionic coefficient = %.2f ',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"L2= 4120 //cal\n",
+"l= -108 //cal mole^-1\n",
+"L21= -306 //cal mole^-1\n",
+"n1= 55.5 //moles\n",
+"n2= 1 //mole\n",
+"//CALCULATIONS\n",
+"Q= L21+L2\n",
+"//RESULTS\n",
+"printf ('differential heat of solution = %.f cal mole^-1',Q) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n1= 2 //moles\n",
+"n2= 100 //moles\n",
+"Cp1= 17.9 //cal deg^-1 mole^-1\n",
+"Cp2= 21.78 //cal deg^-1 mole^-1\n",
+"T1= 30 //C\n",
+"T2= 25 //C\n",
+"L1= 5780 //cal\n",
+"L2= 5410 //cal\n",
+"h= 5620 //cal mole^-1\n",
+"n3= 3 //moles\n",
+"Cp3= 16.55 //cal deg^-1 mole^-1\n",
+"//CALCULATIONS \n",
+"Cp= n2*Cp1+n1*Cp2\n",
+"Q= (T2-T1)*Cp\n",
+"Q1= (n1*L1+L2)\n",
+"Q2= n3*h\n",
+"dQ= Q2-Q1\n",
+"dH= Q+dQ\n",
+"HC= 300*Cp1+n3*Cp3\n",
+"t= -dH/HC\n",
+"Tf= T2+t\n",
+"//RESULTS\n",
+"printf ('Increase in temperature = %.2f deg',t) \n",
+"printf ('\n Final temperature = %.1f deg',Tf) "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/19-EMF_and_the_thermodynamics_of_ions.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/19-EMF_and_the_thermodynamics_of_ions.ipynb
new file mode 100644
index 0000000..775bf3c
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/19-EMF_and_the_thermodynamics_of_ions.ipynb
@@ -0,0 +1,238 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 19: EMF and the thermodynamics of ions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"h= 23070 //cal volt^-1 g equiv^-1\n",
+"n= 2 //electrons\n",
+"e= 1.005 //volts\n",
+"T= 25 //C\n",
+"e1= 1.015 //volts\n",
+"//CALCULATIONS\n",
+"dH= (-n*h*(e-((273.2+T)*(e-e1)/T)))/1000\n",
+"//RESULTS\n",
+"printf ('Heat change in the cell reaction = %.2f kcal',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"E= -0.344 //volt\n",
+"E1= -0.401 //volt\n",
+"R= 0.05914 //volt\n",
+"n= 4\n",
+"T= 25 //C\n",
+"H= -7300 //cal\n",
+"//CALCULATIONS\n",
+"po2= 10^(-n*(E-E1)/R)\n",
+"dH= -0.5*n*H+0.5*n*(273+T)\n",
+"//RESULTS\n",
+"printf ('Pressure of Oxygen = %.1e atm',po2)\n",
+"printf ('\n Change in Enthalpy = %.f cal',dH+4)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"H= -60.15 //kcal\n",
+"e= 2.924 //volt\n",
+"v= 23070 //cc\n",
+"T= 25 //C\n",
+"Sm= 15.2 //E.U.mole^-1\n",
+"Sg= 31.2 //E.U.mole^-1\n",
+"//CALCULATIONS\n",
+"dS= (H*1000-(-e*v))/(273.2+T)\n",
+"Sk= (dS+Sm)-0.5*Sg\n",
+"//RESULTS\n",
+"printf ('Stanadard entropy of pottasium ion = %.1f E.U.g ion^-1',Sk)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"dS= -4.61 //E.Ugm ion^-1\n",
+"SH= 31.21 //E.U gm ion^-1\n",
+"Sm= 9.95 //E.U gm ion^-1\n",
+"//CALCULATIONS\n",
+"Szn= dS-SH+Sm\n",
+"//RESULTS\n",
+"printf ('Stanadard entropy of zinc ion = %.1f E.U.g ion^-1',Szn)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n= 2\n",
+"T= 25 //C\n",
+"R= 4.576 \n",
+"is= 9.57*10^-6\n",
+"n1= 4\n",
+"f= 0.509 //volts\n",
+"dH= 5970 //cal\n",
+"SBa= 2.3 //E.U. gm ion^-1\n",
+"Sba= 31.5 //E.U. gm ion6-1\n",
+"//CALCULATIONS\n",
+"r= 10^(-n1*f*sqrt(n1*is))\n",
+"dF= -n*R*(273.2+T)*log10(is*r)\n",
+"dS= (dH-dF)/(273.2+T)\n",
+"Sso= Sba-SBa+dS\n",
+"//RESULTS\n",
+"printf ('Stanadard entropy of sulfate ion = %.1f E.U.g ion^-1',Sso)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"f1= 20.66 //kcal\n",
+"h1= 21.6 //kcal\n",
+"e1= 50.34 //kcal\n",
+"f2= 0 //kcal\n",
+"f3= -56.70 //kcal\n",
+"f4= -26.25 //kcal\n",
+"h2= 0 //kcal\n",
+"h3= -68.32 //kcal\n",
+"h4= -49.5 //kcal\n",
+"e2= 49.00 //kcal\n",
+"e3= 16.75 //kcal\n",
+"e4= 35 //kcal\n",
+"n1= 2\n",
+"n2= 1.5\n",
+"n3= 1\n",
+"T= 25 //C\n",
+"//CALCULAIONS\n",
+"dF= n1*f4-(n1*f1+f3)\n",
+"dH= n1*h4-(n1*h1+h3)\n",
+"dS= n1*e4-(n1*e1+e3+n2*e2)\n",
+"dS1= (dH-dF)*1000/(273.2+T)\n",
+"//RESULTS\n",
+"printf ('free energy = %.2f kcal',dF)\n",
+"printf ('\n heat of formation = %.1f kcal',dH)\n",
+"printf ('\n Entropy = %.1f E.U',dS)\n",
+"printf ('\n Entropy using heat of formation and free energy = %.1f E.U',dS1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/2-Properties_of_thromodynamic_systems.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/2-Properties_of_thromodynamic_systems.ipynb
new file mode 100644
index 0000000..8b1e93b
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/2-Properties_of_thromodynamic_systems.ipynb
@@ -0,0 +1,211 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Properties of thromodynamic systems"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 40 //C\n",
+"R= 0.0820 //lit-atm deg^-1 mol^-1\n",
+"v= 0.381 //lit\n",
+"b= 0.043 //lit\n",
+"a= 3.6 \n",
+"//CALCULATIONS\n",
+"P= (R*(273+T)/(v-b))-(a/v^2)\n",
+"//RESULTS\n",
+"printf ('Pressure = %.1f atm',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 0 //C\n",
+"R= 0.0820 //lit-atm deg^-1 mol^-1\n",
+"p= 400 //atm\n",
+"//CALCULATIONS\n",
+"V= R*(273+T)/p\n",
+"//RESULTS\n",
+"printf ('Volume of the ideal gas = %.4f lit mol^-1',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p= 400 //atm\n",
+"T= 273 //K\n",
+"R= 0.0820 //lit-atm deg^-1 mol^-1\n",
+"k= 1.27\n",
+"//CALCULATIONS\n",
+"V= k*R*T/p\n",
+"//RESULTS\n",
+"printf ('Volume of the ideal gas = %.4f lit mol^-1',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"V= 0.381 //lit\n",
+"T= 313 //K\n",
+"R= 0.0820 //lit-atm deg^-1 mol^-1\n",
+"pc= 72.9 //atm\n",
+"//CALCULATIONS\n",
+"p= R*T/V\n",
+"r= p/pc\n",
+"//RESULTS\n",
+"printf ('Pressure of carbon dioxide gas = %.1f atm',p)\n",
+"printf ('\n ratio = %.3f ',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"n1= 0.25 //mole\n",
+"n2= 0.75 //mole\n",
+"l= 0.0832 //lit\n",
+"T= 50 //C\n",
+"p1= 404 //atm\n",
+"p2= 390 //atm\n",
+"//CALCULATIONS\n",
+"P= n1*p1+n2*p2\n",
+"//RESULTS\n",
+"printf ('Total Pressure = %.f atm',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//initialisation of variables\n",
+"n1= 0.25 //mole\n",
+"nh= 0.75 //mole\n",
+"p= 400 //atm\n",
+"T= 50 //C\n",
+"vn= 0.083 //lit\n",
+"vh= 0.081 //lit\n",
+"//CALCULATIONS\n",
+"V= n1*vn+vh*nh\n",
+"//RESULTS\n",
+"printf ('Volume of given mixture is = %.3f lit',V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/3-The_first_law_of_thermodynamics.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/3-The_first_law_of_thermodynamics.ipynb
new file mode 100644
index 0000000..b315add
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/3-The_first_law_of_thermodynamics.ipynb
@@ -0,0 +1,91 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: The first law of thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p= 1.013*10^6 //dynecm^2\n",
+"T= 273.16 //K\n",
+"V= 773.4 //cc\n",
+"n= 0.0687 //cal\n",
+"//CALCCULATIONS\n",
+"W= p*V/T\n",
+"k= W/n\n",
+"//RESULTS\n",
+"printf ('Work of expansion = %.2e ergs',W)\n",
+"printf ('\n 1 cal = %.2e ergs',k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 8.314*10^7 //J/mol K\n",
+"T= 298.2 //K\n",
+"p1= 1 //atm\n",
+"p2= 5 //atm\n",
+"//CALCULATIONS\n",
+"W= R*T*log(p1/p2)\n",
+"//RESULTS\n",
+"printf ('Work of expansion = %.2e ergs mole^-1 ',W)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/4-Heat_changes_and_heat_capacities.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/4-Heat_changes_and_heat_capacities.ipynb
new file mode 100644
index 0000000..ce562bd
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/4-Heat_changes_and_heat_capacities.ipynb
@@ -0,0 +1,214 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Heat changes and heat capacities"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T1= 400 //K\n",
+"T2= 300 //K\n",
+"k1= 6.095 //cal mole^-1 K^-1\n",
+"k2= 3.253*10^-3 //cal mole^-1 K^-2\n",
+"k3= -1.017*10^-6 //cal mole^-1 K^-3\n",
+"//CALCULATIONS\n",
+"dH= k1*(T1-T2)+0.5*k2*(T1^2-T2^2)+(1/3)*k3*(T1^3-T2^3)\n",
+"//RESULTS\n",
+"printf ('Heat required to raise the temperature = %.f cal-mole^-1',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 10 //atm\n",
+"p2= 1 //atm\n",
+"T1= 25 //C\n",
+"n= 2/5\n",
+"//CALCULATIONS\n",
+"T2= (p1/p2)^n*(273+T1)-273\n",
+"//RESULTS\n",
+"printf ('Final temperature = %.f C',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p1= 20 //atm\n",
+"p2= 200 //atm\n",
+"T1= 25 //C\n",
+"n= 2/7\n",
+"//CALCULATIONS\n",
+"T2= (p1/p2)^n*(273+T1)-273\n",
+"//RESULTS\n",
+"printf ('Final temperature = %.f C',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Cv= 5*4.18*10^7 //ergs deg^-1 mole^-1\n",
+"T1= 25 //C\n",
+"P2= 5 //atm\n",
+"P1= 1 //atm\n",
+"n= 2/7\n",
+"//CALCULATIONS\n",
+"W= Cv*(273+T1)*(1-(P2/P1)^n)\n",
+"//RESULTS\n",
+"printf ('Work of expansion = %.2e ergs mole^-1',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Ti= 25 //C\n",
+"p= 200 //atm\n",
+"p= 1 //atm\n",
+"dT= 31 //C \n",
+"//CALCULATIONS\n",
+"Tf= Ti-dT\n",
+"//RESULTS\n",
+"printf ('Final temperature = %.f degrees',Tf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k1= 6.45//cal deg^-1 mol^-1\n",
+"k2= 1.41*10^-3 //cal deg^-2 mol^-1\n",
+"k3= -0.81*10^-7 //cal deg^-3 mol^-1\n",
+"T= 300 //K\n",
+"k4= -0.21*1.36 //cal deg^-3 mol^-1 atm^-1\n",
+"k5= 6.87*1.5//cal deg^-3 mol^-1 atm^-2\n",
+"p= 10^-3\n",
+"//CALCULATIONS\n",
+"Cp= k1+k2*T+k3*T^2\n",
+"dCp= k2+2*k3*T\n",
+"dCp1= k4*p+k5*p\n",
+"//RESULTS\n",
+"printf ('Cp = %.2f cal deg^-1 mole^-1',Cp)\n",
+"printf ('\n Specific heat at temperature = %.2e cal deg^-2 mole^-1',dCp)\n",
+"printf ('\n Specific heat at pressure = %.2e cal deg^-2 mole^-1 atm^-1',dCp1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/5-Thermochemistry.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/5-Thermochemistry.ipynb
new file mode 100644
index 0000000..f773733
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/5-Thermochemistry.ipynb
@@ -0,0 +1,389 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Thermochemistry"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"c1= 9.3 //cal deg^-1\n",
+"c2= 6.3 //cal deg^-1\n",
+"n= 2\n",
+"dH= -57500 //cal\n",
+"V= 3 //cc\n",
+"v1= 3.5 //cc\n",
+"T1= 25 //C\n",
+"p1= 1 //atm\n",
+"//CALCULATIONS\n",
+"T2= (-dH/(c1+n*c2))+298\n",
+"p2= p1*V*T2/(v1*(273+T1))\n",
+"//RESULTS\n",
+"printf ('Temperature final = %.f K',T2)\n",
+"printf ('\n pressure final = %.1f atm',p2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Hc= 234.4 //kcal\n",
+"Hdc= 300 //kcal\n",
+"Hch= 436.5 //kcal\n",
+"Hco= 152 //kcal\n",
+"Hsco= 70 //kcal\n",
+"Hoh= 110.2 //kcal\n",
+"Hoo= 885 //kcal\n",
+"Hb= 38 //kcal\n",
+"Hc= 28 //kcal\n",
+"Ha= 206 //kcal\n",
+"H1co= 2128 //kcal\n",
+"H1oh= 661 //kcal\n",
+"H1c= 231 //kcal\n",
+"//CALCULATIONS\n",
+"dH= Hc+Hdc+Hch+Hco+Hsco+Hoh+Hoo+Ha+Hb+Hc-H1co-H1oh-H1c\n",
+"//RESULTS\n",
+"printf ('Heat of combustion = %.f kcal',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Q1= -1227 //kcal\n",
+"R= 2*10^-3 //kcal\n",
+"T= 25 //C\n",
+"dn= -2\n",
+"//CALCULATIONS\n",
+"Qp= Q1+R*(273+T)*dn\n",
+"//RESULTS\n",
+"printf ('Heat of reaction = %.1f kcal',Qp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"H1= -337.3 //kcal\n",
+"H2= -68.3 //kcal\n",
+"H3= -372.8 //kcal\n",
+"//CALCULATIONS\n",
+"Ht= H1+H2-H3\n",
+"//RESULTS\n",
+"printf ('Heat change of reaction = %.1f kcal',Ht)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"dH= -1228.2 //kcal\n",
+"n1= 10\n",
+"n2= 4\n",
+"dH1= -94.05 //kcal\n",
+"dH2= -68.32 //kcal\n",
+"//CALCULATIONS\n",
+"x= n1*dH1+n2*dH2-dH\n",
+"//RESULTS\n",
+"printf ('Heat of formation = %.1f kcal',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"H1= -29.6 //kcal\n",
+"H2= -530.6 //kcal\n",
+"H3= -94 //kcal\n",
+"H4= -68.3 //kcal\n",
+"//CALCULATIONS\n",
+"dH1= -(H1+H2-3*H3-4*H4)\n",
+"dH2= -dH1+3*H3+3*H4\n",
+"//RESULTS\n",
+"printf ('Heat of combustion = %.f kcal',dH1)\n",
+"printf ('\n Standard heat of formation = %.1f kcal',dH2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T1= 25 //C\n",
+"T2= 100 //C\n",
+"dH1= -57.8 //kcal\n",
+"Cp1= 8.03 //cal deg^-1\n",
+"Cp2= 6.92 //cal deg^-1\n",
+"Cp3= 7.04 //cal deg^-1\n",
+"//RESULTS\n",
+"Cp= Cp1-(Cp2+0.5*Cp3)\n",
+"dH2= Cp*10^-3*(T2-T1)+dH1\n",
+"//RESULTS\n",
+"printf ('Stanadard heat of formation = %.2f kcal mole^-1',dH2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"a= -2.776\n",
+"b= 0.947*10^-3\n",
+"c= 0.295*10^-6\n",
+"T1= 373 //K\n",
+"T2= 298 //K\n",
+"dH1= -57.8 //kcal\n",
+"//CALCULATIONS\n",
+"dH= a*(T1-T2)+0.5*b*(T1^2-T2^2)+0.33*c*(T1^3-T2^3)\n",
+"dH2= dH1+(dH/1000)\n",
+"//RESULTS\n",
+"printf ('Heat obtained = %.f cal ',dH)\n",
+"printf ('\n Stanadard heat of formation = %.2f kcal mole^-1',dH2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"a1= 6.189 \n",
+"a2= 3.225\n",
+"a3= 10.421\n",
+"b1= 7.787*10^-3\n",
+"b2= 0.707*10^-3\n",
+"b3= -0.3*10^-3\n",
+"c1= -0.728*10^-6\n",
+"c2= -0.04014*10^-6\n",
+"c3= 0.7212*10^-6\n",
+"dH= -9.13 //kcal\n",
+"//CALCULATIONS\n",
+"a= -(a2+a3-a1)*10^-3\n",
+"b= -0.5*(b2+b3-b1)*10^-3\n",
+"c= -0.33*(c2+c3-c1)*10^-3\n",
+"//RESULTS\n",
+"printf ('a = %.2e kcal mole^-1',a)\n",
+"printf ('\n b = %.2e kcal mole^-1',b)\n",
+"printf ('\n c = %.2e kcal mole^-1',c)\n",
+"printf ('\n dH = %.2f kcal mole^-1',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"dH= 31.39 //kcal\n",
+"k1= 3.397*10^-3 //kcal K^-1\n",
+"k2= -1.68*10^-6 //kcal K^-2\n",
+"k3= -0.022*10^-9 //kcal K^-3\n",
+"k4= 1.17*10^2 //kcal K\n",
+"T= 25 //C\n",
+"//CALCULTIONS\n",
+"H= dH-(k1*(273+T)+k2*(273+T)^2+k3*(273+T)^3+k4*(273+T)^-1)\n",
+"//RESULTS\n",
+"printf ('Change in enthalpy= %.2f kcal',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"dH= 214470 //kcal mole^-1\n",
+"a= 72.43 //calmole^-1deg^-1\n",
+"b= 13.08*10^-3 //kcalmole^-1\n",
+"c= -1.172*10^-6 //kcalmole^-1\n",
+"//CALCULATIONS\n",
+"x=poly(0,'x')\n",
+"vec=roots(a*x+b*x^2+c*x^3-dH)\n",
+"T= vec(3)-273\n",
+"//RESULTS\n",
+"printf ('Temperature = %.f C',T+15)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/6-Calculation_of_energy_and_heat_capcity.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/6-Calculation_of_energy_and_heat_capcity.ipynb
new file mode 100644
index 0000000..43d10d9
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/6-Calculation_of_energy_and_heat_capcity.ipynb
@@ -0,0 +1,306 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Calculation of energy and heat capcity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"m= 5.313*10^-23 //g\n",
+"k= 1.38*10^-16 \n",
+"T= 298 //K\n",
+"R= 82.06 //ml-atm /mol K\n",
+"h= 6.624*10^-27 //J /mol\n",
+"//CALCULATIONS\n",
+"Qt= (2*%pi*m*k*T)^1.5*R*T/h^3\n",
+"//RESULTS\n",
+"printf ('Qt = %.2e ',Qt)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Qe= 4.029\n",
+"Qe1= -37.02\n",
+"Qe2= 4.695*10^4\n",
+"T= 300 //K\n",
+"R= 1.98 //cal /mol K\n",
+"Qe3= 4.158\n",
+"Qe4= -200.8\n",
+"Qe5= 2.546*10^5\n",
+"T1= 500 //K\n",
+"//calculations\n",
+"Ce= R*((Qe2/Qe)-(Qe1/Qe)^2)/T^2\n",
+"Ce1= R*((Qe5/Qe3)-(Qe4/Qe3)^2)/T1^2\n",
+"//RESULTS\n",
+"printf ('electronic contribution = %.3f cal deg^-1.g.atom^-1',Ce)\n",
+"printf ('\n electronic contribution = %.3f cal deg^-1.g.atom^-1',Ce1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"I= 0.459*10^-40 //g cm^2\n",
+"k= 1.38*10^-16\n",
+"T= 300 //K\n",
+"h= 6.624*10^-27 //J/mol\n",
+"I1= 245*10^-40 // g cm^2\n",
+"//CALCULATIONS\n",
+"Qr= I*k*T*8*%pi^2*0.5/h^2\n",
+"Qr1= I1*k*T*8*%pi^2/h^2\n",
+"//RESULTS\n",
+"printf ('Rotational Partition = %.2f ',Qr)\n",
+"printf ('\n Rotational Partition = %.f ',Qr1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"h= 1.439\n",
+"T= 300 //K\n",
+"w= 4405 //cm^-1\n",
+"w1= 565 //cm^-1\n",
+"//CALCULATIONS\n",
+"Qv1= (1-%e^(-h*w/T))^-1\n",
+"Qv2= (1-%e^(-h*w1/T))^-1\n",
+"//RESULTS\n",
+"printf ('Vibrational Partition = %.3f ',Qv1)\n",
+"printf ('\n Vibrational Partition = %.3f ',Qv2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"h= 1.439\n",
+"T= 300 //K\n",
+"w= 565 //cm^-1\n",
+"R= 1.98 //cal /mol K\n",
+"n= 0.56\n",
+"//CALCULATIONS\n",
+"Qr= h*w/T\n",
+"Cv= n*R\n",
+"//RESULTS\n",
+"printf ('Vibrational Partition = %.2f ',Qr)\n",
+"printf ('\n Cv = %.2f cal deg^-1 mole^-1',Cv)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.986 //cal deg^-1 mole^-1\n",
+"cv1= 0.392 //cal deg^-1 mole^-1\n",
+"cv2= 0.004 //cal deg^-1 mole^-1\n",
+"cv3= 0.003 //cal deg^-1 mole^-1\n",
+"cv4= 1.265 //cal deg^-1 mole^-1\n",
+"cv5= 0.247 //cal deg^-1 mole^-1\n",
+"cv6= 0.225 //cal deg^-1 mole^-1\n",
+"//CALCULATIONS\n",
+"Cv = 3*R+cv1+cv2+cv3\n",
+"Cv1= 3*R+cv4+cv5+cv6\n",
+"//RESULTS\n",
+"printf ('Total heat capacity = %.2f cal deg^-1 mole^-1',Cv)\n",
+"printf ('\n Total heat capacity = %.2f cal deg^-1 mole^-1',Cv1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.98 //cal/mol K\n",
+"//CALCULATIONS\n",
+"Cv= 2.856*R\n",
+"//RESULTS\n",
+"printf ('Cv = %.2f cal deg^-1 g.atom^-1',Cv)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.98 //cal/mol K\n",
+"n= 3\n",
+"//CALCULATIONS\n",
+"Cv= n*R*0.8673\n",
+"//RESULTS\n",
+"printf ('Cv = %.2f cal deg^-1 g.atom^-1',Cv)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.98 //cal/mol K\n",
+"n= 3\n",
+"//CALCULATIONS\n",
+"Cv= n*R*0.904\n",
+"//RESULTS\n",
+"printf ('Cv = %.2f cal deg^-1.g.atom^-1',Cv)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/7-The_second_law_of_thermodynamics.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/7-The_second_law_of_thermodynamics.ipynb
new file mode 100644
index 0000000..a5a7ca0
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/7-The_second_law_of_thermodynamics.ipynb
@@ -0,0 +1,120 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: The second law of thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T1= 308 //K\n",
+"T2= 373 //K\n",
+"T3= 538 //K\n",
+"//CALCULATIONS\n",
+"e1= (T2-T1)/T2\n",
+"e2= (T3-T1)/T3\n",
+"//RESULTS\n",
+"printf ('Efficiency = %.3f ',e1)\n",
+"printf ('\n Efficiency = %.3f ',e2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 25 //C\n",
+"T1= 0 //C\n",
+"h= 79.8 //cal g^-1\n",
+"j= 4.18*10^7 //ergs\n",
+"//CALCULATIONS\n",
+"Wc= (T-T1)*h/(273+T1)\n",
+"W= (T-T1)*h*j/(273+T1)\n",
+"//RESULTS\n",
+"printf ('Work required = %.1f cal',Wc)\n",
+"printf ('\n Work required = %.2e ergs',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"R= 1.98 //cal//mol K\n",
+"x= 0.75\n",
+"n= 9\n",
+"//CALCULATIONS\n",
+"dS= -R*(n*(x/n)*log(x/n)+(1-x)*log(1-x))\n",
+"//RESULTS\n",
+"printf ('Entropy = %.2f cal deg^-1 mole^-1',dS)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/8-Entropy_relationships_and_applications.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/8-Entropy_relationships_and_applications.ipynb
new file mode 100644
index 0000000..a72eaf3
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/8-Entropy_relationships_and_applications.ipynb
@@ -0,0 +1,310 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Entropy relationships and applications"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"k1= 6.2\n",
+"k2= 1.33*10^-3\n",
+"k3= 6.78*10^4\n",
+"T1= 800 //C\n",
+"T2= 300 //C\n",
+"//CALCULATIONS\n",
+"dS= k1*log(T1/T2)+k2*(T1-T2)-0.5*k3*(T1^-2-T2^-2)\n",
+"//RESULTS\n",
+"printf ('Entropy increase = %.2f cal deg^-1 g atom^-1',dS)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 77.32 //K\n",
+"p= 1 //atm\n",
+"Tc = 126 //K\n",
+"Pc= 33.5 //atm\n",
+"Mo= 32 //gms\n",
+"mo= 27 //gms\n",
+"R= 1.98 //cl/mol K\n",
+"//CALCULATIONS\n",
+"dS= (mo)*R*Tc^3/(Mo*Pc*T^3)\n",
+"//RESULTS\n",
+"printf ('Entropy increase = %.3f cal deg^-1',dS)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"R= 1.987 //cal deg^-1 mole^-1\n",
+"T= 25 //C\n",
+"Pc= 49.7 //atm\n",
+"m= 128 //gms\n",
+"pc= 49.7 //atm\n",
+"Tc= 154.3 //K\n",
+"m1= 9 //gms\n",
+"m2= 18\n",
+"//CALCULATIONS\n",
+"dH= (m1*R*Tc/(m*pc))*(1-m2*(Tc/(273.15+T))^2)*-1\n",
+"//RESULTS\n",
+"printf ('Enthalpy = %.2f cal mole^-1',dH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"a= 1.39 //lit^2\n",
+"p= 200 //atm\n",
+"R= 0.082 //lit-atm /mol K\n",
+"T= 298 //K\n",
+"//CALCULATIONS\n",
+"dC= (1+(2*a*p/(R*T)^2))\n",
+"//RESULTS\n",
+"printf ('Cp-Cv = %.2f *R lit-atm mole^-1 K^-1',dC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"P= 200 //atm\n",
+"Tc= 126 //k\n",
+"T= 25 //C\n",
+"Pc= 33.5 //atm\n",
+"M= 27 //gms\n",
+"m= 16 //gms\n",
+"//CALCULATIONS\n",
+"dC= (1+(M*Tc^3*P/(m*Pc*(273.2+T)^3)))\n",
+"//RESULTS\n",
+"printf ('Cp-Cv = %.2f *R cal mole^-1 K^-1',dC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 25 //C\n",
+"b= 0.785*10^-6 //atm^-1\n",
+"a= 49.2*10^-6 //deg^-1\n",
+"d= 8.93 //gm/cc\n",
+"aw= 63.57 //gms\n",
+"//CALCULATIONS\n",
+"dC= a^2*(273.2+T)*aw*0.0242/(b*d)\n",
+"//RESULTS\n",
+"printf ('Cp-Cv = %.3f cal deg^-1g atom^-1',dC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p= 100 //atm\n",
+"T= 25 //C\n",
+"a= 1.38\n",
+"b= 3.92*10^-2 //lit atm\n",
+"R= 0.082 //lit-atm mole^-1 K^-1\n",
+"Tc= 126 //K\n",
+"Pc= 33.5 //atm\n",
+"M= 81 //gms\n",
+"m= 32 //gms\n",
+"//CALCULATIONS\n",
+"dC= a*2*p/(R*(273+T)^2)\n",
+"dC1= M*R*Tc^3*p/(m*Pc*(273+T)^3)\n",
+"//RESULTS\n",
+"printf ('Cp-Cp* = %.3f lit atm deg^-1 mole^-1',dC)\n",
+"printf ('\n Cp-Cp* = %.3f lit atm deg^-1 mole^-1',dC1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Cp= 8.21*0.0413 //lit-atm deg^-1 mole^-1\n",
+"V= 8.64*28*10^-3 //lit\n",
+"r= 1.199\n",
+"//CALCULATIONS\n",
+"u= V*(r-1)/Cp\n",
+"//RESULTS\n",
+"printf ('Joule-thomson coefficient = %.3f deg atm^-1',u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Cp= 8.21*0.0413 //lit-atm\n",
+"R= 0.0821 //lit-atm deg^-1 mole^-1\n",
+"p= 100 //atm\n",
+"T= 20 //C\n",
+"a= 1.39 \n",
+"b= 3.92*10^-2 //lit-atm^2 mole\n",
+"//CALCULATIONS\n",
+"u= (1/Cp)*((2*a/(R*(273+T)))-b-(3*a*b*p/(R^2*(273+T)^2)))\n",
+"//RESULTS\n",
+"printf ('Joule-thomson coefficient = %.3f deg atm^-1',u)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Thermodynamics_for_Chemists_by_S_Glasstone/9-Entropy_determination_and_Significance.ipynb b/Thermodynamics_for_Chemists_by_S_Glasstone/9-Entropy_determination_and_Significance.ipynb
new file mode 100644
index 0000000..4c0aa08
--- /dev/null
+++ b/Thermodynamics_for_Chemists_by_S_Glasstone/9-Entropy_determination_and_Significance.ipynb
@@ -0,0 +1,148 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Entropy determination and Significance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"w= 35.46 //gms\n",
+"T= 298.2 //K\n",
+"Qc= 4.03 \n",
+"//CALCULATIONS\n",
+"S= 4.576*(1.5*log10(w)+2.5*log10(T)+log10(Qc)-0.5055)\n",
+"//RESULTS\n",
+"printf ('Standard entropy = %.1f cal deg^-1 g atom^-1',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"M= 28 //gms\n",
+"T= 25 //C\n",
+"I= 13.9*10^-40 // gcm^2\n",
+"s= 2\n",
+"//CALCULATIONS\n",
+"S= 4.576*(1.5*log10(M)+2.5*log10(273.2+T)-0.5055)\n",
+"S1= 4.576*(log10(I)+log10(273.2+T)-log10(s)+38.82)\n",
+"//RESULTS\n",
+"printf ('Standard entropy = %.1f E.U.mole^-1',S)\n",
+"printf ('\n Standard entropy = %.1f E.U.mole^-1',S1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"T= 25 //C\n",
+"I= 4.33*10^-40 // gcm^2\n",
+"I1= 2.78*10^-40 //g cm^2\n",
+"s= 3\n",
+"//CALCULATIONS\n",
+"S= 4.576*(0.5*log10(I1^2*I)+1.5*log10(273.2+T)-log10(s)+58.51)\n",
+"//RESULTS\n",
+"printf ('Standard entropy = %.1f cal deg^-1 mole^-1',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"Sco= 47.3 //cal deg^-1 \n",
+"Sh2= 31.21 //cal deg^-1\n",
+"Sc= 1.36 //cal deg^-1\n",
+"Sho = 16.75 //cal deg^-1\n",
+"//CALCULATIONS\n",
+"S= Sco+Sh2-Sc-Sho\n",
+"//RESULTS\n",
+"printf ('Standard entropy = %.2f cal deg^-1 mole^-1',S)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}