diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb')
-rw-r--r-- | Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb | 442 |
1 files changed, 442 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb new file mode 100644 index 0000000..8dc46a7 --- /dev/null +++ b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb @@ -0,0 +1,442 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Heat Exchangers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Heat_Transfer_Surface_Area_Calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.1 ')\n", +"\n", +"//Outer dia in m\n", +"d = 0.0254;\n", +"//mass flow rate of hot fluid in kg/s\n", +"mh = 6.93;\n", +"//Specific heat of hot fluid n J/kgK\n", +"ch = 3810;\n", +"//Inlet temperature of hot fluid in degree C\n", +"Thin = 65.6;\n", +"//Outlet temperature of hot fluid in degree C\n", +"Thout = 39.4;\n", +"//mass flow rate of cold fluid in kg/s\n", +"mc = 6.3;\n", +"//Specific heat of cold fluid n J/kgK\n", +"cc = 4187;\n", +"//Inlet temperature of cold fluid in degree C\n", +"Tcin = 10;\n", +"//Overall heat transfer coefficient in W/m2K\n", +"U = 568;\n", +"\n", +"//Using energy balance, outlet temp. of cold fluid in degree C\n", +"Tcout = Tcin+((mh*ch)*(Thin-Thout))/(mc*cc);\n", +"\n", +"//The rate of heat flow in W\n", +"q = (mh*ch)*(Thin-Thout);\n", +"\n", +"disp('Parallel-flow tube and shell')\n", +"//From Eq. (8.18) the LMTD for parallel flow\n", +"//Temperature difference at inlet in degree K\n", +"deltaTa = Thin-Tcin;\n", +"//Temperature difference at outlet in degree K\n", +"deltaTb = Thout-Tcout;\n", +"//LMTD in degree K\n", +"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n", +"\n", +"//From Eq. (8.16) \n", +"disp('Heat transfer surface area in m2 is')\n", +"//Heat transfer surface area in m2\n", +"A = q/(U*LMTD)\n", +"\n", +"disp('Counterflow tube and shell')\n", +"//LMTD in degree K\n", +"LMTD = 29.4;\n", +"\n", +"disp('Heat transfer surface area in m2 is')\n", +"//Heat transfer surface area in m2\n", +"A = q/(U*LMTD)\n", +"\n", +"A1 = A;//To be used further as a copy of this area\n", +"\n", +"disp('Counterflow exchanger with 2 shell passes and 72 tube passes')\n", +"\n", +"//Correction factor found from Fig. 8.15 to the mean temperature for counterflow\n", +"P = (Tcout-Tcin)/(Thin-Tcin);\n", +"//Heat capacity ratio\n", +"Z = (mh*ch)/(mc*cc);\n", +"//From the chart of Fig. 8.15, F= 0.97\n", +"F = 0.97; //F-Factor\n", +"disp('Heat transfer surface area in m2 is')\n", +"//Heat transfer surface area in m2 is\n", +"A = A1/F\n", +"\n", +"disp('Cross-flow, with one tube pass and one shell pass, shell-side fluid mixed')\n", +"//Using same procedure, we get from charts\n", +"F = 0.88; //F-Factor\n", +"disp('Heat transfer surface area in m2 is')\n", +"//Heat transfer surface area in m2 is\n", +"A = A1/F" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Oil_Water_Heat_Exchanger_Problem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.2 ')\n", +"\n", +"//mass flow rate of hot fluid in kg/s\n", +"mh = 1;\n", +"//Specific heat of hot fluid n J/kgK\n", +"ch = 2100;\n", +"//Inlet temperature of hot fluid in degree C\n", +"Thin = 340;\n", +"//Outlet temperature of hot fluid in degree C\n", +"Thout = 310;\n", +"//Specific heat of cold fluid n J/kgK\n", +"cc = 4187;\n", +"//Inlet temperature of cold fluid in degree C\n", +"Tcin = 290;\n", +"//Outlet temperature of cold fluid in degree C\n", +"Tcout = 300;\n", +"\n", +"//The heat capacity rate of the water in J/kgK is, from Eq. (8.14)\n", +"cc = ch*((Thin-Thout)/(Tcout-Tcin));\n", +"\n", +"//Temperature ratio P and Z is, from Eq. (8.20)\n", +"P = (Thin-Thout)/(Thin-Tcin); // P Temperature ratio\n", +"Z = (Tcout-Tcin)/(Thin-Thout); // Z Temperature ratio\n", +"\n", +"//From Fig. 8.14, F0.94 and the mean temperature difference in degree K is\n", +"//F Value\n", +"F = 0.94;\n", +"//Temperature difference at inlet in degree K\n", +"deltaTa = Thin-Tcout;\n", +"//Temperature difference at outlet in degree K\n", +"deltaTb = Thout-Tcin;\n", +"//LMTD in degree K\n", +"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n", +"//Mean temperature difference in degree K\n", +"deltaTmean = F*LMTD;\n", +"\n", +"//From Eq. (8.17) the overall conductance in W/K is\n", +"UA = ((mh*ch)*(Thin-Thout))/deltaTmean;\n", +"\n", +"//With reference to the new conditions and Eq. 6.62\n", +"//Conductance in W/K\n", +"UA = UA*((3/4)^0.8);\n", +"//Number of transfer units(NTU) value\n", +"NTU = UA/(((3/4)*mh)*ch);\n", +"//Heat capacity ratio\n", +"K = (((3/4)*mh)*ch)/cc;\n", +"\n", +"//From Fig. 8.20 the effectiveness is equal to 0.61\n", +"//Effectiveness\n", +"E = 0.61;\n", +"//New inlet temperaturre of oil in degree K\n", +"Toilin = 370;\n", +"//From eq. 8.22a\n", +"disp('Outlet temperature of oil in degree K')\n", +"//Outlet temperature of oil in degree K\n", +"Toilout = Toilin-E*(Toilin-Tcin)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Heating_of_Air_From_Gases.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.3 ')\n", +"\n", +"//Airflow rate in kg/s\n", +"mair = 0.75;\n", +"//Inlet temperature of air in degree K\n", +"Tairin = 290;\n", +"//Hot gas flow rate in kg/s\n", +"mgas = 0.6;\n", +"//Inlet temperature of hot gases in degree K\n", +"Tgasin = 1150;\n", +"//wetted perimeter on air side in m\n", +"Pa = 0.703;\n", +"//wetted perimeter on gas side in m\n", +"Pg = 0.416;\n", +"//cross-sectional area of gas passage (per passage) in m2\n", +"Ag = 0.0016;\n", +"//cross-sectional area of air passage (per passage) in m2\n", +"Aa = 0.002275;\n", +"//heat transfer surface area in m2\n", +"A = 2.52;\n", +"\n", +"//Given that unit is of the cross-flow type, with both fluids unmixed.\n", +"\n", +"//length of air duct in m\n", +"La = 0.178;\n", +"//hydraulic diameter of air duct in m\n", +"Dha = (4*Aa)/Pa;\n", +"//length of gas duct in m\n", +"Lg = 0.343;\n", +"//hydraulic diameter of gas duct in m\n", +"Dhg = (4*Ag)/Pg;\n", +"\n", +"//The heat transfer coefficients can be evaluated from Eq. (6.63) for flow\n", +"//in ducts.\n", +"//Heat transfer coefficient for air in W/m2K\n", +"ha = La/Dha;\n", +"//Heat transfer coefficient for gas in W/m2K\n", +"hg = Lg/Dhg;\n", +"\n", +"//Assuming the average air-side bulk temperature to be 573 K and the average\n", +"//gas-side bulk temperature to be 973 K, the properties at those temperatures are, from Appendix 2, Table 28.\n", +"\n", +"//Specific heat of air in J/kgK\n", +"cair = 1047;\n", +"//Thermal conductivity of air in W/mK\n", +"kair = 0.0429;\n", +"//Dynamic viscosity of air in Ns/m2\n", +"muair = 0.0000293;\n", +"//Prandtl number of air\n", +"Prair = 0.71;\n", +"\n", +"//Specific heat of hot gas in J/kgK\n", +"cgas = 1101;\n", +"//Thermal conductivity of hot gas in W/mK\n", +"kgas = 0.0623;\n", +"//Dynamic viscosity of hot gas in Ns/m2\n", +"mugas = 0.00004085;\n", +"//Prandtl number of hot gas\n", +"Prgas = 0.73;\n", +"\n", +"//The mass flow rates per unit area in kg/m2s\n", +"//mass flow rate of air in kg/m2s\n", +"mdotair = mair/(19*Aa);\n", +"//mass flow rate of gas in kg/m2s\n", +"mdotgas = mgas/(18*Ag);\n", +"\n", +"//The Reynolds numbers are\n", +"//Reynolds number for air\n", +"Reair = (mdotair*Dha)/muair;\n", +"//Reynolds number for gas\n", +"Regas = (mdotgas*Dhg)/mugas;\n", +"\n", +"//Using Eq. (6.63), the average heat transfer coefficients in W/m2K\n", +"hair = (((0.023*kair)*(Reair^0.8))*(Prair^0.4))/Dha;\n", +"\n", +"//Since La/DHa=13.8, we must correct this heat transfer coefficient for\n", +"//entrance effects, per Eq. (6.68). The correction factor is 1.377.\n", +"//Corrected heat transfer coefficient of air in W/m2K\n", +"hair = 1.377*hair;\n", +"\n", +"//Similarly for hot gas\n", +"//Heat transfer coefficient in W/m2K\n", +"hgas = (((0.023*kgas)*(Regas^0.8))*(Prgas^0.4))/Dhg;\n", +"//Correction factor=1.27;\n", +"//Corrected heat transfer coefficient of gas in W/m2K\n", +"hgas = 1.27*hgas;\n", +"\n", +"//Overall conductance in W/K\n", +"UA = 1/(1/(hair*A)+1/(hgas*A));\n", +"\n", +"//The number of transfer units, based on the gas, which has the smaller heat capacity rate\n", +"NTU = UA/(mgas*cgas);\n", +"\n", +"//The heat capacity-rate ratio\n", +"Z = (mgas*cgas)/(mair*cair);\n", +"\n", +"//and from Fig. 8.21, the effectiveness is approximately 0.13.\n", +"//Effectiveness\n", +"E = 0.13;\n", +"\n", +"disp('Gas outlet temperature in degree K')\n", +"//Gas outlet temperature in degree K\n", +"Tgasout = Tgasin-E*(Tgasin-Tairin)\n", +"\n", +"disp('Air outlet temperature in degree K')\n", +"//Gas outlet temperature in degree K\n", +"Tairout = Tairin+(Z*E)*(Tgasin-Tairin)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Heating_Seawater_From_Condenser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.4 ')\n", +"\n", +"//Pressure of steam in inches of Hg\n", +"P = 4;\n", +"//At this pressure, temperture of condensing steam in degree F\n", +"Thin = 125.4;\n", +"\n", +"//Flow rate of seawater in lb/s\n", +"mw = 25000;\n", +"//Specific heat of water in Btu/lb F\n", +"c = 0.95;\n", +"//Inlet and outlet temperature of seawater in degree F\n", +"Tcin = 60;\n", +"Tcout = 110;\n", +"//Heat transfer coefficient of steam in Btu/h ft2 F\n", +"hsteam = 600;\n", +"//Heat transfer coefficient of water in Btu/h ft2 F\n", +"hwater = 300;\n", +"//Outer diameter in inches\n", +"OD = 1.125;\n", +"//Inner diameters in inches\n", +"ID = 0.995;\n", +"\n", +"//required effectiveness of the exchanger\n", +"E = (Tcout-Tcin)/(Thin-Tcin);\n", +"\n", +"//For a condenser, Cmin/Cmax=0, and from Fig. 8.20, NTU =1.4.\n", +"NTU = 1.4;\n", +"\n", +"//The fouling factors from Table 8.2 are 0.0005 h ft2°F/Btu for both sides of the tubes.\n", +"//F-Factor\n", +"F = 0.0005;\n", +"\n", +"//The overall design heat-transfer coefficient in Btu/h ft2 F per unit outside area of tube is, from Eq. (8.6)\n", +"U = 1/(1/hsteam+F+(OD/((2*12)*60))*log(OD/ID)+(F*OD)/ID+OD/(hwater*ID));\n", +"\n", +"//The total area A is 20*pi*D*L, and since U*A/Cmin=1.4\n", +"\n", +"disp('The length of the tube in ft is')\n", +"//The length of the tube in ft\n", +"L = (((1.4*mw)*c)*12)/(((Tcin*%pi)*OD)*U)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Theoretical_Problem.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Display mode\n", +"mode(0);\n", +"\n", +"// Display warning for floating point exception\n", +"ieee(1);\n", +"\n", +"clc;\n", +"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ')\n", +"\n", +"disp('There is no computations in this example.')\n", +"disp('It is theoretical')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |