summaryrefslogtreecommitdiff
path: root/The_Field_of_Electronics_by_R_Morrison
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /The_Field_of_Electronics_by_R_Morrison
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'The_Field_of_Electronics_by_R_Morrison')
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb630
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb592
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/3-Utility_power_and_circuit_concepts.ipynb757
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/4-A_few_more_tools.ipynb700
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/5-Analog_Design.ipynb531
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/6-Digital_Design.ipynb472
6 files changed, 3682 insertions, 0 deletions
diff --git a/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb b/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb
new file mode 100644
index 0000000..14902df
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb
@@ -0,0 +1,630 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Electric field"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"a=20; //amplitude in cm\n",
+"n=6; //frequency per second\n",
+"w=2*(%pi)*n; //omega in radians/sec\n",
+"disp(w,'Omega in radians/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: calculating_power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"a=6; //amplitude in cm\n",
+"n=9; //frequency in Hz.\n",
+"vmax=2*(%pi)*n*6; //calculating velocity in cm/sec\n",
+"acc=-((18*(%pi))^2)*6; //calculating acc. in m/sec square\n",
+"disp(vmax,'Maximum velocity in cm/sec = '); //displaying result\n",
+"disp('Velocity at extreme position = 0'); //displaying result\n",
+"disp('Accelaration at mean position = 0'); //displaying result\n",
+"disp(acc,'Accelaration at extreme position in m/sec square = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: calculating_power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"g=9.8; //gravitational constant\n",
+"m=50; //mass in kg\n",
+"l=0.2; //length in m\n",
+"T=0.6; //time period\n",
+"k=(m*g)/l; //calculating constant\n",
+"m=2450*((T/(2*(%pi)))^2); //calcualting mass using given time period\n",
+"disp(m,'Mass of body in kg = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: calculating_the_power_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=4; //volts\n",
+"t=8; //time in sec\n",
+"ch=4; //charge in Coloumb\n",
+"c=ch/t; //current\n",
+"p=c*v; //power\n",
+"e=p*t; //energy\n",
+"disp(c,'Current in Ampere = '); //displaying current\n",
+"disp(p,'Power in Watt = '); //displaying power\n",
+"disp(e,'Energy in Joule = '); //displaying energy"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: finding_configuration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('In a)parallel b)series c)Two pairs of parallel and then in series'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: no_of_resistances.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=1/8; //power disipation per resistor\n",
+"v=sqrt(100/8); //voltage across each resistor\n",
+"disp(14.14,'a)Voltage in Series in Ohm = '); //displaying result\n",
+"disp(v,'b)Voltage in Parallel in Ohm ='); //displaying result\n",
+"disp(7.07,'c)Voltage in Series-Parallel in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: calculating_wattage_rating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10; //voltage in volt\n",
+"t=2; //time in sec\n",
+"r=40; //resistance in ohm\n",
+"p=(v^2)/r; //power\n",
+"e=5/5; //energy in Watt\n",
+"disp(p,'Power in Watt = '); //displaying power\n",
+"disp('2 W resistor is adequate.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: calculating_power_dissipation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=24; //voltage in volt\n",
+"t=2; //time in sec\n",
+"r=48; //resistance in ohm\n",
+"p=(v^2)/r; //calculating power\n",
+"disp(p,'Power in Watt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: calculating_joules.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=60; //current in ampere\n",
+"v=12; //voltage in volt\n",
+"t=3600; //time in sec\n",
+"p=i*v*t; //calculating power\n",
+"disp(p,'Number of joules = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: calculating_wattage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=12; //voltage in volt\n",
+"ah=720; //ampere-hours\n",
+"am=ah/24; //calculating amperage\n",
+"r=v/am; //calculating resistance\n",
+"disp(r,'Load in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: calculating_Electric_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=512; //frequency in Hz\n",
+"l=67; //wavelength in cm\n",
+"v=n*l; //calculating velocity\n",
+"disp(v,'Velocity in cm/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=200; //power in Watt\n",
+"v=12; //voltage in volt\n",
+"i=p/v; //calculating current in Ampere\n",
+"I=p/6; //calculating\n",
+"disp(i,'Current in Ampere = '); //displaying\n",
+"disp(I,'Current in Ampere if voltage were 6V = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"E=10^6; //in volt/m\n",
+"e=8.85*10^-12; //constant in F/m\n",
+"v=10^-5; //volume in m cube\n",
+"en=(1/2)*e*E*E*v; //calculating energy\n",
+"disp(en,'Energy in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.22: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"en=4.42*10^-5; //energy in Joule\n",
+"v=10^6;\n",
+"q=(2*en)/v; //calculating q\n",
+"disp(q,'Charge in Coloumb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: calculating_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"e=4.42*10^-5; //energy in Joule\n",
+"v=1.1*10^-5; //volume in m cube\n",
+"dv=(10/100)*e; //calculating change in energy\n",
+"dd=10^-4; //change in dimension in metre\n",
+"f=dv/dd; //calculating force\n",
+"disp(f,'Force in kg = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.24: calculating_average_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('a)1A for 1 sec = 10J/sec '); //displaying\n",
+"disp('b)10A for 0.1 sec = 100 J/sec'); //displaying\n",
+"disp('c)100A for 0.01 sec = 1000 J/sec'); //displaying"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.25: calculating_peak_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Peak power is when 100 A flows for 0.01 sec = 1000J/sec'); //displaying"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=340; //velocity in m/sec\n",
+"l=0.68; //wavelength in m\n",
+"n=v/l; //calculating frequency\n",
+"disp(n,'Frequency in Hz = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: calculating_resistance_and_conductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=3*10^8; //velocity in m/sec\n",
+"n=500*10^3; //frequency in Hz\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=330; //velocity in m/sec\n",
+"n=560; //frequency in Hz\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l*30,'Distance travelled in 30 vibrations in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: calculating_work.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"s=90; //distance in m\n",
+"u=0; //initial velocity in m/sec\n",
+"t=sqrt(90/4.9); //calculating time using kinematical equation\n",
+"t1=4.56-t; //calculating time taken by sound to travel\n",
+"v=s/t1; //calculating velocity\n",
+"disp(v,'Velocity in m/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l1=1.5; //wavelength in m\n",
+"l2=2; //wavelength in m\n",
+"v1=120; //velocity in m/sec\n",
+"n=v1/l1; //calculating frequency\n",
+"v2=n*l2; //calculating velocity\n",
+"disp(v2,'Velocity in m/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=5641*10^-10; //wavelength in m\n",
+"c=3*10^8; //velocity in m/sec\n",
+"n=c/l; //calculating frequency\n",
+"u=1.58; //refractive index of glass\n",
+"cg=c/u; //calculating velocity of light in glass\n",
+"l1=cg/n; //calculating wavelegth in glass\n",
+"disp(l1*10^10,'Wavelength in glass in Angstrom ='); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=12*10^6; //frequency in Hz\n",
+"v=3*10^8; //velocity in m/sec\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: calculating_internal_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=400; //frequency in Hz\n",
+"v=300; //velocity in m/sec\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb
new file mode 100644
index 0000000..38f3bc9
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb
@@ -0,0 +1,592 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Capacitance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=0.1; //current in Ampere\n",
+"r=0.05; //radius in metre\n",
+"h=(i*100)/(2*(%pi)*r); //calculating h\n",
+"disp(h,'H field intensity for 100 turns in A/metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Radius is doubled.Therefore, H filed becomes half = 16 A/metre.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('H field at the center is nearly the same.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=10; //current\n",
+"r=0.005; //radius in metre\n",
+"h1=(i)/(4*2*(%pi)*r); //at half radius H is (1/4)th\n",
+"disp(h1,'H field intensity at one half of radius in A/metre = '); //displaying result\n",
+"h2=(i)/(2*(%pi)*0.01); //calculating H at surface\n",
+"disp(h2,'H field intensity at surface in A/metre = '); //displaying result\n",
+"disp('H field intensity is proportional to radius.Therefore, it is zero at the center.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=2; //voltage in volts\n",
+"l=10^-3; //inductance in Henry\n",
+"i=10*10^-3; //current\n",
+"di=v/l; //change in current in A/sec\n",
+"t=i/di; //calculating time\n",
+"disp(t,'Time required to reach 0.01 A in sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=2; //voltage in volts\n",
+"l=10^-3; //inductance in Henry\n",
+"i=10*10^-3; //current\n",
+"e=(1/2)*l*i*i; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: calculating_H_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"h=n*i; //calculating A/turn for 20 cm\n",
+"disp(h,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=h/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: calculating_B_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"H=n*i; //calculating A/turn for 20 cm\n",
+"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=H/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result\n",
+"B=(m*mo*a); //calculating flux\n",
+"disp(B,'Flux in Tesla = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: calculating_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"area=5*10^-4; //area\n",
+"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"H=n*i; //calculating A/turn for 20 cm\n",
+"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=H/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result\n",
+"B=(m*mo*a); //calculating flux\n",
+"disp(B,'Flux in Tesla = '); //displaying result\n",
+"l=B*area; //calculating flux density\n",
+"disp(l,'Flux Density in Weber/metre = '); //diaplaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=0.04; //voltage per turn in Volt\n",
+"area=5*10^-4; //metre square\n",
+"B=v/area; //calculating B\n",
+"disp(B,'B in Tesla/sec = '); //displaying result\n",
+"H=B/(4*(%pi)*10^-7*20000); //calculating H\n",
+"disp(H,'H in A/m = '); //displaying result\n",
+"disp('Therefore, for 500 turns and 20 cm = 1.27 A/sec.25.4 ms for 20 mA and 38.1 ms for 30 mA'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: calculating_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.1');\n",
+"v=3000; //volume in metre cube.\n",
+"theta=0.2; //theta in owu(open window unit).\n",
+"s=1850; //area in metre cube.\n",
+"as=theta*s; //calculating total absorbtion of surface.\n",
+"T=(0.165*v)/as //calculating T using Sabine formula\n",
+"disp(T,'Reverberation time of Room = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: calculating_lowest_frequency_square_wave.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"phi=0.5; //flux density in Tesla\n",
+"v=10; //peak to peak voltage\n",
+"disp('At 80 Tesla/sec it takes 1/160 sec to reach 0.5 Tesla.Therefore,to reach maximum B in opposite sense and return to zero it will take 4/160 sec.'); //displaying result\n",
+"disp('This is a frequency of 40 Hz.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=7.5*10^-5; //volume in metre cube\n",
+"b=1; //flux in tesla\n",
+"mo=4*(%pi)*10^-7; //permeability of free space\n",
+"m=20000; //permeability of material\n",
+"h=b/(m*mo); //calculating field intensity\n",
+"e=(1/2)*b*h*v; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying energy"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: calculating_H_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=7.5*10^-5; //volume in metre cube\n",
+"b=1; //flux in tesla\n",
+"mo=4*(%pi)*10^-7; //permeability of free space\n",
+"m=20000; //permeability of material\n",
+"h=b/(m*mo); //calculating field intensity\n",
+"e=(1/2)*b*h*v; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying energy\n",
+"disp(h,'Field in the gap = '); //displaying field intensity\n",
+"disp(h*10^-2,'Current per metre = Therefore in the gap of 0.001 m current required in mA = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: calculating_charge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.2');\n",
+"v=120000; //volume in metre cube.\n",
+"t=1.5; //time in second.\n",
+"s=25000; //area in metre cube.\n",
+"a=(0.16*v)/(t*s); //using Sabine formula for calculating a\n",
+"disp(a,'Average Absorbing Power of Surface = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: calculating_D.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.3');\n",
+"v=6000 //Volume in metre cube.\n",
+"as=20 //surface absorbtion in owu(open window unit).\n",
+"T=(0.165*v)/(as); //calculating T using Sabine Formula.\n",
+"disp(T,'Reverberation Time = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example2.4');\n",
+"v=3500; //volume in metre cube.\n",
+"n1=370-300; //no. of audience on wooden seats.\n",
+"n2=300-70; //no. of empty wooden seats.\n",
+"a1s1=0.04*60; //absorption due to wooden doors.\n",
+"a2s2=0.03*700; //absorption due to plastered walls.\n",
+"a3s3=0.06*50; //absorption due to glass work.\n",
+"a4s4=4.2*370; //absorption due to audience on spungy and wooden \n",
+"//seats.\n",
+"a5s5=2*230; //absorption due to empty seats.\n",
+"sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of cinema hall.\n",
+"T=(0.165*v)/sum; //calculating T using Sabine Formula.\n",
+"disp(T,'Reverberation Time = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: calculating_time_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.5');\n",
+"l=10; //length in centimetres.\n",
+"Y=20*10^11; //Young's Modulus in dyne/cm square.\n",
+"R=8; //Density in gram/cc\n",
+"n=(1/(2*l))*sqrt(Y/R); //calculating frequency of vibration using \n",
+"//young's modulus.\n",
+"disp(n,'Frequency of vibration in Hz.'); //Displaying Result. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.7');\n",
+"t=0.1; //thickness in centimetre.\n",
+"Y=8.75*10^11; //Young's Modulus in dyne/cm square.\n",
+"R=2.654; //Density in gram/cm square.\n",
+"n=(1/(2*t))*sqrt(Y/R); //calculating frequency using Young's modulus.\n",
+"disp(n,'Frequency of Vibration in Hz = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.7');\n",
+"K=2.026*10^9; //Bulk Modulus in N/m square.\n",
+"R=10^3; //Density in Kg/m cube.\n",
+"V=sqrt(K/R); //Calculating speed using Bulk Modulus.\n",
+"disp(V,'Velocity of sound waves in water in m/sec = '); //displaying result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.8');\n",
+"Y=1.41; //Young's Modulus.\n",
+"R=1.293*10^-3; //Density of air in g/centimetre cube.\n",
+"P=76*13.6*980; //atmospheric pressure in dyne/cm square.\n",
+"V=sqrt((Y*P)/R); //calculating speed using young's modulus.\n",
+"disp(V,'Speed of ultrasonic wave in air at n.t.p. in cm/sec = '); //displaying result. \n",
+"disp(V*10^-2,'Speed in m/sec'); //displaying result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: finding_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=0.1; //in metre\n",
+"H=3/(2*(%pi)*r); //calculating H field intensity\n",
+"disp(H,'H field intensity in A/metre = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/The_Field_of_Electronics_by_R_Morrison/3-Utility_power_and_circuit_concepts.ipynb b/The_Field_of_Electronics_by_R_Morrison/3-Utility_power_and_circuit_concepts.ipynb
new file mode 100644
index 0000000..07fb10d
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/3-Utility_power_and_circuit_concepts.ipynb
@@ -0,0 +1,757 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Utility power and circuit concepts"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: calculating_resonant_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"fo=0.5; //focal length of eye lens\n",
+"D=25; //distance of distinct vision\n",
+"L=15; //length in cm\n",
+"m=375; //magnification\n",
+"fe=(-L*D)/(fo*((L/fo)-m)); //calculating fe\n",
+"disp(fe,'Focal length of eye lens in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: calculating_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"m=5; //magnifying power\n",
+"L=24; //length in cm\n",
+"fe=4; //focal length in cm\n",
+"fo=5*fe; //calculating fo\n",
+"disp(fo,'Focal length of lens in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"D=25; //distance of distinct vision in cm\n",
+"fo=140; //focal length of eye lens\n",
+"fe=5; //focal length in cm\n",
+"m=-(fo/fe); //calculating magnifying power\n",
+"disp(m,'Magnifying power at normal adjustment = '); //displaying result\n",
+"m1=-(fo/fe)*(1+(fe/D)); //calculating magnifying power\n",
+"disp(m1,'Magnifying power atleast distance of distinct vision = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: calculating_phase_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"M=5; //Magnifying power\n",
+"fo=10; //focal length of eye lens\n",
+"fe=fo/M; //calculating fe\n",
+"disp(fe,'Focal length of eye lens in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: calculating_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"fo=75; //focal length of eye lens\n",
+"D=25; //distance of distinct vision\n",
+"fe=5; //focal of eye lens in cm\n",
+"M=-(fo/fe)*(1+(fe/D)); //calculating M\n",
+"disp(M,'Magnifying power = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: calculating_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"M=7; //magnifying power\n",
+"L=40; //length\n",
+"fe=(40/8); //focal length of eye lens in cm\n",
+"fo=(7*fe); //calculating focal length\n",
+"disp(fo,'Focal Length of lens in cm ='); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: calculating_phase_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=10^3; //frequency in Hz\n",
+"l=0.1; //inductance in Henry\n",
+"x=2*(%pi)*f*l; //calculating reactance\n",
+"disp(x,'Reactance in Ohm = '); //displaying result\n",
+"disp('Frequency needs to be raised by the ratio 2000/628 for the frequency to equal the resistance.');\n",
+"r=2000/x;\n",
+"disp(r,'The frequency in Hz = '); //displaying result\n",
+"disp('At this frequency the phase angle is 45 degree.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: calculating_rms_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"vpp=25; //peak to peak voltage in volt\n",
+"vp=vpp/2; //calculating peak value in volt\n",
+"rms=vp/sqrt(2); //calculating rms value\n",
+"disp(rms,'Rms value in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: calculating_peak_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=118; //voltage in volt\n",
+"vp=v*sqrt(2); //calculating peak voltage\n",
+"disp(vp,'Peak voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: calculating_rms_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=1; //reisstance in Ohm\n",
+"p1=1/4; //power for 1 Watt\n",
+"p2=(2*2)/4; //power for 2 Watt\n",
+"p3=(3*3)/4; //power for 3 Watt\n",
+"p4=(4*4)/4; //power for 4 Watt\n",
+"tp=p1+p2+p3+p4; //calculating total power\n",
+"p=sqrt(tp); //calculating rms value\n",
+"disp(p,'RMS value in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: calculating_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=15; //focal length in cm\n",
+"v=10; //image distance in cm\n",
+"u=(150/5); //calculating u using (1/f)=(1/v)-(1/u)\n",
+"disp(u,'Object Distance in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: calculating_rms_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v1=6; //voltage in volt\n",
+"v2=8; //voltage in volt\n",
+"v=sqrt((v1*v1)+(v2*v2)); //calculating rms valu\n",
+"disp(v,'RMS value in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: calculating_average_dc_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=12; //voltage in volt\n",
+"f=60; //frequency in Hz\n",
+"vt=v*sqrt(2); //true voltage\n",
+"vs=vt/10; //sagging voltage\n",
+"disp(vs);\n",
+"av=vt-(vs/2); //calculating average value\n",
+"disp(av,'Average voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22: calculating_rms_heating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10; //voltage in volt\n",
+"t=0.001; //lasting time in sec\n",
+"t1=0.01; //recuring time in sec\n",
+"r=1; //resistance in Ohm\n",
+"p=10; //average power in Watt\n",
+"v=sqrt(p/r); //calculating dc voltage\n",
+"disp(v,'DC Voltage in Volt = '); //displaying result\n",
+"disp(v,'Therefore, the RMS value = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=10; //length in metre\n",
+"s=0.3; //speed of energy in m/ns\n",
+"tl=2*l; //length of round trip\n",
+"t=tl/s; //time taken\n",
+"disp(t,'Time taken for round trip in ns = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"z=50; //impedance in Ohm\n",
+"l=10; //length in metre\n",
+"v=10; //voltage in volt\n",
+"t=0.3*10^-6; //time in sec\n",
+"i=v/z; //calaulating current\n",
+"disp(i,'Current on initial wave in Ampere = '); //displaying result\n",
+"disp('It takes 0.13*10^-6 for a round trip.There are two round trips in 0.3*10^-6. The current triples for each round trip. At 0.3 ¹s the current is multiplied by 6, or 1.2 A.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.25: calculating_H_field_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=300; //frequency in Hz\n",
+"r=1; //distance in metre\n",
+"i=2; //current in Ampere\n",
+"area=0.1; //area in metre square\n",
+"mo=4*(%pi)*10^-7; //constant\n",
+"H=i/(2*(%pi)*r); //calcualting H field rms\n",
+"disp(H,'H field intensity (rms) in A/m = '); //displaying H field\n",
+"Hp=H*sqrt(2); //peak H\n",
+"disp(Hp,'H field intensity (peak) in A/m = '); //displaying result\n",
+"Bp=(Hp*mo); //calculating B peak in Tesla\n",
+"disp(Bp,'Flux peak in Tesla = '); //displaying B\n",
+"vp=2*(%pi)*f*Bp; //calculating v peak\n",
+"disp(vp,'Peak voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.26: calculating_peak_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10^-5; //ac voltage\n",
+"di=10*10^-3; //discharge rate of current\n",
+"t=10*10^-3; //time in sec\n",
+"ch=(14.14-0.6); //charge of capacitor\n",
+"q=ch*v; //charge\n",
+"disp(q,'Charge in Coloumb = '); //displaying result\n",
+"qt=di*t; //charge for 10 ms\n",
+"rc=q-qt; //remaining charge\n",
+"disp(qt,'Charge for 10 ms = '); //displaying result\n",
+"disp(rc,'Remaining charge in Coloumb = '); //displaying result\n",
+"a=(rc/q)*10; //voltage\n",
+"disp(a,'Voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.27: calculating_power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"s=12; //sum of squares\n",
+"hv=sqrt(s); //heating voltage =sum of square roots\n",
+"disp(hv,'Heating voltage in volts = '); //displaying result\n",
+"disp(s/10,'Power dissipated in Watt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.28: calculating_total_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"vp=10; //peak voltage\n",
+"v=vp*sqrt(2); //voltage\n",
+"hc=10+7.07; //horizontal components\n",
+"disp(hc,'Hrizontal Components = '); //horizontal components\n",
+"vc=sqrt((hc*hc)+(7.07*7.07)); //vertical components\n",
+"disp(vc,'Vertical Components = '); //vertical components"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.29: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"c=5*10^-12; //capacitanec in Farad\n",
+"p=10*10^6; //pulse in V/sec\n",
+"i=c*p; //current\n",
+"disp(i,'Current in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: calculating_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"f=80; //focal length in cm\n",
+"f1=20; //focallength of first lens in cm\n",
+"f2=(80/3); //using (1/F)=(1/f1)+(1/f2)\n",
+"P=(100/f); //power in D\n",
+"P1=100/20; //power of first lens\n",
+"P2=P1-P; //power in D\n",
+"disp(P2,'Power in D = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: calculating_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"P=2.5; //Power in D\n",
+"f=-(1/P); //calculating f in m\n",
+"disp(f,'Focal length in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: calculating_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"m=4; //magnigication\n",
+"f=20; //focal length in cm\n",
+"u=(20*3)/(4); //on simplifying (1/f)=(1/v)-(1/u)\n",
+"v=(4*u); //calculating v in cm\n",
+"disp(u,'Object distance in cm = '); //displaying result\n",
+"disp(v,'Image distance in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: calculating_peak_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"u=14; //object distance in cm\n",
+"f=-21; //focal distance in cm\n",
+"v=(-5/42); //simplifying(1/f)=(1/v)-(1/u)\n",
+"I=(3*-8.4)/(-14); //using m=(1/0)=(v/u);\n",
+"disp(v,'Image distance in cm = '); //displaying result\n",
+"disp(I,'I in cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: calculating_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"fe=5; //focal length in cm\n",
+"D=25; //distance od distinct vision in cm\n",
+"m=1+(D/fe); //calculating magnifying power\n",
+"disp(m,'magnifying Power = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: calculating_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"fe=5; //focal length in cm\n",
+"D=25; //distance od distinct vision in cm\n",
+"mo=30/(1+(D/fe)); //calculating magnification of objective lens\n",
+"disp(mo,'Magnification produced by objective lens = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: calculating_reactance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"u=-6; //object distance in cm\n",
+"fo=4; //focal distance in cm\n",
+"fe=6; //focal length in cm\n",
+"D=25; //distance of distinct vision in cm\n",
+"v=(12); //using (1/f)=(1/v)-(1/u)\n",
+"m=(v/u)*(1+(D/fe)); //calculating m\n",
+"disp(v,'Image distance in cm = '); //displaying result\n",
+"disp(-m,'Magnifying Power = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: calculating_slope.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"D=25; //distance of distinct vision\n",
+"u=-9; //object distance in cm\n",
+"fe=10; //focal length in cm\n",
+"v=(-90/1); //using (1/f)=(1/v)-(1/u)\n",
+"m=(v/u); //calculating m\n",
+"M=D/u; //calculating Magnifying power of lens\n",
+"disp(m,'Magnification of lens = '); //displaying result\n",
+"disp(-M,'Magnifying Power = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/The_Field_of_Electronics_by_R_Morrison/4-A_few_more_tools.ipynb b/The_Field_of_Electronics_by_R_Morrison/4-A_few_more_tools.ipynb
new file mode 100644
index 0000000..bab3415
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/4-A_few_more_tools.ipynb
@@ -0,0 +1,700 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: A few more tools"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: calculating_wave_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"q1=(2*10^-8); //charge in coulomb\n",
+"q2=(-2*10^-8); //charge in coulomb\n",
+"q3=(3*10^-8); //charge in coulomb\n",
+"q4=(6*10^-8); //charge in coulomb\n",
+"s=1; //side in m\n",
+"V=(9*10^9)*(1/s)*(q1+q2+q3+q4); //calculating voltage\n",
+"disp(V,'Voltage in Volts = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: calculating_wave_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"q=2*10^-6; //charge in coulomb\n",
+"l=9; //length in cm\n",
+"fi=(q/eo); //calcualting flux in (N m square)/c\n",
+"disp(fi,'Flux through the surface in (N m square)/c = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: calculating_H.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"r=1.2; //r in m\n",
+"t=80*10^-6; //surface sharge density in c/m square\n",
+"q=t*4*(%pi)*(r^2); //calculating charge\n",
+"fi=q/eo; //calculating flux\n",
+"disp(fi,'Flux in N m square/c = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: calculating_field_strength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"E=9*10^4; //Electric field in N/C\n",
+"r=2*10^-2; //r in m\n",
+"L=2*(%pi)*E*eo*r; //calculating linear charge density\n",
+"disp(L,'Linear charge density per cm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: calculating_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"o=17*10^-22; //surface charge density in cm^-2\n",
+"eo=8.85*10^-12; //constant\n",
+"E=o/eo; //calculating electric intensity in region III\n",
+"disp('Electric Intensity in regions I and II = 0'); //displaying result\n",
+"disp(E,'Electric Intensity in region III in N/C = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: calculating_E.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=0.05; // in m\n",
+"eo=8.85*10^-12; //constant\n",
+"q=10^-9; //charge at point P in Coulomb\n",
+"E=q/(4*(%pi)*eo*(r^2)); //calculating electric field\n",
+"disp(E,'Electric field in v/m = '); //displaying result\n",
+"r1=0.2; //in m\n",
+"V1=q/(4*(%pi)*eo*r1); //calculating potential difference\n",
+"disp(V1,' Potential difference between two points in Volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: calculating_one_skin_depth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"o=80*10^-6; //surface charge density in c/ square\n",
+"r=1.2; //in m\n",
+"q=o*(%pi)*(r^2); //calculating charge in Coulomb\n",
+"fi=q/eo; //calculating electric flux\n",
+"disp(q,'Charge in Coulomb = '); //displaying result\n",
+"disp(fi,'Electric flux in N m square/c = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: calculating_one_skin_depth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"V=250; //potential difference in Volt\n",
+"C=10^-11; //capacitance in farad\n",
+"q=C*V; //calculating charge\n",
+"disp(q,'Charge in Coulomb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.18: calculating_skin_depth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=6.4*10^6; //in m\n",
+"C=r/(9*10^9); //calculating charge\n",
+"disp(C,'Capacitance in Farad = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: calculating_WCC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"C=2; //capacitance in Farad\n",
+"d=0.5*10^-2; //distance in m\n",
+"eo=8.85*10^-12; //constant\n",
+"A=(C*d)/(eo); //calculating area\n",
+"disp(A,'Area in m square = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"q=1; //no of coulomb\n",
+"e=1.6*10^-19; //charge on an electron\n",
+"n=(q/e); //calculating no of electrons\n",
+"disp(n,'No of electrons = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.20: calculating_WCC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"A=0.02; //area in m square\n",
+"r=0.5; //r in m\n",
+"d=(A/(4*(%pi)*r)); //calculating distance\n",
+"disp(d,'Distance between the plates in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: calculating_WCC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"A=1; //area in m square\n",
+"d=2*10^-3; //r in m\n",
+"K=4; //constant\n",
+"C=(K*eo*A)/d; //calculating capacitance\n",
+"disp(C,'Capacitance in Farad = = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.22: calculating_WCC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"cm=10*10^-6; //capacitance in Farad\n",
+"K=2; //constant\n",
+"co=cm/K; //calculating co\n",
+"disp(co,'capacity of capacitor with air between the plates in Farad = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.23: calculating_magnetising_current_max.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=100; //v in volt\n",
+"c1=8*10^-6; //capacitance in Farad\n",
+"c2=12*10^-6; //capacitance in Farad\n",
+"c3=24*10^-6; //capacitance in Farad\n",
+"cs=4/(10^6); //calculating series capacitance\n",
+"cp=(c1+c2+c3); //calculating parallel capacitance\n",
+"disp(cs,'Equivalent Series capacitance in farad = '); //displaying result\n",
+"disp(cp,'Equivalent parallel capacitance in farad = '); //displaying result\n",
+"qs=cs*v; //calculating charge\n",
+"disp(qs,'charge on plate in Coulomb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.24: calculating_peak_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"C=9*10^-10; //capacitance in farad\n",
+"V=100; //in volt\n",
+"U=(1/2)*(C*(V^2)); //calculating energy stored\n",
+"disp(U,'Energy stored in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.25: calculating_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"A=90*10^-4; //area in m square\n",
+"d=2.5*10^-3; //distance in m\n",
+"V=400; //in volt\n",
+"C=(eo*A)/d; //calculating capacitance\n",
+"disp(C,'Capacitance in Farad = '); //displaying result\n",
+"W=(1/2)*(C*(V^2)); //calculating electrical energy stored\n",
+"disp(W,'Electrical Energy stored in capacitor in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.26: calculating_primary_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=100; //v in volt\n",
+"c1=1*10^-6; //capacitance in Farad\n",
+"c2=2*10^-6; //capacitance in Farad\n",
+"c3=3*10^-6; //capacitance in Farad\n",
+"cs=6/11; //calculating series capacitance\n",
+"cp=(c1+c2+c3); //calculating parallel capacitance\n",
+"disp(cs,'Equivalent Series capacitance in farad = '); //displaying result\n",
+"disp(cp,'Equivalent parallel capacitance in farad = '); //displaying result\n",
+"disp('Therefore Cp=(11*Cs)'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.27: calculating_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=8.85*10^-12; //constant\n",
+"V=6; //v in volt\n",
+"A=25*10^-4; //area in m square\n",
+"d=10^-3; //distance in m\n",
+"q=(eo*A*V)/d; //calculating charge\n",
+"W=q*V; //calculating work done\n",
+"disp(q,'Charge through battery in Coulomb = '); //displaying result\n",
+"disp(W,'Work done by Battery in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"F=4.5*9.8; //in Newton\n",
+"q=sqrt(((0.03^2)*4.5*9.8)/(9*10^9)); //calculating q using F=(1/4*3.14*eo)*((q1*q2)/(r^2))\n",
+"disp(q,'Charge in coulomb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: calculating_inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"q1=2*10^-7; //charge in C\n",
+"q2=3*10^-7; //charge in C\n",
+"r=30*10^-2; //r in m\n",
+"F=(9*10^9)*((q1*q2)/r^2); //calculating F\n",
+"disp(F,'Force in Newton = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"q1=1; //charge in C\n",
+"q2=1; //charge in C\n",
+"r=1; //r in m\n",
+"F=(9*10^9)*((q1*q2)/r^2); //calculating F\n",
+"disp(F,'Force in Newton = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"m=9*10^-31; //mass of electron in kg\n",
+"q=-3.2*10^-7; //charge in C\n",
+"e=-1.6*10^-19; //charge on electron in C\n",
+"n=(q/e); //calculating n\n",
+"M=n*m; //calculating mass transfered\n",
+"disp(n,'no. of electrons = '); //displaying result\n",
+"disp(M,'Mass transfered to polythene in kg = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: calculating_H.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"q1=1.6*10^-19; //charge in C\n",
+"q2=-1.6*10^-19; //charge in C\n",
+"r=10^-9; //r in m\n",
+"F=(9*10^9)*((q1*q2)/r^2); //calculating F\n",
+"disp(F,'Force in Newton = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: calculating_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Va=-10; //voltage in volts\n",
+"W=100; //work in Joule\n",
+"q=2; //charge in Coulomb\n",
+"v=(Va)+(W/q); //calculating v\n",
+"disp(v,'Voltage in Volts = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: calculating_H.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"eo=(8.854*10^-12); //constant\n",
+"E=2; //magnitude of electric field in N/C\n",
+"r=0.5; //r in m\n",
+"q=E*4*(%pi)*(eo)*(r^2); //calculating charge\n",
+"disp(q,'Charge in Coulomb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: calculating_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"e=-1.6*10^-19; //charge on electron in Coulomb\n",
+"q=20*10^-6; //charge in Coulomb\n",
+"r1=0.1; //r1 in m\n",
+"r2=0.05; //r2 in m\n",
+"Va=9*10^9*(q/r1); //calculating voltage at A\n",
+"Vb=9*10^9*(q/r2); //calculating voltage at B\n",
+"V=Va-Vb; //potential difference\n",
+"W=V*e; //calculating work done in joule\n",
+"disp(W,'Work done to take the electron from A to B in Joule = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/The_Field_of_Electronics_by_R_Morrison/5-Analog_Design.ipynb b/The_Field_of_Electronics_by_R_Morrison/5-Analog_Design.ipynb
new file mode 100644
index 0000000..c995951
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/5-Analog_Design.ipynb
@@ -0,0 +1,531 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Analog Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: calculating_output_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"Rs=40; //resisitance in Ohm\n",
+"disp('R2=8 when R1=32, R2=32 when R1=8 Resisitance in Ohm '); //displaying result using (1/Rp)=(1/R1)+(1/R2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: calculating_output_inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"V=2; //in volts\n",
+"R1=30; //resisitance in Ohm\n",
+"R2=60; //resistance in Ohm\n",
+"Rp=(30*60)/(30+60); //calculating parallel resistance\n",
+"disp(Rp,'Resisitance in Ohm = '); //displaying result\n",
+"I=V/Rp; //Ohm's law\n",
+"disp(I,'Current in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: calculating_input_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R1=2; //resisitance in Ohm\n",
+"R2=3; //resistance in Ohm\n",
+"R3=1; //resistance in Ohm\n",
+"Rp=(R1*R2)/(R1+R2); //calculating parallel resistance\n",
+"R=Rp+1; //1 Ohm in series\n",
+"disp(R,'(1)Equivalent Resisitance in Ohm = '); //displaying result\n",
+"Rs=(R1+R2+R3); //series resistances\n",
+"disp(Rs,'(2)All resistances in series in Ohm = '); //displaying result\n",
+"Rp=(1/R1)+(1/R2)+(1/R3); //calculating parallel resistance\n",
+"disp((1/Rp),'(3)All in Parallel in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: calculating_size.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"V=20; //voltage in Volts\n",
+"R1=2; //resisitance in Ohm\n",
+"R2=4; //resistance in Ohm\n",
+"R3=5; //resistance in Ohm\n",
+"Rp=(1/R1)+(1/R2)+(1/R3); //calculating parallel resistance\n",
+"R=1/Rp; //Parallel\n",
+"disp(R,'(a)Equivalent Resisitance in Ohm = '); //displaying result\n",
+"I1=V/R1; //calculating current through R1\n",
+"I2=V/R2; //calculating current through R2\n",
+"I3=V/R3; //calculating current through R3\n",
+"I=V/R; //calculating total current\n",
+"disp(I1,'Current through R1 in Ampere = '); //displaying result\n",
+"disp(I2,'Current through R2 in Ampere = '); //displaying result\n",
+"disp(I3,'Current through R3 in Ampere = '); //displaying result\n",
+"disp(I,'Total current in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14: calculating_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Rp = 6/n'); //resistance in parallel\n",
+"disp('R=7'); //total resistance\n",
+"disp('From 1 and 2 we get n=3'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: calculating_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R1=2; //resistance in Ohm\n",
+"R2=6; //resistance in Ohm\n",
+"R3=3; //resistance in Ohm\n",
+"V=24; //voltage in volts\n",
+"R=8; //resistance in Ohm\n",
+"I=V/R; //Ohm's Law\n",
+"disp(I,'Current in Ampere = '); //displaying result\n",
+"V1=I*R1; //Ohm's Law\n",
+"disp(V1,'Voltage drop across R1 in Volts = '); //displaying result\n",
+"V2=I*R2; //Ohm's Law\n",
+"disp(V2,'Voltage drop across R2 in Volts = '); //displaying result\n",
+"V3=I*R3; //Ohm's Law\n",
+"disp(V3,'Voltage drop across R3 in Volts = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: calculating_max_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R=15; //resistance in Ohm\n",
+"disp('KVL: 16I1+15I2=6 (1)'); //KVL equation\n",
+"I1=-1.66; //from(1)\n",
+"I2=2.17; //from (1)\n",
+"disp(I1); //current in Ampere\n",
+"disp(I2)\n",
+"V=(I1+I2)*R; //calculating potential difference\n",
+"disp(V,'Potential difference in Volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: calculating_max_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('3I1-I2-1=0 (1)'); //KVL equation\n",
+"disp('3I1-I2+2I=2 (2)'); //KVL equation\n",
+"disp('3I1-I1+2I=2 (3)'); //KVL equation\n",
+"I1=0.2352; //from (1)(2)(3)through AB \n",
+"I2=-0.11764; //from (1)(2)(3)through BD\n",
+"I=0.58823; //from (1)(2)(3)through main circuit\n",
+"Ig=-0.117647; //current in Ampere\n",
+"Ibc=I1-I2; //calculating current in BC\n",
+"Iad=I-I1; //calculating current in AD\n",
+"Idc=I-I1-Ig; //calculating current in DC\n",
+"disp(Ibc,'Current in branch BC in Ampere = '); //displaying result\n",
+"disp(Iad,'Current in branch AD in Ampere = '); //displaying result\n",
+"disp(Idc,'Current in branch DC in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"P=10; //Ohm\n",
+"Q=3; //Ohm\n",
+"R=12; //Ohm\n",
+"S=6; //Ohm\n",
+"G=20; //Ohm\n",
+"disp('-12I+22I1+IgG=0 (1)'); //KVL\n",
+"disp('6I-9I1+29Ig=0 (2)'); //KVL\n",
+"disp('13I1-3Ig=2 (3)'); //KVL\n",
+"Ig=7.797*10^-3; //from (1)(2)(3)\n",
+"disp(Ig,'Current through Galvanometer in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"P=500; //power in Watts\n",
+"V=200; //voltage in Volts\n",
+"R=(V^2)/P; //using P=V^2*R\n",
+"disp(R,'Resistance in Ohm = '); //displaying result\n",
+"V1=160; //voltage in Volts\n",
+"P1=(V1^2)/R; //calculating power\n",
+"Dp=500-P1; //drop in heat\n",
+"D=(Dp*100)/500; //percentage drop\n",
+"disp(D,'% Drop in heat production = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: calculating_delay.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=10^6; //no. of electrons\n",
+"e=1.6*10^-19; //charge on an electron in C\n",
+"q=n*e; //calculating total charge\n",
+"t=10^-3; //time in second\n",
+"I=q/t; //calculating current\n",
+"disp(I,'Current flowing in Ampere = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: calculating_output_signal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"I=300*10^-3; //current n Ampere\n",
+"t=60; //time in second\n",
+"e=1.6*10^-19; //chatge on electron in C\n",
+"q=I*t; //calculating charge\n",
+"n=q/e; //calculating no of electrons\n",
+"disp(n,'No. of electrons = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: calculating_output_common_mode_signal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"V=200; //voltage in volt\n",
+"R=100; //resistance in Ohm\n",
+"e=1.6*10^-19; //charge on an electron in C\n",
+"I=V/R; //Ohm's law\n",
+"t=1; //time in second\n",
+"q=I*t; //calculating charge\n",
+"n=q/e; //calculating no of electrons\n",
+"disp(n,'No. of electrons = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: calculating_output_signal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=15; //length in m\n",
+"A=6*10^-7; //area in m square\n",
+"R=5; //resistance in Ohm\n",
+"p=(A*R)/l; //calculating resistivity\n",
+"disp(p,'Resistivity in Ohm metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: calculating_energy_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=0.1; //length in m\n",
+"A=10^-4; //area in m square\n",
+"R=0.01; //resistance in Ohm\n",
+"p=(A*R)/l; //calculating resistivity\n",
+"disp(p,'Resistivity in Ohm metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: calculating_max_peak_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"L=1; //length in m\n",
+"r=0.2*10^-3; //radius in m\n",
+"A=%pi*(r)^2; //calculating area\n",
+"disp(A)\n",
+"R=2; //resistance in Ohm\n",
+"P=(R*A)/L; //calculating resistivity\n",
+"disp(P,'Resistivity in Ohm. metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: calculating_size.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R1=5; //resisitance in Ohm\n",
+"R2=9*5; //calculating using R2/A1=(l2/A2)*(A1/l1)\n",
+"disp(R2,'Resisitance in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: calculating_rms_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R1=5; //resisitance in Ohm\n",
+"R2=4*5; //calculating using R2/A1=(l2/A2)*(A1/l1)\n",
+"disp(R2,'Resisitance in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"R1=2; //resisitance in Ohm\n",
+"R2=4; //resistance in Ohm\n",
+"R3=5; //resistance in Ohm\n",
+"R=(R1^-1)+(R2^-1)+(R3^-1); //calculating parallel resistance\n",
+"Rp=(1/R);\n",
+"disp(Rp,'Resisitance in Ohm = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/The_Field_of_Electronics_by_R_Morrison/6-Digital_Design.ipynb b/The_Field_of_Electronics_by_R_Morrison/6-Digital_Design.ipynb
new file mode 100644
index 0000000..6675afd
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/6-Digital_Design.ipynb
@@ -0,0 +1,472 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Digital Design"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: calculating_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=5; //in volt\n",
+"sp=2*10^-3; //spacing in m\n",
+"d=1; //distance in metre\n",
+"hw=7.5; //half wavelength in metre\n",
+"f=10.6*10^6; //frequency in Hz\n",
+"a=0.3; //area in centimetre square\n",
+"r=316; //standard model radiation in (V*10^-6)/metre\n",
+"n=316*(500*a*v)/(89*3.3); //calculating radiation\n",
+"disp(n,'Radiation in (V*10^-6)/metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: calculating_H_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"mo=1/(4*(%pi)*10^-7); //constant\n",
+"a=0.01; //area in m square\n",
+"v=0.2; //in volt\n",
+"f=2*10^6; //frequency in Hz\n",
+"vp=v*sqrt(2); //calculating peak voltage\n",
+"disp(vp,'Peak voltage in volt = '); //displaying result\n",
+"b=vp/a; //change in B field\n",
+"disp(b,'Change in B field in Tesla/sec = '); //displaying result\n",
+"h=b*mo; //calculating H field\n",
+"disp(h,'H field is changing in A/m per sec'); //displaying result\n",
+"disp('At 2 MHz the H-field peak is 1.79 A/m.'); //displaying result\n",
+"disp('This is 1.26 A/m rms.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: calculating_WCC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"dia=1; //diameter in cm\n",
+"f=300*10^6; //frequency in Hz\n",
+"i=5; //current in Ampere\n",
+"dis=10; //in cm\n",
+"dim=0.56; //aperture dimension in cm\n",
+"r=(dia*10^-2)/2; //calculating radius in metre\n",
+"h=(0.25)/(2*(%pi)*r); //H field\n",
+"disp(h,'H field in A/metre = '); //displaying result\n",
+"disp('For a plane wave the E field is 377 H = 3000V/m'); //displaying\n",
+"att=75/dim; //attenuation\n",
+"disp(att,'Attenuation = '); //displaying result\n",
+"disp('Thus, the field is 22.4 V/metre'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: finding_the_mode_of_coupling.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"ap=2; //aperture length in cm\n",
+"f=(2/75)*3000; //field\n",
+"disp(f,'Field is coupled with in V/metre = '); //displaying result\n",
+"disp('For an area of 2 cm square,the voltage coupled is 2.13 V.'); //displaying result \n",
+"disp('This can damage a circuit.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: determining_the_type_of_filter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('The filter must attenuate the signal by a factor of 10.'); //displaying result\n",
+"f=300*10^6; //frequency in Hz\n",
+"disp(' If R = 100 Ohm ,then the reactance of the capacitor should be about 10 Ohm.'); //displaying result\n",
+"c=1/(2*(%pi)*f*10); //calculating capacitance\n",
+"disp(c,'At 300 MHz, this is in Farad = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: calculating_common_mode_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=54946; //current in Ampere\n",
+"d=1; //distance in ft\n",
+"r=0.33; //in metre\n",
+"f=425.89; //frequency in Hz\n",
+"h=i/(2*(%pi)*r); //calculating H field\n",
+"disp(h,'H field in A/metre = '); //displaying result\n",
+"mo=(4*(%pi)*10^-7); //constant\n",
+"b=mo*h; //calculating B field\n",
+"disp(b,'B field in Tesla = '); //displaying result\n",
+"area=0.02; //area in metre square\n",
+"flux=b*area; //calculatin flux\n",
+"disp(flux,'Flux in Wb = '); //displaying result\n",
+"v=(2*(%pi)*f); //calculating voltage\n",
+"disp(v,'Voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: observing_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('The reactance at 640 kHz is 75.4 Ohm.'); //displaying result\n",
+"disp('For 20,000 A, the voltage drop is 1.5*10^6 Volt.'); //displaying result\n",
+"disp('The breakdown voltage for 6 in. is 300,000 V.Lightning will jump through the concrete.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: calculating_dielectric_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"c=500*10^-12; //capacitance in Farad\n",
+"d=0.01; //spacing in inch\n",
+"eo=8.854*10^-12; //dielectric constant of air in Farad per metre\n",
+"er=7.1*10^-12; //dielectric constant of material\n",
+"area=0.02*d; //in metre square\n",
+"C=697*er; //calculating capacitance\n",
+"disp(C,'Capacitance in Farad = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: calculating_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=100; //resistance in Ohm\n",
+"v=10; //in volt\n",
+"d=10; //distance in feet\n",
+"c=10*10^-6; //capacitor in Farad\n",
+"i=v/r; //current\n",
+"disp(i,'The wave travels the length of the line in 20 ns. The current that flows in the capacitor is the short-circuit current = '); //displaying result\n",
+"ch=40*10^-9*0.1; //charge\n",
+"disp(ch,'The charge that flows in 40 ns = '); //displaying result\n",
+"v1=ch/c; //voltage\n",
+"disp(v1,'Voltage in a 10*10^-6 Farad Capacitor = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: calculating_size.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=20*10^-3; //current\n",
+"vd=1; //voltage drop\n",
+"t=10^-3; //time in sec\n",
+"q=i*t; //charge\n",
+"c=q/vd; //capacitance\n",
+"disp(c,'Capacitance in Farad = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"c=15*10^-12; //capacitance in F/ft\n",
+"v=10; //in volt\n",
+"f=10*10^6; //frequency in Hz\n",
+"t=10*10^-9; //time\n",
+"imp=100; //impedance in Ohm\n",
+"l=3; //length in metre\n",
+"i=c*10^9; //current\n",
+"disp(i,'Current in Ampere = '); //displaying result\n",
+"disp('This is 1.5 V in 100 .'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: calculating_radiation_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10; //in volt\n",
+"i=20*10^-3; //current in Ampere\n",
+"t=10*10^-9; //time in sec\n",
+"s=0.05; //spacing in inch\n",
+"l=50; //length in cm\n",
+"disp('The radiation using the standard model is 316*10^-6V.'); //displaying result\n",
+"f=1/((%pi)*t); //frequency\n",
+"disp(f,'Frequency in Hz = '); //displaying result\n",
+"rad=(316*57*0.6*10)/(3.33*9.9); //radiation\n",
+"disp(rad,'radiation level at 10 metre in (V*10^-6 metre) = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: calculating_radiation_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10; //in volt\n",
+"i=20*10^-3; //current in Ampere\n",
+"t=10*10^-9; //time in sec\n",
+"s=0.05; //spacing in inch\n",
+"l=50; //length in cm\n",
+"disp('The radiation using the standard model is 316*10^-6V.'); //displaying result\n",
+"f=1/((%pi)*t); //frequency\n",
+"disp(f,'Frequency in Hz = '); //displaying result\n",
+"rad=(316*57*0.6*10)/(3.33*9.9); //radiation\n",
+"disp(rad,'radiation level at 10 metre in (V*10^-6 metre) = '); //displaying result\n",
+"w=364; //ratio of areas\n",
+"disp(w,'If the adjacent conductor is 0.05 in. away, the field is reduced by the ratio of areas in (10^-6*V/metre)= '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"imp=0.2; //transfer impedance in Ohm/metre\n",
+"f=50*10^6; //frequency in Hz\n",
+"i=10*10^-3; //current in Ampere\n",
+"l=2; //length in metre\n",
+"disp('The voltage coupled to the cable is 0.02 V/m.'); //displaying\n",
+"disp(' This is 0.04 V in 2 m.'); //displaying result\n",
+"disp('Half of the energy goes in each direction.'); //displaying result\n",
+"disp('At the unterminated end, the voltage doubles.'); //displaying result\n",
+"disp('Thus, The result is 0.04 V.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"hw=7.5; //half wavelength in metre\n",
+"f=20*10^6; //frequency in Hz\n",
+"a=0.03; //area in metre square\n",
+"v=hw*a; //calculating voltage\n",
+"disp(v,'Voltage in volt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: calculating_WCC_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=5; //in volt\n",
+"sp=2*10^-3; //spacing in m\n",
+"d=1; //distance in metre\n",
+"hw=7.5; //half wavelength in metre\n",
+"f=10.6*10^6; //frequency in Hz\n",
+"a=0.8; //area in centimetre square\n",
+"r=316; //standard model radiation in (V*10^-6)/metre\n",
+"n=316*(125*a*v*d)/(89*3.3); //calculating radiation\n",
+"disp(n,'Radiation in (V*10^-6)/metre = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}