summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb')
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb684
1 files changed, 684 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
new file mode 100644
index 0000000..edbdd36
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/3-FRICTION.ipynb
@@ -0,0 +1,684 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: FRICTION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: FORCE_REQUIRED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 10 PAGE NO 108\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"d=2.5// MEAN DIA OF BOLT IN cm\n",
+"p=.6// PITCH IN cm\n",
+"beeta=55/2// VEE ANGLE\n",
+"dc=4// DIA OF COLLAR IN cm\n",
+"U=.1// COEFFICIENT OF FRICTION OF BOLT\n",
+"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n",
+"W=6500// LOAD ON BOLT IN NEWTONS\n",
+"L=38// LENGTH OF SPANNER\n",
+"//=============================================================================================\n",
+"//CALCULATION\n",
+"//LET X=tan(py)/tan(beeta)\n",
+"//y=tan(ALPHA)*X\n",
+"PY=atand(U)\n",
+"ALPHA=atand(p/(PI*d))\n",
+"X=tand(PY)/cosd(beeta)\n",
+"Y=tand(ALPHA)\n",
+"T1=W*d/2*10^-2*(X+Y)/(1-(X*Y))// TORQUE IN SCREW IN N-m\n",
+"Tc=Uc*W*dc/2*10^-2// TORQUE ON BEARING SERVICES IN N-m\n",
+"T=T1+Tc// TOTAL TORQUE \n",
+"P1=T/L*100// FORCE REQUIRED BY @ THE END OF SPANNER\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('FORCE REQUIRED @ THE END OF SPANNER=%3.3f N',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: POWER_LOST_IN_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 11 PAGE NO 109\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d1=15// DIAMETER OF VERTICAL SHAFT IN cm\n",
+"N=100// SPEED OF THE MOTOR rpm\n",
+"W=20000// LOAD AVILABLE IN N\n",
+"U=.05// COEFFICIENT OF FRICTION\n",
+"PI=3.147\n",
+"//==================================================================================\n",
+"T=2/3*U*W*d1/2// FRICTIONAL TORQUE IN N-m\n",
+"PL=2*PI*N*T/100/60// POWER LOST IN FRICTION IN WATTS\n",
+"//==================================================================================\n",
+"//OUTPUT\n",
+"printf('POWER LOST IN FRICTION=%3.3f watts',PL)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: NO_OF_COLLARS_REQUIRED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 12 PAGE NO 109\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"d2=.30// DIAMETER OF SHAFT IN m \n",
+"W=200000// LOAD AVAILABLE IN NEWTONS\n",
+"N=75// SPEED IN rpm\n",
+"U=.05// COEFFICIENT OF FRICTION\n",
+"p=300000// PRESSURE AVAILABLE IN N/m^2\n",
+"P=16200// POWER LOST DUE TO FRICTION IN WATTS\n",
+"//====================================================================================\n",
+"//CaLCULATION\n",
+"T=P*60/2/PI/N// TORQUE INDUCED IN THE SHFT IN N-m\n",
+"//LET X=(r1^3-r2^3)/(r1^2-r2^2)\n",
+"X=(3/2*T/U/W)\n",
+"r2=.15// SINCE d2=.30 m\n",
+"c=r2^2-(X*r2)\n",
+"b= r2-X\n",
+"a= 1\n",
+"r1=( -b+ sqrt (b^2 -4*a*c ))/(2* a);// VALUE OF r1 IN m\n",
+"d1=2*r1*100// d1 IN cm\n",
+"n=W/(PI*p*(r1^2-r2^2))\n",
+"//================================================================================\n",
+"//OUTPUT\n",
+"printf('\nEXTERNAL DIAMETER OF SHAFT =%3.3f cm\nNO OF COLLARS REQUIRED =%.3f or %.0f',d1,n,n+1)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: POWER_ABSORBED_IN_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 13 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"W=20000// LOAD IN NEWTONS\n",
+"ALPHA=120/2// CONE ANGLE IN DEGREES\n",
+"p=350000// INTENSITY OF PRESSURE\n",
+"U=.06\n",
+"N=120// SPEED OF THE SHAFT IN rpm\n",
+"//d1=3d2\n",
+"//r1=3r2\n",
+"//===================================================================================\n",
+"//CALCULATION\n",
+"//LET K=d1/d2\n",
+"k=3\n",
+"Z=W/((k^2-1)*PI*p)\n",
+"r2=Z^.5// INTERNAL RADIUS IN m\n",
+"r1=3*r2\n",
+"T=2*U*W*(r1^3-r2^3)/(3*sind(60)*(r1^2-r2^2))// total frictional torque in N\n",
+"P=2*PI*N*T/60000// power absorbed in friction in kW\n",
+"//================================================================================\n",
+"printf('\nTHE INTERNAL DIAMETER OF SHAFT =%3.3f cm\nTHE EXTERNAL DIAMETER OF SHAFT =%3.3f cm\nPOWER ABSORBED IN FRICTION =%.3f kW',r2*100,r1*100,P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: FINDING_Radii.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"P=10000// POWER TRRANSMITTED BY CLUTCH IN WATTS\n",
+"N=3000// SPEED IN rpm\n",
+"p=.09// AXIAL PRESSURE IN N/mm^2\n",
+"//d1=1.4d2 RELATION BETWEEN DIAMETERS \n",
+"K=1.4// D1/D2\n",
+"n=2\n",
+"U=.3// COEFFICIENT OF FRICTION\n",
+"//==========================================================================================\n",
+"T=P*60000/1000/(2*PI*N)// ASSUMING UNIFORM WEAR TORQUE IN N-m\n",
+"r2=(T*2/(n*U*2*PI*p*10^6*(K-1)*(K+1)))^(1/3)// INTERNAL RADIUS\n",
+"\n",
+"//===========================================================================================\n",
+"printf('THE INTERNAL RADIUS =%f cm\n THE EXTERNAL RADIUS =%f cm',r2*100,K*r2*100)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: MAX_AXIAL_INTENSITY_OF_PRESSURE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 14 PAGE NO 111\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"//βμαφɳρΠπ\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"PI=3.147\n",
+"n1=3// NO OF DICS ON DRIVING SHAFTS\n",
+"n2=2// NO OF DICS ON DRIVEN SHAFTS\n",
+"d1=30// DIAMETER OF DRIVING SHAFT IN cm\n",
+"d2=15// DIAMETER OF DRIVEN SHAFT IN cm\n",
+"r1=d1/2\n",
+"r2=d2/2\n",
+"U=.3// COEFFICIENT FRICTION\n",
+"P=30000// TANSMITTING POWER IN WATTS\n",
+"N=1800// SPEED IN rpm\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"n=n1+n2-1// NO OF PAIRS OF CONTACT SURFACES\n",
+"T=P*60000/(2*PI*N)// TORQUE IN N-m\n",
+"W=2*T/(n*U*(r1+r2)*10)// LOAD IN N\n",
+"k=W/(2*PI*(r1-r2))\n",
+"p=k/r2/100// MAX AXIAL INTENSITY OF PRESSURE IN N/mm^2\n",
+"//===========================================================================================\n",
+"// OUTPUT\n",
+"printf('MAX AXIAL INTENSITY OF PRESSURE =%f N/mm^2',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: finding_out_the_coefficient_of_friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 1 PAGE NO 102\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.16(a),3.16(b)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=180// PULL APPLIED TO THE BODY IN NEWTONS\n",
+"theta=30// ANGLE AT WHICH P IS ACTING IN DEGREES\n",
+"P2=220// PUSH APPLIED TO THE BODY IN NEWTONS\n",
+"//Rn= NORMAL REACTION\n",
+"//F= FORCE OF FRICTION IN NEWTONS\n",
+"//U= COEFFICIENT OF FRICTION\n",
+"//W= WEIGHT OF THE BODY IN NEWTON\n",
+"//==========================================================================================\n",
+"//CALCULATION\n",
+"F1=P1*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(a)\n",
+"F2=P2*cosd(theta)// RESOLVING FORCES HORIZONTALLY FROM 3.16(b)\n",
+"// RESOLVING FORCES VERTICALLY Rn1=W-P1*sind(theta) from 3.16(a)\n",
+"// RESOLVING FORCES VERTICALLY Rn2=W+P1*sind(theta) from 3.16(b)\n",
+"// USING THE RELATION F1=U*Rn1 & F2=U*Rn2 AND SOLVING FOR W BY DIVIDING THESE TWO EQUATIONS\n",
+"X=F1/F2// THIS IS THE VALUE OF Rn1/Rn2\n",
+"Y1=P1*sind(theta)\n",
+"Y2=P2*sind(theta)\n",
+"W=(Y2*X+Y1)/(1-X)// BY SOLVING ABOVE 3 EQUATIONS\n",
+"U=F1/(W-P1*sind(theta))// COEFFICIENT OF FRICTION\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('WEIGHT OF THE BODY =%.3fN\nTHE COEFFICIENT OF FRICTION =%.3f',W,U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: DISTANCE_ALONG_THE_INCLINED_PLANE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 2 PAGE NO 103\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.17\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"THETA=45// ANGLE OF INCLINATION IN DEGREES\n",
+"g=9.81// ACCELERATION DUE TO GRAVITY IN N/mm^2\n",
+"U=.1// COEFFICIENT FRICTION\n",
+"//Rn=NORMAL REACTION\n",
+"//M=MASS IN NEWTONS\n",
+"//f=ACCELERATION OF THE BODY\n",
+"u=0// INITIAL VELOCITY\n",
+"V=10// FINAL VELOCITY IN m/s^2\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"//CONSIDER THE EQUILIBRIUM OF FORCES PERPENDICULAR TO THE PLANE\n",
+"//Rn=Mgcos(THETA)\n",
+"//CONSIDER THE EQUILIBRIUM OF FORCES ALONG THE PLANE\n",
+"//Mgsin(THETA)-U*Rn=M*f.............BY SOLVING THESE 2 EQUATIONS \n",
+"f=g*sind(THETA)-U*g*cosd(THETA)\n",
+"s=(V^2-u^2)/(2*f)// DISTANCE ALONG THE PLANE IN metres\n",
+"//==============================================================================================\n",
+"//OUTPUT\n",
+"printf('DISTANCE ALONG THE INCLINED PLANE=%3.3f m',s)\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: workdone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 3 PAGE NO 104\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.18\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"W=500// WEGHT IN NEWTONS\n",
+"THETA=30// ANGLE OF INCLINATION IN DEGRESS\n",
+"U=0.2// COEFFICIENT FRICTION\n",
+"S=15// DISTANCE IN metres\n",
+"//============================================================================================\n",
+"Rn=W*cosd(THETA)// NORMAL REACTION IN NEWTONS\n",
+"P=W*sind(THETA)+U*Rn// PUSHING FORCE ALONG THE DIRECTION OF MOTION\n",
+"w=P*S\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('WORK DONE BY THE FORCE=%3.3f N-m',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: FINDING_OUT_COEFFICIENT_OF_FRICTION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 4 PAGE NO 104\n",
+"//TITLE:FRICTION\n",
+"//FIRURE 3.19(a) & 3.19(b)\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=2000// FORCE ACTING UPWARDS WHEN ANGLE=15 degrees IN NEWTONS\n",
+"P2=2300// FORCE ACTING UPWARDS WHEN ANGLE=20 degrees IN NEWTONS\n",
+"THETA1=15// ANGLE OF INCLINATION IN 3.19(a)\n",
+"THETA2=20// ANGLE OF INCLINATION IN 3.19(b)\n",
+"//F1= FORCE OF FRICTION IN 3.19(a)\n",
+"//Rn1= NORMAL REACTION IN 3.19(a)\n",
+"//F2= FORCE OF FRICTION IN 3.19(b)\n",
+"//Rn2= NORMAL REACTION IN 3.19(b)\n",
+"//U= COEFFICIENT OF FRICTION\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"//P1=F1+Rn1 RESOLVING THE FORCES ALONG THE PLANE\n",
+"//Rn1=W*cosd(THETA1)....NORMAL REACTION IN 3.19(a)\n",
+"//F1=U*Rn1\n",
+"//BY SOLVING ABOVE EQUATIONS P1=W(U*cosd(THETA1)+sind(THETA1))---------------------1\n",
+"//P2=F2+Rn2 RESOLVING THE FORCES PERPENDICULAR TO THE PLANE\n",
+"//Rn2=W*cosd(THETA2)....NORMAL REACTION IN 3.19(b)\n",
+"//F2=U*Rn2\n",
+"//BY SOLVING ABOVE EQUATIONS P2=W(U*cosd(THETA2)+sind(THETA2))----------------------2\n",
+"//BY SOLVING EQUATIONS 1 AND 2\n",
+"X=P2/P1\n",
+"U=(sind(THETA2)-(X*sind(THETA1)))/((X*cosd(THETA1)-cosd(THETA2)))// COEFFICIENT OF FRICTION\n",
+"W=P1/(U*cosd(THETA1)+sind(THETA1))\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"//printf('%f',X)\n",
+"printf('COEFFICIENT OF FRICTION=%3.3f\n WEIGHT OF THE BODY=%3.3f N',U,W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: EFFORT_NEED_TO_APPLIED.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 5 PAGE NO 105\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=5// DIAMETER OF SCREW JACK IN cm\n",
+"p=1.25// PITCH IN cm\n",
+"l=50// LENGTH IN cm\n",
+"U=.1// COEFFICIENT OF FRICTION\n",
+"W=20000// LOAD IN NEWTONS\n",
+"PI=3.147\n",
+"//=============================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)\n",
+"P1=P*d/(2*l)\n",
+"//=============================================================================================\n",
+"//OUTPUT\n",
+"printf('THE AMOUNT OF EFFORT NEED TO APPLY =%3.3f N',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: EFFICIENCY_OF_THE_MACHINE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 6 PAGE NO 106\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=50// DIAMETER OF SCREW IN mm\n",
+"p=12.5// PITCH IN mm\n",
+"U=0.13// COEFFICIENT OF FRICTION\n",
+"W=25000// LOAD IN mm\n",
+"PI=3.147\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)// FORCE REQUIRED TO RAISE THE LOAD IN N\n",
+"T1=P*d/2// TORQUE REQUIRED IN Nm\n",
+"P1=W*tand(PY-ALPHA)// FORCE REQUIRED TO LOWER THE SCREW IN N\n",
+"T2=P1*d/2// TORQUE IN N\n",
+"X=T1/T2// RATIOS REQUIRED\n",
+"n=tand(ALPHA/(ALPHA+PY))// EFFICIENCY\n",
+"//============================================================================================\n",
+"printf('RATIO OF THE TORQUE REQUIRED TO RAISE THE LOAD,TO THE TORQUE REQUIRED TO LOWER THE LOAD =%.3f',X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: EFFICIENCY_OF_MACHINE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 7 PAGE NO 107\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=39// DIAMETER OF THREAD IN mm\n",
+"p=13// PITCH IN mm\n",
+"U=0.1// COEFFICIENT OF FRICTION\n",
+"W=2500// LOAD IN mm\n",
+"PI=3.147\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))\n",
+"PY=atand(U)\n",
+"P=W*tand(ALPHA+PY)// FORCE IN N\n",
+"T1=P*d/2// TORQUE REQUIRED IN Nm\n",
+"T=2*T1// TORQUE REQUIRED ON THE COUPLING ROD IN Nm\n",
+"K=2*p// DISTANCE TRAVELLED FOR ONE REVOLUTION\n",
+"N=20.8/K// NO OF REVOLUTIONS REQUIRED\n",
+"w=2*PI*N*T/100// WORKDONE BY TORQUE\n",
+"w1=w*(7500-2500)/2500// WORKDONE TO INCREASE THE LOAD FROM 2500N TO 7500N\n",
+"n=tand(ALPHA)/tand(ALPHA+PY)// EFFICIENCY\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('workdone against a steady load of 2500N=%3.3f N\n workdone if the load is increased from 2500N to 7500N=%3.3f N\n efficiency=%.3f',w,w1,n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: NO_OF_TEETH_ON_PINION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 8 PAGE NO 107\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"W=50000// WEIGHT OF THE SLUICE GATE IN NEWTON\n",
+"P=40000// POWER IN WATTS\n",
+"N=580// MAX MOTOR RUNNING SPEEED IN rpm\n",
+"d=12.5// DIAMETER OF THE SCREW IN cm\n",
+"p=2.5// PITCH IN cm\n",
+"PI=3.147\n",
+"U1=.08// COEFFICIENT OF FRICTION for SCREW\n",
+"U2=.1// C.O.F BETWEEN GATES AND SCREW\n",
+"Np=2000000// NORMAL PRESSURE IN NEWTON\n",
+"Fl=.15// FRICTION LOSS\n",
+"n=1-Fl// EFFICIENCY\n",
+"ng=80// NO OF TEETH ON GEAR\n",
+"//===========================================================================================\n",
+"//CALCULATION\n",
+"TV=W+U2*Np// TOTAL VERTICAL HEAD IN NEWTON\n",
+"ALPHA=atand(p/(PI*d))// \n",
+"PY=atand(U1)// \n",
+"P1=TV*tand(ALPHA+PY)// FORCE IN N\n",
+"T=P1*d/2/100// TORQUE IN N-m\n",
+"Ng=60000*n*P*10^-3/(2*PI*T)// SPEED OF GEAR IN rpm\n",
+"np=Ng*ng/N// NO OF TEETH ON PINION\n",
+"//=========================================================================================\n",
+"//OUTPUT\n",
+"printf('NO OF TEETH ON PINION =%.2f say %d',np,np+1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: TO_FIND_THE_DIAMETER_OF_HAND_WHEEL.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 3 ILLUSRTATION 9 PAGE NO 108\n",
+"//TITLE:FRICTION\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=5// MEAN DIAMETER OF SCREW IN cm\n",
+"p=1.25// PITCH IN cm\n",
+"W=10000// LOAD AVAILABLE IN NEWTONS\n",
+"dc=6// MEAN DIAMETER OF COLLAR IN cm\n",
+"U=.15// COEFFICIENT OF FRICTION OF SCREW\n",
+"Uc=.18// COEFFICIENT OF FRICTION OF COLLAR\n",
+"P1=100// TANGENTIAL FORCE APPLIED IN NEWTON\n",
+"PI=3.147\n",
+"//============================================================================================\n",
+"//CALCULATION\n",
+"ALPHA=atand(p/(PI*d))// \n",
+"PY=atand(U)// \n",
+"T1=W*d/2*tand(ALPHA+PY)/100// TORQUE ON SCREW IN NEWTON\n",
+"Tc=Uc*W*dc/2/100// TORQUE ON COLLAR IN NEWTON\n",
+"T=T1+Tc// TOTAL TORQUE\n",
+"D=2*T/P1/2*100// DIAMETER OF HAND WHEEL IN cm\n",
+"//============================================================================================\n",
+"//OUTPUT\n",
+"printf('SUITABLE DIAMETER OF HAND WHEEL =%3.3f cm',D)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}