diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb')
-rw-r--r-- | Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb | 451 |
1 files changed, 451 insertions, 0 deletions
diff --git a/Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb b/Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb new file mode 100644 index 0000000..32ceed4 --- /dev/null +++ b/Semiconductor_Circuit_Approximations_by_Malvino/6-Common_Emitter_Approximations.ipynb @@ -0,0 +1,451 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Common Emitter Approximations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Ac_output_voltage_across_the_final_load_resistor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.10\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"bita= 150;\n", +"R1= 10*10^3;// in Ω\n", +"R2= 2.2*10^3;// in Ω\n", +"R_E= 1*10^3;// in Ω\n", +"Rs= 1*10^3;// in Ω\n", +"R_C= 3.6*10^3;// in Ω\n", +"R_L= 1.5*10^3;// in Ω\n", +"V_CC= 10;// in V\n", +"V_BE= 0.7;// in V\n", +"Vt= 25*10^-3;// in V\n", +"Vin= 1*10^-3;// in V\n", +"V_B= R2*V_CC/(R1+R2);// in V\n", +"V_E= V_B-V_BE;// in V\n", +"I_E= V_E/R_E;// in A\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"Zin_base= bita*r_desh_e;// in Ω\n", +"Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base);// in Ω\n", +"Vb1= Zin*Vin/(Rs+Zin);// in V\n", +"r_L= R_C*Zin/(R_C+Zin);// in Ω\n", +"V_B= R2*V_CC/(R1+R2);// in V\n", +"V_E= V_B-V_BE;// in V\n", +"I_E= V_E/R_E;// in A\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"A1= r_L/r_desh_e;\n", +"Vb2= A1*Vb1;// in V\n", +"r_L= R_C*R_L/(R_C+R_L);// in Ω\n", +"A2= r_L/r_desh_e;\n", +"// The ac output voltage across the final load resistor \n", +"Vout= A2*Vb2;// in V\n", +"A= A1*A2;\n", +"Vout= A*Vb1;// in V\n", +"disp(Vout,'The ac output voltage across the final load resistor in volts is : ')\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: Ac_voltage_at_the_final_output.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.11\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"bita= 150;\n", +"R1= 10*10^3;// in Ω\n", +"R2= 2.2*10^3;// in Ω\n", +"R_C= 3.6*10^3;// in Ω\n", +"Rs= 1*10^3;// in Ω\n", +"R_L= 1.5*10^3;// in Ω\n", +"r_E= 180;// in Ω\n", +"R_E= 1*10^3;// in Ω\n", +"V_CC= 10;// in V\n", +"V_BE= 0.7;// in V\n", +"Vt= 25*10^-3;// in V\n", +"Vin= 1*10^-3;// in V\n", +"V_B= R2*V_CC/(R1+R2);// in V\n", +"V_E= V_B-V_BE;// in V\n", +"I_E= V_E/R_E;// in A\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"Zin_base= bita*(r_desh_e+r_E);// in Ω\n", +"Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base);// in Ω\n", +"r_L= R_C*Zin/(R_C+Zin);// in Ω\n", +"A1= r_L/(r_E+r_desh_e);\n", +"r_L= R_C*R_L/(R_C+R_L);// in Ω\n", +"A2= r_L/(r_desh_e+r_E);\n", +"A= A1*A2;\n", +"Vb1= Zin*Vin/(Rs+Zin);// in V\n", +"// The ac voltage at the final output \n", +"Vout= A*Vb1;// in V\n", +"Vout= Vout*10^3;// in mV\n", +"disp(Vout,'The ac voltage at the final output in mV is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Total_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.2\n", +"format('v',4)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R1= 10;// in Ω\n", +"R2= 10010;// in Ω\n", +"V1= 10;// in V\n", +"// The total voltage across the 10 Ω resistance \n", +"V= R1/R2*V1;// in V\n", +"V= V*10^3;// in mV\n", +"disp(V,'The total voltage across the 10 Ω resistance in mV is :');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Total_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R= 10*10^3;// in Ω\n", +"V_CC= 15;// in V\n", +"V_BE= 0.7;// in V\n", +"Vt= 25*10^-3;// in V\n", +"Vp= 1*10^-3;// in V\n", +"I= (V_CC-V_BE)/R;// in A\n", +"r_ac= Vt/I;// in Ω\n", +"// The total current through diode \n", +"Ip= Vp/r_ac;// in A\n", +"Ip= Ip*10^6;// in µA\n", +"disp(Ip,'The total current through diode in µA is : ')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Input_impedence.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.4\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R1= 47*10^3;// in Ω\n", +"R2= 15*10^3;// in Ω\n", +"R_E= 8.2*10^3;// in Ω\n", +"R_C= 10*10^3;// in Ω\n", +"R3= 3.3*10^3;// in Ω\n", +"bita= 200;\n", +"V_CC= 30;// in V\n", +"V_BE= 0.7;// in V\n", +"Vin= 5*10^-3;//in V\n", +"Vt= 25*10^-3;// in V\n", +"V2= R2*V_CC/(R1+R2);// in V\n", +"// DC voltage across emitter\n", +"V_E= V2-V_BE;// in V\n", +"// Emitter current\n", +"I_E= V_E/R_E;// in A\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"r_L= R_C*R3/(R_C+R3);//in Ω\n", +"A= r_L/r_desh_e;\n", +"// The output voltage \n", +"Vout= A*Vin;// in V\n", +"Zin_base= bita*r_desh_e;// in Ω\n", +"// The input impedance of amplifier \n", +"Zin= R1*R2*Zin_base/(R2*Zin_base+R1*Zin_base+R1*R2);// in Ω\n", +"Vout= Vout*10^3;// in mV\n", +"Zin= Zin*10^-3;// in k ohm\n", +"disp(Vout,'The output voltage in mV is : ')\n", +"disp(Zin,'The input impedance of amplifier in kΩ is : ')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Value_of_VB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.5\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R1= 10*10^3;// in Ω\n", +"R2= 2.2*10^3;// in Ω\n", +"R_C= 3.6*10^3;// in Ω\n", +"V_CC= 10;// in V\n", +"I_C= 1.1*10^-3;// in A\n", +"// The base voltage \n", +"V_B= R2*V_CC/(R1+R2);// in V\n", +"// The collector voltage \n", +"V_C= V_CC-I_C*R_C;// in V\n", +"disp(V_B,'The base voltage in V is : ')\n", +"disp(V_C,'The collector voltage in V is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Ac_output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V2= 1.1;// in V\n", +"Vin= 1*10^-3;// in V\n", +"Vt= 25*10^-3;// in V\n", +"R2= 1*10^3;// in Ω\n", +"R_C= 3.6*10^3;// in Ω\n", +"I_E= V2/R2;// in A\n", +"// Emitter diode ac resistance\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"A= R_C/r_desh_e;\n", +"// The output voltage \n", +"Vout= A*Vin;// in V\n", +"Vout= Vout*10^3;// in mV\n", +"disp(Vout,'The output voltage in mV is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Minimum_and_maximum_voltage_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.7\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R_C= 10*10^3;// in Ω\n", +"R_L= 82*10^3;// in Ω\n", +"r_E= 1*10^3;// in Ω\n", +"r_desh_e_min= 50;// in Ω\n", +"r_desh_e_max= 100;// in Ω\n", +"r_L= R_C*R_L/(R_C+R_L);// in Ω\n", +"// The minimum voltage gain \n", +"A_min= r_L/r_desh_e_max;\n", +"// The maximum voltage gain \n", +"A_max= r_L/r_desh_e_min;\n", +"disp(A_min,'The minimum voltage gain is : ')\n", +"disp(A_max,'The maximum voltage gain is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Input_impedance_of_the_amplifier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.8\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"bita= 200;\n", +"R1= 47*10^3;// in Ω\n", +"R2= 15*10^3;// in Ω\n", +"r_E= 1*10^3;// in Ω\n", +"r_desh_e= 50;// in Ω\n", +"Zin_base= bita*(r_E+r_desh_e);// in Ω\n", +"// The input impedance of the amplifier \n", +"Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base);// in Ω\n", +"Zin= Zin*10^-3;// in k ohm\n", +"disp(Zin,'The input impedance of the amplifier in kΩ is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Input_impedance_of_each_stage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 6.9\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"bita= 150;\n", +"R1= 10*10^3;// in Ω\n", +"R2= 2.2*10^3;// in Ω\n", +"R_E= 1*10^3;// in Ω\n", +"V_CC= 10;// in V\n", +"V_BE= 0.7;// in V\n", +"Vt= 25*10^-3;// in V\n", +"V_B= R2*V_CC/(R1+R2);// in V\n", +"V_E= V_B-V_BE;// in V\n", +"// The emitter current,\n", +"I_E= V_E/R_E;// in A\n", +"r_desh_e= Vt/I_E;// in Ω\n", +"Zin_base= bita*r_desh_e;// in Ω\n", +"// The input impedance of each stage \n", +"Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base);// in Ω\n", +"Zin= Zin*10^-3;// in k ohm\n", +"disp(Zin,'The input impedance of each stage in kΩ is : ')\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |