summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb')
-rw-r--r--Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb601
1 files changed, 601 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb b/Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb
new file mode 100644
index 0000000..a43d9b7
--- /dev/null
+++ b/Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb
@@ -0,0 +1,601 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Conductivity_and_Position_of_Ef_above_the_intrinsic_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.10: Page-9.31 ; (2004)\n",
+"clc;clear;\n",
+"ni = 1.5e+16; // Intrinsic Carrier concentration at room temperature\n",
+"mu_e = 0.135; // Mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"Nd = 1e+23; // Impurity atoms , per metrecube\n",
+"T = 300; // Temperature, Kelvin \n",
+"k = 1.38e-23; // Boltzman constant,joule per kelvin\n",
+"mu_h = 0.048; // Mobility of holes, m^2V^-1s^-1\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n",
+"p = ni^2/Nd; // Hole concentration, per metrecube\n",
+"sigma_ex = Nd*e*mu_e; // Conductivity with donor type impurities, mho per meter\n",
+"E_F =(3/(4*e))*k*T*(log(0.135/0.048)); // Position of fermi level above the intrinsic level, eV \n",
+"// mu is inversely propotional to mass \n",
+"printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n",
+"printf('\nHole concentration = %4.2e per metrecube', p);\n",
+"printf('\nConductivity with donor type impurities = %4.2e mho per meter', sigma_ex);\n",
+"printf('\nPosition of fermi level above the intrinsic level = %4.2f eV', E_F);\n",
+"\n",
+"//Results\n",
+"// Conductivity of silicon = 4.39e-04 mho per meter\n",
+"// Hole concentration = 2.25e+09 per metrecube\n",
+"// Conductivity with donor type impurities = 2.16e+03 mho per meter\n",
+"// Position of fermi level above the intrinsic level = 0.02 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: Intrinsic_carrier_concentration_and_conductivity_in_germanium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.11: Page-9.32 ; (2004)\n",
+"clc;clear;\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"Eg = 0.7*e; // Band gap energy, joules\n",
+"mu_e = 0.4; // Mobility of electron; m^2V^-1s^-1\n",
+"mu_h = 0.2; // Mobility of holes, m^2V^-1s^-1\n",
+"m = 9.1e-31; // Mass of electron, kg\n",
+"h = 6.63e-34; // Plancks Constant, Js\n",
+"T = 300; // Temperature, Kelvin \n",
+"k = 1.38e-23; // Boltzman constant,joule per kelvin\n",
+"C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n",
+"ni = C*exp((-Eg)/(2*k*T)); // Carrier concentration at room temperature\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n",
+"printf('\nCarrier concentration at room temperature = %4.2e per metrecube', ni);\n",
+"printf('\nConductivity of silicon = %3.2f mho per meter', sigma);\n",
+"\n",
+"\n",
+"//Results\n",
+"// Carrier concentration at room temperature = 3.34e+19 per metrecube\n",
+"// Conductivity of silicon = 3.20 mho per meter "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: Forbidden_energy_band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.12: Page-9.32 ; (2004)\n",
+"clc;clear;\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"mu_e = 0.36; // Mobility of electron; m^2V^-1s^-1\n",
+"mu_h = 0.17; // Mobility of holes, m^2V^-1s^-1\n",
+"rho = 2.12; // Resistivity of sample, ohm metre \n",
+"sigma = 1/rho; // Conductivity of sample, mho per meter\n",
+"m = 9.1e-31; // Mass of electron, kg\n",
+"h = 6.63e-34; // Plancks Constant, Js\n",
+"T = 300; // Temperature, Kelvin \n",
+"k = 1.38e-23; // Boltzman constant,joule per kelvin\n",
+"// But ni = C*exp((-Eg)/(2*k*T)); // Carrier concentration at room temperature, therefore\n",
+"C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n",
+"ni = sigma/(e*(mu_e+mu_h)); // Carrier concentration, per metercube\n",
+"b = C/ni; // Ratio for simplicity\n",
+"Eg = 2/e*k*T*log(b); // Band gap energy, joules\n",
+"\n",
+"printf('\nBand gap energy = %5.4f eV', Eg);\n",
+"\n",
+"//Result\n",
+"// Band gap energy= 0.7927 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.13: Hall_Voltage_of_a_semiconductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.13: Page-9.45 ; (2004)\n",
+"clc;clear;\n",
+"RH = 3.66e-4; // Hall coefficent, meter cube/C\n",
+"t = 1e-03; // thickness of the specimen, m\n",
+"Bz = 0.5; // Magnetic flux density, wb per meter square\n",
+"Ix = 1e-2; // Current , A\n",
+"VH = RH*Ix*Bz/t; // Voltage across specimen, volt\n",
+"printf('\nVoltage across specimen = %3.2f millivolt', VH/1e-3);\n",
+"\n",
+"// Result\n",
+"// Voltage across specimen = 1.83 millivolt"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Hall_coefficient_of_a_semiconductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.14: Hall coefficent of a semiconductor : Page-9.46 ; (2004)\n",
+"clc;clear;\n",
+"Vy = 37e-06; // Voltage across specimen, volt\n",
+"t = 1e-03; // thickness of the specimen, m\n",
+"Bz = 0.5; // Magnetic flux density, wb per meter square\n",
+"Ix = 20e-3; // Current , A\n",
+"RH = Vy*t/(Ix*Bz); // Hall coefficent, meter cube/C\n",
+"printf('\nHall coefficent, meter cube/C = %3.1e meter cube/C', RH);\n",
+"\n",
+"// Result\n",
+"// Hall coefficent, meter cube/C = 3.7e-06 meter cube/C "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: Mobility_density_and_nature_of_semiconductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.15: Page-9.46 ; (2004)\n",
+"clc;clear;\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"RH = -7.35e-5; // Hall coefficent, meter cube/C\n",
+"sigma = 200; // Conductivity of the Si specimen, per ohm per metre\n",
+"n = -1/(RH*e); // Electron density, per metre cube\n",
+"mu = sigma/(n*e); // Mobility of the charge carriers, square meter per voly per sec\n",
+"printf('\nElectron density = %3.3e per metre cube', n);\n",
+"printf('\nMobility = %3.3f square meter per volt per sec', mu);\n",
+"printf('\nAs the RH is negative, so specimen is n-type');\n",
+"\n",
+"//Result\n",
+"// Electron density = 8.503e+22 per metre cube\n",
+"// Mobility = 0.015 square meter per volt per sec\n",
+"// As the RH is negative, so specimen is n-type "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.16: Hall_Voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.16: Page-9.47 ; (2004)\n",
+"clc;clear;\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"B = 1.5; // Magnetic field, tesla\n",
+"I = 50; // Current, ampere\n",
+"n = 8.4e+28; // Electron density, per metre cube\n",
+"t = 0.5e-2; // thickness of slab, metre\n",
+"RH = 1/(n*e); // Hall coefficent\n",
+"V_H = RH*I*B/t; // Hall voltage, volt \n",
+"printf('\nHall Voltage = %3.3f micro volt', V_H/1e-6);\n",
+"\n",
+"//Result\n",
+"// Hall Voltage = 1.116 micro volt "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.17: Mobility_and_number_of_Charge_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.17: Mobility and no of Charge carrier : Page-9.48 ; (2004)\n",
+"clc;clear;\n",
+"RH = 3.66e-4; // Hall Coefficient, metrcube/C\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"rho = 8.93e-3; // Resistivity of sample, ohm meter \n",
+"n = 1/(RH*e); // Number of charge carrier, per metre cube\n",
+"mu_e = RH/rho; // Mobility of electron, m^2 per volt per sec\n",
+"printf('\nNumber of charge carrier = %3.3e per metre cube', n);\n",
+"printf('\nMobility of electron = %4.5f squaremetre per volt per sec', mu_e);\n",
+"\n",
+"//Results\n",
+"// Number of charge carrier = 1.708e+22 per metre cube\n",
+"// Mobility of electron = 0.04099 m^2 per volt per sec "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.1: Page-9.24 ; (2004)\n",
+"clc;clear;\n",
+"ni = 2.37e+19; // Carrier concentration at room temperature\n",
+"mu_e = 0.38; // mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // electronic charge, C\n",
+"mu_h = 0.18; // mobility of holes; m^2V^-1s^-1\n",
+"sigma = ni*e*(mu_e+mu_h); // conductivity, mho.m^-1\n",
+"rho = 1/sigma; // Resistivity in Ge, ohm.m\n",
+"printf('\nConductivity in Ge = %4.2f mho.per m', sigma);\n",
+"printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n",
+"\n",
+"//Results\n",
+"// Conductivity in Ge = 2.12 mho.per m\n",
+"// Resistivity in Ge = 0.471 ohm.m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Determination_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.2: Page-9.24 (2004)\n",
+"clc;clear;\n",
+"Eg = 1.12; // Bandgap of silicon, eV\n",
+"me = 0.12*9.1e-031; // Effective Mass of the electron, kg\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"mh = 0.28*9.1e-031; // Effective Mass of the hole, kg\n",
+"k = 1.38e-23; // Boltzman constant, joule per kelvin\n",
+"T = 300; // temperature, K\n",
+"EF = (Eg/2)+3/4*k*T*(log(2.333))/e; // EF = E(Eg/2)+3/4*k*T*(log(2.333))/e; Formula\n",
+"\n",
+"printf('\nThe position of Fermi Level = %4.3f eV', EF);\n",
+"\n",
+"// Result\n",
+"// The position of Fermi Level = 0.576 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Number_of_intrinsic_carriers_at_300K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.3: Number of intrinsic carriers at 300K: Page-9.26 ; (2004)\n",
+"clc;clear;\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"m = 9.1e-31; // Mass of electron, kg\n",
+"T = 300; // Room temperature, K\n",
+"k = 1.38e-23; // Boltzmann Constant, joule per kelvin \n",
+"Eg = 0.7*e; // Energy band gap of silicon, J\n",
+"h = 6.626e-34; // Plancks Constant, Js\n",
+"C = 2*(2*%pi*m*k/h^2)^(3/2); // A constant \n",
+"ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for carrier concentration at room temperature\n",
+"printf('\nNumber of intrinsic carriers at 300K = %3.1e per cubemetre ', ni);\n",
+"\n",
+"//Results\n",
+"// Number of intrinsic carriers at 300K = 3.3e+19 per cubemetre "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Resistivity_of_Ge_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.4: Page-9.26 ; (2004)\n",
+"clc;clear;\n",
+"ni = 2.4e+19; // Carrier concentration at room temperature\n",
+"mu_e = 0.39; // Mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"mu_h = 0.19; // Mobility of holes, m^2V^-1s^-1\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho.m^-1\n",
+"rho = 1/sigma; // Resistivity in Ge, ohm.m\n",
+"printf('\nConductivity in Ge = %4.4f mho.per m', sigma);\n",
+"printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n",
+"\n",
+"\n",
+"//Results\n",
+"// Conductivity in Ge = 2.2272 mho.per m\n",
+"// Resistivity in Ge = 0.449 ohm.m "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Resistance_of_Ge_rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.5: Page-9.26 ; (2004)\n",
+"clc;clear;\n",
+"ni = 2.5e+19; // Carrier concentration at room temperature\n",
+"mu_e = 0.39; // Mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"l = 1e-2; // length of Ge rod, m\n",
+"w = 1e-3; // width of Ge rod,m\n",
+"t = 1e-3; // thickness of Ge rod, m\n",
+"A = w*t; // Area of Ge rod, meter square \n",
+"mu_h = 0.19; // Mobility of holes, m^2V^-1s^-1\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho.m^-1\n",
+"R = l/(sigma*A); // Resistivity in Ge, ohm.m\n",
+"printf('\nResistance of Ge rod = %4.2e ohm', R);\n",
+"\n",
+"//Results\n",
+"// Resistance of Ge rod = 4.31e+03 ohm "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Conductivity_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.6: Page-9.27 ; (2004)\n",
+"clc;clear;\n",
+"mu_e = 0.48; // Mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"m = 9.1e-31; // Mass of electron, kg\n",
+"mu_h = 0.013; // Mobility of holes, m^2V^-1s^-1\n",
+"T = 300; // Room temperature, K\n",
+"k = 1.38e-23; // Boltzmann Constant, joule per kelvin \n",
+"Eg = 1.1*e; // Energy band gap of silicon, J\n",
+"h = 6.626e-34; // Plancks Constant, Js\n",
+"C = 2*(2*%pi*m*k/h^2)^(3/2); // A constant \n",
+"ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for carrier concentration at room temperature\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per metre\n",
+"\n",
+"printf('\nConductivity = %3.1e mho per metre ', sigma);\n",
+"\n",
+"//Results\n",
+"// Conductivity = 1.2e-03 mho per metre "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: Electron_and_hole_concentration_in_silicon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.7: Page-9.27 ; (2004)\n",
+"clc;clear;\n",
+"Na = 5e+23; // Concentration of boron atoms, per metrecube\n",
+"Nd = 3e+23; // Concentration of arsenic atoms, per metrecube\n",
+"p = Na-Nd; // Hole concentration, per metrecube\n",
+"ni = 2e+16; // Intrinsic concentration ,per metrecube\n",
+"n = ni^2/p; // Electron concentration, per metrecube\n",
+"\n",
+"printf('\nHole concentration = %3.1e per metrecube ', p);\n",
+"printf('\nElectron concentration = %3.1e per metrecube ', n);\n",
+"\n",
+"//Results\n",
+"// Hole concentration = 2.0e+23 per metrecube \n",
+"// Electron concentration = 2.0e+09 per metrecube "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: Temperature_that_shift_the_fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.8: Page-9.28 (2004)\n",
+"clc;clear;\n",
+"Eg = 1; // Bandgap of silicon, eV\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"k = 1.38e-23; // Boltzman constant,joule per kelvin\n",
+"E_F = (0.6-0.5)*e; // Fermi energy, joules\n",
+"// E_F =((Ev+Ec)/2)+3/4*k*T1*(log(4)); // Ev & Ec= valance and conduction band energies (formula) \n",
+"T = 4*E_F/(3*k*log(4)); //Temperature that shift the fermi level, K\n",
+"\n",
+"printf('\nTemperature that shift the fermi level = %4.3d K', T);\n",
+"\n",
+"// Result\n",
+"// Temperature that shift the fermi level = 1115 K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: Conductivity_of_intrinsic_silicon_at_300_K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex9.9: Page-9.29 ; (2004)\n",
+"clc;clear;\n",
+"ni = 1.5e+16; // Intrinsic Carrier concentration at room temperature\n",
+"mu_e = 0.13; // Mobility of electron; m^2V^-1s^-1\n",
+"e = 1.6e-19; // Electronic charge, C\n",
+"Nd = 4.99e+20; // Impurity atoms , per metrecube\n",
+"mu_h = 0.05; // Mobility of holes, m^2V^-1s^-1\n",
+"sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n",
+"sigma_d = Nd*e*mu_e; // Conductivity with donor type impurities, mho per meter\n",
+"sigma_a = Nd*e*mu_h; // Conductivity with acceptor type impurities, mho per meter\n",
+"printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n",
+"printf('\nConductivity with donor type impurities = %4.2f mho per meter', sigma_d);\n",
+"printf('\nConductivity with acceptor type impurities= %4.2f mho per meter', sigma_a);\n",
+"\n",
+"//Results\n",
+"// Conductivity of silicon = 4.32e-04 mho per meter\n",
+"// Conductivity with donor type impurities = 10.38 mho per meter\n",
+"// Conductivity with acceptor type impurities= 3.99 mho per meter "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}