summaryrefslogtreecommitdiff
path: root/Quantum_Physics_Of_Atoms_by_Molecules
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Quantum_Physics_Of_Atoms_by_Molecules
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Quantum_Physics_Of_Atoms_by_Molecules')
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb91
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb118
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb95
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb87
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb83
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb124
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb166
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb265
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb127
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb61
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb215
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb158
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb177
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb180
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb135
-rw-r--r--Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb142
16 files changed, 2224 insertions, 0 deletions
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb
new file mode 100644
index 0000000..a1e69df
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb
@@ -0,0 +1,91 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Thermal Radiation and Plancks Postulate"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Surface_temperature_calculatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 1.1, page 24\n",
+"clear\n",
+"//For sun\n",
+"sigma=5.67*10^-8//w/m^2-k^4\n",
+"T=5700//in K\n",
+"ST_sun=sigma*T^4\n",
+"printf('\n Surface temperature of sun is %e W/m^2.',ST_sun)\n",
+"//For north star\n",
+"T=8300//in K\n",
+"ST_Northstar=sigma*T^4\n",
+"printf('\n Surface temperature of sun is %e W/m^2.',ST_Northstar)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Continious_or_dis_continious_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 1.6, apge 39\n",
+"clc\n",
+"g=9.8//in m/s^2, constant\n",
+"l=.1//in m\n",
+"m=0.01//in kg\n",
+"h=6.63*10^-34//Joule-sec\n",
+"theta=0.1//in radians\n",
+"v=(1/(2*%pi)*sqrt(g/l))\n",
+"printf('\n Oscillation frequency of pendulam %f per sec.',v)\n",
+"E=m*g*l*(1-cos(theta))\n",
+"printf('\n Energy of pendulum at its maximum potential %e Joule.',E)\n",
+"Delta_e=h*v\n",
+"printf('\n Delta E %e Joule',Delta_e)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb
new file mode 100644
index 0000000..4b2af5d
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb
@@ -0,0 +1,118 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Multi electron atoms optical excitations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Calculating_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 10.1, page 370\n",
+"clc\n",
+"E3p=-3//in ev\n",
+"E3s=-5.1//in ev\n",
+"E=E3p-E3s\n",
+"E_Joule=E*1.6*10^-19//in Joule\n",
+"h=6.6*10^-34//in J-s\n",
+"c=3*10^8//in m/s\n",
+"disp('Part a')\n",
+"lambda=(h*c)/E_Joule\n",
+"printf('\n The wavelength is %e m',lambda)\n",
+"//Part b\n",
+"disp('Part b')\n",
+"d_lambda=(h*c*E_Joule)/(E_Joule)^2\n",
+"printf('\n The magnitude of seperation is %e m',d_lambda)\n",
+"//Answer given in book for part b is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Displace_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 10.5, page 386\n",
+"clc\n",
+"a=1*(1+1)\n",
+"x=a+a-a\n",
+"y=2*a\n",
+"g=1+(x/y)\n",
+"u=9.3*10^-24//amp-m2\n",
+"B=1/10//in Tesla\n",
+"delta_E=u*B*g\n",
+"printf('\n The displace energy is %e ev',delta_E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Magnetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 10.6, page 387\n",
+"clc\n",
+"h=6.6*10^-34//in J-s\n",
+"v=1*10^10//per sec\n",
+"ub=9.3*10^-24//in amp-m2\n",
+"B=(h*v)/(2*ub)\n",
+"printf('\n The Magentic energy is %e Tesla',B)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb
new file mode 100644
index 0000000..2f70dea
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb
@@ -0,0 +1,95 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Quantum statistics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Boltzan_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 11.3, page 410\n",
+"clc\n",
+"h=6.6*10^-34//in J-s\n",
+"v=1*10^7//per sec\n",
+"K=1.4*10^-23//in J-K\n",
+"T=300//in K\n",
+"n=exp(-((h*v)/(K*T)))\n",
+"printf('\n The Boltzan factor is %e Tesla',1-n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 11.3, page 424\n",
+"clc\n",
+"disp('Part a')\n",
+"A=108//in g/mole\n",
+"M=10.5//in g/cm3\n",
+"D=6.02*10^23//in atom/mole\n",
+"n=(D*M)/A\n",
+"h=6.6*10^-34\n",
+"printf('\n The fermi energy is %e electron/cm^3',n)\n",
+"m=9.1*10^-31//in kg\n",
+"n=5.9*10^28//per m^2\n",
+"x=((3*n)/(%pi))^(2/3)\n",
+"Ef=(h^2/(8*m))*x\n",
+"printf('\n The energy is %e J',Ef)\n",
+"disp('part b')\n",
+"K=1.38*10^-23//in J-K\n",
+"T=300//in K\n",
+"z=(n*h^3)/(2*%pi*m*K*T)^(3/2)\n",
+"printf('\n The degeneracy term is %e ',z)\n",
+"//Anser difference is because of round off"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb
new file mode 100644
index 0000000..fbbf6b6
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb
@@ -0,0 +1,87 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Molecules"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Energy_calculation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.1, page 435\n",
+"clc\n",
+"c=9*10^9\n",
+"cm=1.6*10^-19\n",
+"d=2.4*10^-10//in m\n",
+"v=(c*cm*cm)/d\n",
+"e=v/(1.6*10^-19)//in J\n",
+"printf('\n The energy is %e ev',e)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Calculation_of_energy_and_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.3, page 445\n",
+"clc\n",
+"h=6.63*10^-34//in J-s\n",
+"I=(2*%pi)^2*2.66*10^-47//in kg-m2\n",
+"m_H=1/(6.02*10^26)//in kg\n",
+"E=(h^2)/I\n",
+"printf('\n The energy is %e J',E)\n",
+"s=.59*10^-19//in J\n",
+"k=1.38*10^-23//in j/k\n",
+"T=(s)/k\n",
+"printf('\n The temperature is %f K',T)\n",
+"//Answer diffrence is because of round off"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb
new file mode 100644
index 0000000..81f9d32
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb
@@ -0,0 +1,83 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Solids Conductors and semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Electron_per_unit_volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 13.1, Page no 471\n",
+"clc\n",
+"m=9.11*10^-31//in kg\n",
+"h=6.63*10^-34//in j-s\n",
+"ef=4.72*1.60*10^-19//in J\n",
+"n=%pi*(((8*m)/h**2)^(3/2))*((ef**(3/2))/3)\n",
+"printf('\n The number of electron per unit volume in lithium is %e /m^3',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 13.3, page 483\n",
+"clc\n",
+"m=9.11*10^-31//in kg\n",
+"h=6.63*10^-34//in j-s\n",
+"c=3*10^8//m/s\n",
+"ef=4.72*1.60*10^-19//in J\n",
+"pf=sqrt(2*m*ef)\n",
+"tf=pf/(m*c)\n",
+"printf('\n The angle is %e rad',tf)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb
new file mode 100644
index 0000000..d1dcdc0
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb
@@ -0,0 +1,124 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Solids super conductors and magnetic properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Calculating_wavelength_and_gap_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 14.1, page 507\n",
+"clc\n",
+"disp('Part a')\n",
+"k=1.4*10^-23//in J/K\n",
+"Te=4.2//in K\n",
+"eg=3*k*Te\n",
+"printf('\n The gap energy is %e J',eg)\n",
+"h=6.63*10^-34//in j-s\n",
+"c=3*10^8//m/s\n",
+"disp('Part b')\n",
+"lambda=(h*c)/eg\n",
+"printf('\n The wavelength is %e m',lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: Unpaired_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 14.3, Page 514\n",
+"clc\n",
+"u=9.3*10^-24//in Tesla\n",
+"B=1//in Tesla\n",
+"Eb=u*B*6.24150934*10^18 \n",
+"T=300//in K\n",
+"k=8.6*10^-5//ev/k\n",
+"x=k*T\n",
+"s=(Eb/x)*100\n",
+"disp('Part a')\n",
+"printf('\n The percentage is %f',s)\n",
+"disp('Part b')\n",
+"n=2.0*10^28///m3\n",
+"k=1.38*10^-23//in J/k\n",
+"uo=4*%pi*10^-7//T-m/amp\n",
+"con=(uo*n*u*u)/(k*T)\n",
+"printf('\n The number of unpaired electrons is %e',con)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: Energy_and_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 14.4, Page 516\n",
+"clc\n",
+"uo=4*%pi*10^-7//T-m/amp\n",
+"u=2.2*9.3*10^-24//in Tesla\n",
+"x=3*10^-10//in m\n",
+"E=(uo*u*u)/(2*%pi*x**3)\n",
+"printf('\n The Energy required is %e Joule',E)\n",
+"k=1.38*10^-23//in J/k\n",
+"T=E/k\n",
+"printf('\n The temperature is %f K',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb
new file mode 100644
index 0000000..22269d8
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb
@@ -0,0 +1,166 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Nuclear Models"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: Calculating_wavelength_and_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.2, Page 533\n",
+"clc;\n",
+"c=3*10^8//m/s\n",
+"k=500//Mev\n",
+"p=(k)/(c*6.2*10^12)\n",
+"h=6.63*10^-34//in j-s\n",
+"lambda=h/p\n",
+"angle=0.53//in rad\n",
+"r=lambda/angle\n",
+"printf('\n The wavelength is %e m',lambda)\n",
+"printf('\n The angle is %e m',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: Atomic_mass.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.4, Page 540\n",
+"clc\n",
+"kb=4.44//in Mev\n",
+"ka=7.70//in Mev\n",
+"mb=1\n",
+"mB=17\n",
+"ma=4\n",
+"Q=(kb*(1+(mb/mB)))-(ka*(1-(ma/mB)))\n",
+"disp('Part a')\n",
+"printf('\n The value of Q is %f Mev',Q)\n",
+"c=3*10^8//m/s\n",
+"m=Q/(931.5)\n",
+"printf('\n The atomic mass of Q is %e u',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: Binding_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.5, Page 541\n",
+"clc\n",
+"M_He=4.0026033//*u, Mass of helium\n",
+"M1H1=1.00782525//*u, electron mass\n",
+"Mon1=1.0086654//*u, neutron mass\n",
+"Mass=(2*M1H1)+(2*Mon1)\n",
+"delta_M=(Mass)-M_He\n",
+"printf('\n The binding energy of helium is %f *u',delta_M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.7: Blank.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.7, page 547"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.8: Density_and_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.8, page 550\n",
+"clc\n",
+"N=0.60\n",
+"rho=(N)/((4/3))\n",
+"printf('\n The density is %f /pi*a^3',rho)\n",
+"h=6.63*10^-34//in j-s\n",
+"a=1.1//F\n",
+"M=1\n",
+"ef=43//in Mev\n",
+"En=7//in Mev\n",
+"Vo=ef+En\n",
+"printf('\n The depth of the net nuclear potential acting on neutron \n is %d Mev', Vo)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb
new file mode 100644
index 0000000..a26aba9
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb
@@ -0,0 +1,265 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Nuclear decay and nuclear reactions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.10: Events_detected.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.8, page 615\n",
+"clc\n",
+"n=(1/10)/(54*1.66*10^-27)\n",
+"d_ohm=10^-5/(10^-1)**2\n",
+"d_zigma=(1.3*10^-3)*10^-31//m2/nucleus\n",
+"P=d_zigma*n\n",
+"//disp(P)\n",
+"I=(10^-7)/(1.6*10^-19)\n",
+"//disp(I)\n",
+"dN=I*P\n",
+"printf('\n The number of events detected per sec is s %d',dN)\n",
+"//The answer differnce is because of round off"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.11: Free_electro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.11, page 624\n",
+"clc\n",
+"E=200*1.6*10^-13//j/neutron\n",
+"E=10^-11//Rounding off\n",
+"p=E/(10^-3)\n",
+"P=10^8//in watt\n",
+"N=P/p\n",
+"printf('\n The number of free electron present is %e',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Total_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.1, page 575\n",
+"clc\n",
+"r=(4**(1/3)+208**(1/3))*1.07\n",
+"printf('\n The sum of radii is %f F',r)\n",
+"e=1.60*10^-19//in coul\n",
+"z=82\n",
+"x=1.1*10^-10//coul2/nt-m2\n",
+"Vo=(2*z*e*e)/(x*r*10^-15)\n",
+"printf('\n The total energy is %e J',Vo)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: Elapsed_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.2, Page 579\n",
+"clc\n",
+"x=log(exp(.827))\n",
+"t=(log(143))/x\n",
+"printf('\n The elapsed time is %f *10^9 year',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: Life_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.4, Page 589\n",
+"clc\n",
+"// Using formula logb(m)=n\n",
+"//n=b^n\n",
+"F=10^(-5.7)\n",
+"Y=12.3 //yr\n",
+"d=365//day/yr\n",
+"h=24//hr/day\n",
+"m=60//min/hr\n",
+"s=60//sec/min\n",
+"T=(Y*d*h*m*s)/0.693\n",
+"printf('\n The life time is %e s',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.5: Value_of_beta.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.5, Page 591\n",
+"clc\n",
+"h=1.05*10^-34//j-s\n",
+"F=1.2\n",
+"T=10^3//in s\n",
+"m=.91*10^-30//in kg\n",
+"c=3*10^8//in m/s\n",
+"M=1\n",
+"beta_square=(2*%pi*%pi*%pi*(h^7))/(F*T*(m^5)*(c^4))\n",
+"beta=sqrt(beta_square)\n",
+"printf('\n The value of Beta is %e J^2*m^6',beta)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.7: Value_of_delta_and_tou.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.7, Page no 603\n",
+"clc\n",
+"E=0.129//in Mev\n",
+"x=931//uc^2\n",
+"Del_E=(E)**2/(2*x*191)\n",
+"printf('\n The value of delta E is %e ev',Del_E*10**6)\n",
+"h=6.6*10^-16//ev-sec\n",
+"T=1.4*10^-10//sec\n",
+"Tou=h/T\n",
+"printf('\n The value of Tou is %e ev',Tou)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.9: Neutron_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.9, page 607\n",
+"clc\n",
+"Z=0+1+4\n",
+"A=1+9-1\n",
+"printf('\n The value of z is %d',Z)\n",
+"printf('\n The value of A is %d',A)\n",
+"ka=50\n",
+"kb=48.1\n",
+"mB=1\n",
+"ma=1/9\n",
+"mb=1/9\n",
+"x=1/9//ma/mB\n",
+"y=1/9//mb/mB\n",
+"part1=kb*(1+x)\n",
+"part2=ka*(1-y)\n",
+"part3=(2*sqrt(ka*kb*ma*mb))\n",
+"Q=part1-part2-part3\n",
+"printf('\n The value of Q is %f Mev',Q)\n",
+"sq_kb_plus=(1.36+sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)\n",
+"sq_kb_minus=(1.36-sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)\n",
+"kb_plus=(sq_kb_plus)**2\n",
+"kb_minus=(sq_kb_minus)**2\n",
+"printf('\n The maximum neutron produced at angle 30 degree is %f Mev',kb_plus)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb
new file mode 100644
index 0000000..c1c3493
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb
@@ -0,0 +1,127 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Introduction to elementary particles"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: Kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.1, Page 643\n",
+"clc\n",
+"h=1.05*10^-34//j-s\n",
+"M=1.7*10^-27//in kg\n",
+"r=2*10^-15//in m\n",
+"K=(h**2)/(M*r*r)\n",
+"s=K* 6.24150647996E+12//converting to Mev\n",
+"K_total_cm=2*s\n",
+"k_incident=2*K_total_cm\n",
+"printf('\n The kinetic energy of incident nucleon is %d Mev',k_incident)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.3: value_of_pi.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.3, page 653\n",
+"clc\n",
+"h=1*10^-34//j-s\n",
+"r=2*10^-15//m\n",
+"c=3*10^8//m/s\n",
+"m_pi=h/(r*c)\n",
+"printf('The value of m pi is %e kg', m_pi)\n",
+"//Answer difference is because of round off"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.5: Value_of_K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.5, page no 664\n",
+"clc;\n",
+"Tz=(1-1)/2\n",
+"//For K+\n",
+"Q=1\n",
+"B=0\n",
+"S=1\n",
+"Tz=1-0.5\n",
+"printf('The value of Tz for K+ is %f \n',Tz)\n",
+"//For K-\n",
+"Q=-1\n",
+"B=0\n",
+"S=-1\n",
+"Tz=-1+0.5\n",
+"printf('The value of Tz for K- is %f\n',Tz)\n",
+"//For Ko\n",
+"Q=0\n",
+"B=0\n",
+"S=1\n",
+"Tz=-0-0.5\n",
+"printf('The value of Tz for Ko is %f \n',Tz)\n",
+"//For Ko_dash\n",
+"Tz=0+0.5\n",
+"printf('The value of Tz for Ko- is %f \n',Tz)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb
new file mode 100644
index 0000000..012a7d5
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb
@@ -0,0 +1,61 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: More elementary particles"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: Variable_values.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 18.2, Page 694\n",
+"clc\n",
+"Q=(2/3)-(1/3)-(1/3)\n",
+"B=(1/3)+(1/3)+(1/3)\n",
+"S=0+0-1\n",
+"T=(1/2)+(1/2)+0\n",
+"Tz=(1/2)-(1/2)+0\n",
+"printf('The value of Q is %f \n',Q)\n",
+"printf('The value of B is %f \n',B)\n",
+"printf('The value of S is %f \n',S)\n",
+"printf('The value of T is %f \n',T)\n",
+"printf('The value of Tz is %f \n',Tz)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb
new file mode 100644
index 0000000..3768cb0
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb
@@ -0,0 +1,215 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Photons particle like properties of radiation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Time_to_absorb_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.1, page 47\n",
+"clc\n",
+"P=1//power in j/s\n",
+"r=10^-10//Radius in m^2\n",
+"R=(P*%pi*r^2)/(4*%pi)//Rate at which energy falls in J/sec\n",
+"R_e=3.4*10^-19//in Joule, rate at energy removed\n",
+"t=R_e/R\n",
+"printf('\n Time required for energy to clear is %e sec',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Work_function_for_sodium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.2, page 49\n",
+"clc\n",
+"h=6.63*10^-34//Joule-sec\n",
+"vo=5.6*10^14\n",
+"w=h*vo\n",
+"printf('\npower is %e per sec',w)\n",
+"ev=(1/(1.6*10^-19))\n",
+"wo=w*ev\n",
+"printf('\nEnergy is %f ev',wo)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Photons_striking_metal_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.3, Page no 50\n",
+"p=1//j/s\n",
+"r=1//radius in m\n",
+"h=6.63*10^-34//Joule-sec\n",
+"c=3*10^8//m/sec\n",
+"lambda=5.89*10^-7//m\n",
+"R=p/(4*%pi*r^2)\n",
+"E=(h*c)/lambda\n",
+"Rate_R=R*(1/E)\n",
+"printf('\nRate at which photons strike unit area of place %e photons/m^2-sec',Rate_R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: X_ray_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.4, page 57\n",
+"clc\n",
+"disp('Part a')\n",
+"h=6.63*10^-34//Joule-sec\n",
+"c=3*10^8//m/sec\n",
+"m_o=9.11*10^-31//in kg\n",
+"delta_h=(h*(1-cosd(90)))/(m_o*c)\n",
+"printf('\n Compton shift is %e m',delta_h)\n",
+"disp('Part b')\n",
+"delta1=1*10^-10\n",
+"K=(h*c*delta_h)/(delta1*(delta1+delta_h))\n",
+"printf('\n X-ray beam is %e Joule',K)\n",
+"delta2=1.88*10^-12\n",
+"K=(h*c*delta_h)/(delta2*(delta2+delta_h))\n",
+"printf('\n X-ray beam is %e Joule',K)\n",
+"disp('Part c')\n",
+"E1=(h*c)/delta1\n",
+"E1_ev=(6.241509*10^18)*E1\n",
+"printf('\n X-ray energy is %f ev',E1_ev)\n",
+"E2=(h*c)/delta2\n",
+"E2_ev=(6.241509*10^18)*E2\n",
+"printf('\n X-ray energy is %f ev',E2_ev)\n",
+"Per1=(100*.295*10^3)/E1_ev\n",
+"Per2=(100*378*10^3)/E2_ev\n",
+"printf('\n Energy lost in percentage %f ',Per1)\n",
+"printf('\n Energy lost in percentage %f ',Per2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Determine_plancks_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example2.5, page 61\n",
+"clc\n",
+"e=1.6*10^-19//in coul\n",
+"v=4*10^4//in V\n",
+"lambda=3*10^-11//in m\n",
+"c=3*10^8//m/sec\n",
+"h=(e*v*lambda)/c\n",
+"printf('\n Plancks constant is %e Joule-sec',h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Energy_and_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 2.6, page 62\n",
+"clc\n",
+"e=1.6*10^-19//in coul\n",
+"B=2*10^-1//weber/m2\n",
+"r=2.5*10^-2//in m\n",
+"p=e*B*r\n",
+"printf('\n Momentum of electron %e Kg-m/sec',p)\n",
+"x=1.5//in Mev, ie c^2*p^2\n",
+"y=.51//in Mev\n",
+"E_minus=sqrt(x^2+y^2)\n",
+"E=2*E_minus//h*v\n",
+"h=6.63*10^-34//Joule-sec\n",
+"c=3*10^8//m/sec\n",
+"lambda=(h*c)/(10^6*E*1.6*10^-19)\n",
+"printf('\n Photons wavelength is %e m',lambda)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb
new file mode 100644
index 0000000..abf90fe
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb
@@ -0,0 +1,158 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: De Broglies postulate wave like behaviour of particles"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Find_de_broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.1, page 74\n",
+"clc\n",
+"m=1//in kg\n",
+"h=6.63*10^-34//Joule-sec\n",
+"v=10//in m/sec\n",
+"lambda=h/(m*v)\n",
+"disp('part a')\n",
+"printf('\n De broglie wavelength for v=10m/sec %e m',lambda)\n",
+"disp('part b')\n",
+"//For KE=100ev\n",
+"m=9.1*10^-31\n",
+"K=100*1.6*10^-19//in Joules\n",
+"lambda=h/sqrt(2*m*K)\n",
+"printf('\n De broglie wavelength is %e m',lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Mass_of_Helium_and_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.2, Page 80\n",
+"clc\n",
+"h=6.63*10^-34//Joule-sec\n",
+"v=1.635*10^3//m/s\n",
+"M=4*10^-3//in kg/mole\n",
+"No=6.02*10^23//atom/mole\n",
+"m=M/No\n",
+"printf('\n Mass of Helium atom is %e kg',m)\n",
+"lambda=h/(m*v)\n",
+"printf('\n De broglie wavelength is %e m',lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Speed_of_the_bullet.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.3, Page 87\n",
+"clc\n",
+"//For electron\n",
+"m1=9.1*10^-31//in kg\n",
+"v=300//in m/s\n",
+"h=6.6*10^-34//in joule-sec\n",
+"p1=m1*v//delta v\n",
+"delta_p1=.0001*p1//m*delata_v in kg-m/sec\n",
+"delta_x1=(h)/(4*%pi*delta_p1)\n",
+"printf('\n Position of electron %e m',delta_x1)\n",
+"//For bullet\n",
+"m2=0.05//in kg\n",
+"p2=m2*v\n",
+"delta_p2=0.0001*p2//in kg-m/s\n",
+"delta_x2=(h)/(4*%pi*delta_p2)\n",
+"printf('\n Position of bullet %e m',delta_x2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Fractional_width_and_uncertainity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.5, page no 94\n",
+"clc\n",
+"disp('part b')\n",
+"lambda=5890*10^-8//in cm\n",
+"c=3*10^10//in cm/s\n",
+"v=c/lambda\n",
+"del_v=8*10^6//per s\n",
+"x=del_v/v\n",
+"h=4.14*10^-15//in ev-sec\n",
+"printf('\n Fractional width of either line(del_v/v) %e ',x)\n",
+"//Calculate uncertainty\n",
+"disp('part c')\n",
+"del_t=10^-8\n",
+"del_e=(h)/(4*%pi*del_t)\n",
+"printf('\n Uncertainty is %e ev ',del_e)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb
new file mode 100644
index 0000000..0c4b775
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb
@@ -0,0 +1,177 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Bohrs Model of the Atom"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Double_nucleus_mass_effect.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.10, Page 125\n",
+"clc\n",
+"//For Hydrogen atom\n",
+"R_o=109737//in cm\n",
+"m=1\n",
+"M=1836\n",
+"RH=(R_o)/(1+(m/M))\n",
+"printf('\n Spectrum line for Hydrogen occur at %f /cm ',RH)\n",
+"//For Deuterium atom\n",
+"R_o=109737//in cm\n",
+"m=1\n",
+"M=2*1836\n",
+"RD=(R_o)/(1+(m/M))\n",
+"printf('\n Spectrum line for Deuterium occur at %f /cm ',RD)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Calculating_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.1, Page 105\n",
+"clc\n",
+"disp('Part b')\n",
+"rho=9*10^9//in nt-m2/coul2\n",
+"e=1.6*10^-19//coul\n",
+"r=1*10^-10//in m\n",
+"k=(rho*e^2)/(r^3)//nt/m\n",
+"m=9.11*10^-31//in kg\n",
+"c=3*10^8//in m/s\n",
+"v=(1/(2*%pi))*sqrt(k/m)\n",
+"lambda=c/v\n",
+"printf('\n The wavelength is %e m ',lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Average_deflectio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.2, page 107\n",
+"clc\n",
+"disp('Part a')\n",
+"N=10^4//in rad, Number of atoms tarversed\n",
+"theta=(2*10^-2)/sqrt(N)\n",
+"printf('\n Average deflection %e rad ',theta)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Binding_energy_of_hydrogen_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.6, Page 120\n",
+"clc\n",
+"rho=9*10^9//in nt-m2/coul2 \n",
+"m=9.11*10^-31//in kg\n",
+"e=1.6*10^-19//coul\n",
+"h=1.05*10^-34//in j-sec\n",
+"E=-(rho*m*e^4)/(2*h^2)\n",
+"printf('\n Binding energy is %e Joule ',E)\n",
+"//Answer given in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Muon_nucleus_seperation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.9, page 124\n",
+"clc\n",
+"disp('Part a')\n",
+"mu=207//207*me\n",
+"M=1836//183*me\n",
+"u=(mu*M)/(mu+M)\n",
+"D=(1/u)*5.3*10^-11\n",
+"printf('\nMuon nucleus seperation is %e m ',D)\n",
+"disp('Part b')\n",
+"E=-u*13.6\n",
+"printf('\n Binding energy is %f ev ',E)\n",
+"disp('Part c')\n",
+"R=109737//in cm\n",
+"lambda=(1/u)*(1/0.75)*(1/R)\n",
+"printf('\n Wavelength is %e cm ',lambda)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb
new file mode 100644
index 0000000..456670a
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb
@@ -0,0 +1,180 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Solutions of time independent schroedinge equations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Kinetic_energy_and_penetration_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.1, Page 208\n",
+"clc\n",
+"m=4*10^-14//in kg\n",
+"v=10^-2//in m/s\n",
+"KE=(0.5*m*v^2)\n",
+"h=10^-34\n",
+"printf('\n Kinetic energy(Vo-E) at %e Joule',KE)\n",
+"delta_x=(h)/sqrt(2*m*KE)\n",
+"printf('\n Value of penetration distance is %e m ',delta_x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Penetration_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.2, page 210\n",
+"clc\n",
+"//KE=4ev, convert to joule\n",
+"KE=4*1.6*10^-19//in j\n",
+"m=9*10^-31//in kg\n",
+"h=10^-34//in j-s\n",
+"delta_x=(h)/sqrt(2*m*KE)\n",
+"printf('\n Value of penetration distance is %e m ',delta_x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Probablity_of_neutron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.3, page 216\n",
+"clc\n",
+"v=50//in Mev\n",
+"E=55//in Mev\n",
+"x=sqrt(1-(v/E))\n",
+"//disp(x)\n",
+"R=((1-x)/(1+x))^2\n",
+"printf('\n Probablity of neutron will be reflected is %f ',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Calculation_of_number.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.4, page 220\n",
+"clc\n",
+"m=9*10^-31//in kg\n",
+"h=10^-34//in j-s\n",
+"V=10//in ev\n",
+"a=1.8*10^-10//in m\n",
+"//convert v to joule\n",
+"Vo=V*1.6*10^-19//in Joule\n",
+"N=(2*m*Vo*a^2)/(h^2)\n",
+"printf('\n Numbers given is %d ',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Value_of_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.6, page 237\n",
+"clc\n",
+"h=10^-34//in j-s\n",
+"m=10^-30//in kg\n",
+"a=10^-14//in m\n",
+"c=3*10^8//in m/s\n",
+"E=((%pi*h)^2)/(2*m*a*a)\n",
+"printf('\n Energy is %e J ',E)\n",
+"//convert to ev\n",
+"e=E/(1.6*10^-19)\n",
+"printf('\n Energy is %e ev ',e)\n",
+"//Answer difference is due to round off\n",
+"E1=(%pi*c*h)/a\n",
+"printf('\n Zero level Energy is %e J ',E1)\n",
+"e1=E1/(1.6*10^-19)\n",
+"printf('\n Zero level Energy is %e ev ',e1)\n",
+"//Answer difference is due to round off\n",
+"//when A=100\n",
+"A=100\n",
+"r=10^-14//in m\n",
+"x=10^-10//in coul2/nt-m2\n",
+"ec=1.6*10^-19//in c\n",
+"Q=(-(A*ec*ec)/(x*r))*(1/ec)\n",
+"printf('\n Typical value Energy is %e ev ',Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb
new file mode 100644
index 0000000..4965055
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb
@@ -0,0 +1,135 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Magnetic dipoles moments spin and transition rates"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Energy_supplied.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.1, page 287\n",
+"clc\n",
+"u=0.927*10^-23//amp-m2\n",
+"B=1//in J/amp-m2\n",
+"E=2*u*B\n",
+"printf('\n Energy supplied to the dipole is %e J ',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Transverse_deflection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.2, page 293\n",
+"//From previous derivation of formula\n",
+"clc\n",
+"delb_by_delz=10//tesla/m\n",
+"u=0.927*10^-23//amp-m2\n",
+"x=1///in m\n",
+"k=1.38*10^-23//j/k\n",
+"T=400//in K\n",
+"Z=(delb_by_delz*u*x^2)/(8*k*T)\n",
+"printf('\n Transverse deflection that occur is + %e m or - %e m ',Z,Z)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Energy_deflection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.3, page 298\n",
+"clc\n",
+"m=9*10^-31//in kg\n",
+"e=1.6*10^-19//in coul\n",
+"c=3*10^8//in m/s2\n",
+"four_pi_epsilon=1.1*10^-34//in j-sec\n",
+"constant=9*10^9//nt-n2/coul2\n",
+"delta_E=(constant^4*m*e^8)/(54*c*c*(four_pi_epsilon)^4)\n",
+"printf('\n The energy deflection is %e Joule',delta_E)\n",
+"//Answer given in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Deflectio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.4, page 299\n",
+"clc\n",
+"u_s=10^-23//amp-m2\n",
+"u_b=10^-23//amp-m2\n",
+"B=u_s/u_b\n",
+"printf('\n The deflection is %d Tesla ',B)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb
new file mode 100644
index 0000000..50ba1fc
--- /dev/null
+++ b/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb
@@ -0,0 +1,142 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Multi electron atoms ground satate and xray excitation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Electric_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.5, page 343\n",
+"clc\n",
+"Z=[16 8 3]\n",
+"//Argon numbers\n",
+"for n=1:1:3\n",
+"E=(-((Z(n))/n)**2)*13.6\n",
+"printf('\n The electric field for n=%d is %f ev',n, E)\n",
+"disp(E)\n",
+"end\n",
+"//Answer differnce is because of round off"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: ionization_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 9.7, page 355\n",
+"clc\n",
+"Z=92\n",
+"n=2\n",
+"E=((Z/n)**2)*13.6//in ev\n",
+"printf('\n The ionization energy is %e ev',E)\n",
+"//Answer difference is because of round off"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: Calculating_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 9.8, page 358\n",
+"clc\n",
+"//Energy of K shell\n",
+"z=26\n",
+"k=2\n",
+"E_k=13.6*(z-k)^2//in ev\n",
+"v=7.8*10^3//in V\n",
+"//for L shell\n",
+"l=10\n",
+"E_l=13.6*(z-l)^2//in ev\n",
+"h=E_k-E_l\n",
+"R_m=1.1*10^7\n",
+"x=R_m*(z-2)^2//x=1/lamda\n",
+"lambda=1/x\n",
+"printf('\n The wavelength is %e m',lambda)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: Energy_of_K_shell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.9, page 360\n",
+"//Energy of K shell\n",
+"clc\n",
+"z=82\n",
+"k=2\n",
+"E_k=13.6*(z-k)^2//in ev\n",
+"printf('\n The energy of K shell is %e ev',E_k)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}