diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb')
-rw-r--r-- | Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb | 684 |
1 files changed, 684 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb new file mode 100644 index 0000000..edbdd36 --- /dev/null +++ b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb @@ -0,0 +1,684 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: FRICTION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: FORCE_REQUIRED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 10 PAGE NO 108\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"d=2.5// MEAN DIA OF BOLT IN cm\n", +"p=.6// PITCH IN cm\n", +"beeta=55/2// VEE ANGLE\n", +"dc=4// DIA OF COLLAR IN cm\n", +"U=.1// COEFFICIENT OF FRICTION OF BOLT\n", +"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n", +"W=6500// LOAD ON BOLT IN NEWTONS\n", +"L=38// LENGTH OF SPANNER\n", +"//=============================================================================================\n", +"//CALCULATION\n", +"//LET X=tan(py)/tan(beeta)\n", +"//y=tan(ALPHA)*X\n", +"PY=atand(U)\n", +"ALPHA=atand(p/(PI*d))\n", +"X=tand(PY)/cosd(beeta)\n", +"Y=tand(ALPHA)\n", +"T1=W*d/2*10^-2*(X+Y)/(1-(X*Y))// TORQUE IN SCREW IN N-m\n", +"Tc=Uc*W*dc/2*10^-2// TORQUE ON BEARING SERVICES IN N-m\n", +"T=T1+Tc// TOTAL TORQUE \n", +"P1=T/L*100// FORCE REQUIRED BY @ THE END OF SPANNER\n", +"//=============================================================================================\n", +"//OUTPUT\n", +"printf('FORCE REQUIRED @ THE END OF SPANNER=%3.3f N',P1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11: POWER_LOST_IN_FRICTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 11 PAGE NO 109\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d1=15// DIAMETER OF VERTICAL SHAFT IN cm\n", +"N=100// SPEED OF THE MOTOR rpm\n", +"W=20000// LOAD AVILABLE IN N\n", +"U=.05// COEFFICIENT OF FRICTION\n", +"PI=3.147\n", +"//==================================================================================\n", +"T=2/3*U*W*d1/2// FRICTIONAL TORQUE IN N-m\n", +"PL=2*PI*N*T/100/60// POWER LOST IN FRICTION IN WATTS\n", +"//==================================================================================\n", +"//OUTPUT\n", +"printf('POWER LOST IN FRICTION=%3.3f watts',PL)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: NO_OF_COLLARS_REQUIRED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 12 PAGE NO 109\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"d2=.30// DIAMETER OF SHAFT IN m \n", +"W=200000// LOAD AVAILABLE IN NEWTONS\n", +"N=75// SPEED IN rpm\n", +"U=.05// COEFFICIENT OF FRICTION\n", +"p=300000// PRESSURE AVAILABLE IN N/m^2\n", +"P=16200// POWER LOST DUE TO FRICTION IN WATTS\n", +"//====================================================================================\n", +"//CaLCULATION\n", +"T=P*60/2/PI/N// TORQUE INDUCED IN THE SHFT IN N-m\n", +"//LET X=(r1^3-r2^3)/(r1^2-r2^2)\n", +"X=(3/2*T/U/W)\n", +"r2=.15// SINCE d2=.30 m\n", +"c=r2^2-(X*r2)\n", +"b= r2-X\n", +"a= 1\n", +"r1=( -b+ sqrt (b^2 -4*a*c ))/(2* a);// VALUE OF r1 IN m\n", +"d1=2*r1*100// d1 IN cm\n", +"n=W/(PI*p*(r1^2-r2^2))\n", +"//================================================================================\n", +"//OUTPUT\n", +"printf('\nEXTERNAL DIAMETER OF SHAFT =%3.3f cm\nNO OF COLLARS REQUIRED =%.3f or %.0f',d1,n,n+1)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: POWER_ABSORBED_IN_FRICTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 13 PAGE NO 111\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"W=20000// LOAD IN NEWTONS\n", +"ALPHA=120/2// CONE ANGLE IN DEGREES\n", +"p=350000// INTENSITY OF PRESSURE\n", +"U=.06\n", +"N=120// SPEED OF THE SHAFT IN rpm\n", +"//d1=3d2\n", +"//r1=3r2\n", +"//===================================================================================\n", +"//CALCULATION\n", +"//LET K=d1/d2\n", +"k=3\n", +"Z=W/((k^2-1)*PI*p)\n", +"r2=Z^.5// INTERNAL RADIUS IN m\n", +"r1=3*r2\n", +"T=2*U*W*(r1^3-r2^3)/(3*sind(60)*(r1^2-r2^2))// total frictional torque in N\n", +"P=2*PI*N*T/60000// power absorbed in friction in kW\n", +"//================================================================================\n", +"printf('\nTHE INTERNAL DIAMETER OF SHAFT =%3.3f cm\nTHE EXTERNAL DIAMETER OF SHAFT =%3.3f cm\nPOWER ABSORBED IN FRICTION =%.3f kW',r2*100,r1*100,P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: FINDING_Radii.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"P=10000// POWER TRRANSMITTED BY CLUTCH IN WATTS\n", +"N=3000// SPEED IN rpm\n", +"p=.09// AXIAL PRESSURE IN N/mm^2\n", +"//d1=1.4d2 RELATION BETWEEN DIAMETERS \n", +"K=1.4// D1/D2\n", +"n=2\n", +"U=.3// COEFFICIENT OF FRICTION\n", +"//==========================================================================================\n", +"T=P*60000/1000/(2*PI*N)// ASSUMING UNIFORM WEAR TORQUE IN N-m\n", +"r2=(T*2/(n*U*2*PI*p*10^6*(K-1)*(K+1)))^(1/3)// INTERNAL RADIUS\n", +"\n", +"//===========================================================================================\n", +"printf('THE INTERNAL RADIUS =%f cm\n THE EXTERNAL RADIUS =%f cm',r2*100,K*r2*100)\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: MAX_AXIAL_INTENSITY_OF_PRESSURE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n", +"//TITLE:FRICTION\n", +"clc\n", +"//βμαφɳρΠπ\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"PI=3.147\n", +"n1=3// NO OF DICS ON DRIVING SHAFTS\n", +"n2=2// NO OF DICS ON DRIVEN SHAFTS\n", +"d1=30// DIAMETER OF DRIVING SHAFT IN cm\n", +"d2=15// DIAMETER OF DRIVEN SHAFT IN cm\n", +"r1=d1/2\n", +"r2=d2/2\n", +"U=.3// COEFFICIENT FRICTION\n", +"P=30000// TANSMITTING POWER IN WATTS\n", +"N=1800// SPEED IN rpm\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"n=n1+n2-1// NO OF PAIRS OF CONTACT SURFACES\n", +"T=P*60000/(2*PI*N)// TORQUE IN N-m\n", +"W=2*T/(n*U*(r1+r2)*10)// LOAD IN N\n", +"k=W/(2*PI*(r1-r2))\n", +"p=k/r2/100// MAX AXIAL INTENSITY OF PRESSURE IN N/mm^2\n", +"//===========================================================================================\n", +"// OUTPUT\n", +"printf('MAX AXIAL INTENSITY OF PRESSURE =%f N/mm^2',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: finding_out_the_coefficient_of_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 1 PAGE NO 102\n", +"//TITLE:FRICTION\n", +"//FIRURE 3.16(a),3.16(b)\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"P1=180// PULL APPLIED TO THE BODY IN NEWTONS\n", +"theta=30// ANGLE AT WHICH P IS ACTING IN DEGREES\n", +"P2=220// PUSH APPLIED TO THE BODY IN NEWTONS\n", +"//Rn= NORMAL REACTION\n", +"//F= FORCE OF FRICTION IN NEWTONS\n", +"//U= COEFFICIENT OF FRICTION\n", +"//W= WEIGHT OF THE BODY IN NEWTON\n", +"//==========================================================================================\n", +"//CALCULATION\n", +"F1=P1*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(a)\n", +"F2=P2*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(b)\n", +"// RESOLVING FORCES VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)\n", +"// RESOLVING FORCES VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)\n", +"// USING THE RELATION F1=U*Rn1 & F2=U*Rn2 AND SOLVING FOR W BY DIVIDING THESE TWO EQUATIONS\n", +"X=F1/F2// THIS IS THE VALUE OF Rn1/Rn2\n", +"Y1=P1*sind(theta)\n", +"Y2=P2*sind(theta)\n", +"W=(Y2*X+Y1)/(1-X)// BY SOLVING ABOVE 3 EQUATIONS\n", +"U=F1/(W-P1*sind(theta))// COEFFICIENT OF FRICTION\n", +"//=============================================================================================\n", +"//OUTPUT\n", +"printf('WEIGHT OF THE BODY =%.3fN\nTHE COEFFICIENT OF FRICTION =%.3f',W,U)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: DISTANCE_ALONG_THE_INCLINED_PLANE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 2 PAGE NO 103\n", +"//TITLE:FRICTION\n", +"//FIRURE 3.17\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"THETA=45// ANGLE OF INCLINATION IN DEGREES\n", +"g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2\n", +"U=.1// COEFFICIENT FRICTION\n", +"//Rn=NORMAL REACTION\n", +"//M=MASS IN NEWTONS\n", +"//f=ACCELERATION OF THE BODY\n", +"u=0// INITIAL VELOCITY\n", +"V=10// FINAL VELOCITY IN m/s^2\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"//CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR TO THE PLANE\n", +"//Rn=Mgcos(THETA)\n", +"//CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE\n", +"//Mgsin(THETA)-U*Rn=M*f.............BY SOLVING THESE 2 EQUATIONS \n", +"f=g*sind(THETA)-U*g*cosd(THETA)\n", +"s=(V^2-u^2)/(2*f)// DISTANCE ALONG THE PLANE IN metres\n", +"//==============================================================================================\n", +"//OUTPUT\n", +"printf('DISTANCE ALONG THE INCLINED PLANE=%3.3f m',s)\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: workdone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104\n", +"//TITLE:FRICTION\n", +"//FIRURE 3.18\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"W=500// WEGHT IN NEWTONS\n", +"THETA=30// ANGLE OF INCLINATION IN DEGRESS\n", +"U=0.2// COEFFICIENT FRICTION\n", +"S=15// DISTANCE IN metres\n", +"//============================================================================================\n", +"Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS\n", +"P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION\n", +"w=P*S\n", +"//============================================================================================\n", +"//OUTPUT\n", +"printf('WORK DONE BY THE FORCE=%3.3f N-m',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: FINDING_OUT_COEFFICIENT_OF_FRICTION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 4 PAGE NO 104\n", +"//TITLE:FRICTION\n", +"//FIRURE 3.19(a) & 3.19(b)\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"P1=2000// FORCE ACTING UPWARDS WHEN ANGLE=15 degrees IN NEWTONS\n", +"P2=2300// FORCE ACTING UPWARDS WHEN ANGLE=20 degrees IN NEWTONS\n", +"THETA1=15// ANGLE OF INCLINATION IN 3.19(a)\n", +"THETA2=20// ANGLE OF INCLINATION IN 3.19(b)\n", +"//F1= FORCE OF FRICTION IN 3.19(a)\n", +"//Rn1= NORMAL REACTION IN 3.19(a)\n", +"//F2= FORCE OF FRICTION IN 3.19(b)\n", +"//Rn2= NORMAL REACTION IN 3.19(b)\n", +"//U= COEFFICIENT OF FRICTION\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"//P1=F1+Rn1 RESOLVING THE FORCES ALONG THE PLANE\n", +"//Rn1=W*cosd(THETA1)....NORMAL REACTION IN 3.19(a)\n", +"//F1=U*Rn1\n", +"//BY SOLVING ABOVE EQUATIONS P1=W(U*cosd(THETA1)+sind(THETA1))---------------------1\n", +"//P2=F2+Rn2 RESOLVING THE FORCES PERPENDICULAR TO THE PLANE\n", +"//Rn2=W*cosd(THETA2)....NORMAL REACTION IN 3.19(b)\n", +"//F2=U*Rn2\n", +"//BY SOLVING ABOVE EQUATIONS P2=W(U*cosd(THETA2)+sind(THETA2))----------------------2\n", +"//BY SOLVING EQUATIONS 1 AND 2\n", +"X=P2/P1\n", +"U=(sind(THETA2)-(X*sind(THETA1)))/((X*cosd(THETA1)-cosd(THETA2)))// COEFFICIENT OF FRICTION\n", +"W=P1/(U*cosd(THETA1)+sind(THETA1))\n", +"//=============================================================================================\n", +"//OUTPUT\n", +"//printf('%f',X)\n", +"printf('COEFFICIENT OF FRICTION=%3.3f\n WEIGHT OF THE BODY=%3.3f N',U,W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: EFFORT_NEED_TO_APPLIED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 5 PAGE NO 105\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=5// DIAMETER OF SCREW JACK IN cm\n", +"p=1.25// PITCH IN cm\n", +"l=50// LENGTH IN cm\n", +"U=.1// COEFFICIENT OF FRICTION\n", +"W=20000// LOAD IN NEWTONS\n", +"PI=3.147\n", +"//=============================================================================================\n", +"//CALCULATION\n", +"ALPHA=atand(p/(PI*d))\n", +"PY=atand(U)\n", +"P=W*tand(ALPHA+PY)\n", +"P1=P*d/(2*l)\n", +"//=============================================================================================\n", +"//OUTPUT\n", +"printf('THE AMOUNT OF EFFORT NEED TO APPLY =%3.3f N',P1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: EFFICIENCY_OF_THE_MACHINE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 6 PAGE NO 106\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=50// DIAMETER OF SCREW IN mm\n", +"p=12.5// PITCH IN mm\n", +"U=0.13// COEFFICIENT OF FRICTION\n", +"W=25000// LOAD IN mm\n", +"PI=3.147\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"ALPHA=atand(p/(PI*d))\n", +"PY=atand(U)\n", +"P=W*tand(ALPHA+PY)// FORCE REQUIRED TO RAISE THE LOAD IN N\n", +"T1=P*d/2// TORQUE REQUIRED IN Nm\n", +"P1=W*tand(PY-ALPHA)// FORCE REQUIRED TO LOWER THE SCREW IN N\n", +"T2=P1*d/2// TORQUE IN N\n", +"X=T1/T2// RATIOS REQUIRED\n", +"n=tand(ALPHA/(ALPHA+PY))// EFFICIENCY\n", +"//============================================================================================\n", +"printf('RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD =%.3f',X)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: EFFICIENCY_OF_MACHINE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 7 PAGE NO 107\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=39// DIAMETER OF THREAD IN mm\n", +"p=13// PITCH IN mm\n", +"U=0.1// COEFFICIENT OF FRICTION\n", +"W=2500// LOAD IN mm\n", +"PI=3.147\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"ALPHA=atand(p/(PI*d))\n", +"PY=atand(U)\n", +"P=W*tand(ALPHA+PY)// FORCE IN N\n", +"T1=P*d/2// TORQUE REQUIRED IN Nm\n", +"T=2*T1// TORQUE REQUIRED ON THE COUPLING ROD IN Nm\n", +"K=2*p// DISTANCE TRAVELLED FOR ONE REVOLUTION\n", +"N=20.8/K// NO OF REVOLUTIONS REQUIRED\n", +"w=2*PI*N*T/100// WORKDONE BY TORQUE\n", +"w1=w*(7500-2500)/2500// WORKDONE TO INCREASE THE LOAD FROM 2500N TO 7500N\n", +"n=tand(ALPHA)/tand(ALPHA+PY)// EFFICIENCY\n", +"//============================================================================================\n", +"//OUTPUT\n", +"printf('workdone against a steady load of 2500N=%3.3f N\n workdone if the load is increased from 2500N to 7500N=%3.3f N\n efficiency=%.3f',w,w1,n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: NO_OF_TEETH_ON_PINION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 8 PAGE NO 107\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"W=50000// WEIGHT OF THE SLUICE GATE IN NEWTON\n", +"P=40000// POWER IN WATTS\n", +"N=580// MAX MOTOR RUNNING SPEEED IN rpm\n", +"d=12.5// DIAMETER OF THE SCREW IN cm\n", +"p=2.5// PITCH IN cm\n", +"PI=3.147\n", +"U1=.08// COEFFICIENT OF FRICTION for SCREW\n", +"U2=.1// C.O.F BETWEEN GATES AND SCREW\n", +"Np=2000000// NORMAL PRESSURE IN NEWTON\n", +"Fl=.15// FRICTION LOSS\n", +"n=1-Fl// EFFICIENCY\n", +"ng=80// NO OF TEETH ON GEAR\n", +"//===========================================================================================\n", +"//CALCULATION\n", +"TV=W+U2*Np// TOTAL VERTICAL HEAD IN NEWTON\n", +"ALPHA=atand(p/(PI*d))// \n", +"PY=atand(U1)// \n", +"P1=TV*tand(ALPHA+PY)// FORCE IN N\n", +"T=P1*d/2/100// TORQUE IN N-m\n", +"Ng=60000*n*P*10^-3/(2*PI*T)// SPEED OF GEAR IN rpm\n", +"np=Ng*ng/N// NO OF TEETH ON PINION\n", +"//=========================================================================================\n", +"//OUTPUT\n", +"printf('NO OF TEETH ON PINION =%.2f say %d',np,np+1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: TO_FIND_THE_DIAMETER_OF_HAND_WHEEL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 3 ILLUSRTATION 9 PAGE NO 108\n", +"//TITLE:FRICTION\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=5// MEAN DIAMETER OF SCREW IN cm\n", +"p=1.25// PITCH IN cm\n", +"W=10000// LOAD AVAILABLE IN NEWTONS\n", +"dc=6// MEAN DIAMETER OF COLLAR IN cm\n", +"U=.15// COEFFICIENT OF FRICTION OF SCREW\n", +"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n", +"P1=100// TANGENTIAL FORCE APPLIED IN NEWTON\n", +"PI=3.147\n", +"//============================================================================================\n", +"//CALCULATION\n", +"ALPHA=atand(p/(PI*d))// \n", +"PY=atand(U)// \n", +"T1=W*d/2*tand(ALPHA+PY)/100// TORQUE ON SCREW IN NEWTON\n", +"Tc=Uc*W*dc/2/100// TORQUE ON COLLAR IN NEWTON\n", +"T=T1+Tc// TOTAL TORQUE\n", +"D=2*T/P1/2*100// DIAMETER OF HAND WHEEL IN cm\n", +"//============================================================================================\n", +"//OUTPUT\n", +"printf('SUITABLE DIAMETER OF HAND WHEEL =%3.3f cm',D)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |