summaryrefslogtreecommitdiff
path: root/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb')
-rw-r--r--Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb442
1 files changed, 442 insertions, 0 deletions
diff --git a/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
new file mode 100644
index 0000000..8dc46a7
--- /dev/null
+++ b/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
@@ -0,0 +1,442 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Heat Exchangers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Heat_Transfer_Surface_Area_Calculations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.1 ')\n",
+"\n",
+"//Outer dia in m\n",
+"d = 0.0254;\n",
+"//mass flow rate of hot fluid in kg/s\n",
+"mh = 6.93;\n",
+"//Specific heat of hot fluid n J/kgK\n",
+"ch = 3810;\n",
+"//Inlet temperature of hot fluid in degree C\n",
+"Thin = 65.6;\n",
+"//Outlet temperature of hot fluid in degree C\n",
+"Thout = 39.4;\n",
+"//mass flow rate of cold fluid in kg/s\n",
+"mc = 6.3;\n",
+"//Specific heat of cold fluid n J/kgK\n",
+"cc = 4187;\n",
+"//Inlet temperature of cold fluid in degree C\n",
+"Tcin = 10;\n",
+"//Overall heat transfer coefficient in W/m2K\n",
+"U = 568;\n",
+"\n",
+"//Using energy balance, outlet temp. of cold fluid in degree C\n",
+"Tcout = Tcin+((mh*ch)*(Thin-Thout))/(mc*cc);\n",
+"\n",
+"//The rate of heat flow in W\n",
+"q = (mh*ch)*(Thin-Thout);\n",
+"\n",
+"disp('Parallel-flow tube and shell')\n",
+"//From Eq. (8.18) the LMTD for parallel flow\n",
+"//Temperature difference at inlet in degree K\n",
+"deltaTa = Thin-Tcin;\n",
+"//Temperature difference at outlet in degree K\n",
+"deltaTb = Thout-Tcout;\n",
+"//LMTD in degree K\n",
+"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
+"\n",
+"//From Eq. (8.16) \n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2\n",
+"A = q/(U*LMTD)\n",
+"\n",
+"disp('Counterflow tube and shell')\n",
+"//LMTD in degree K\n",
+"LMTD = 29.4;\n",
+"\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2\n",
+"A = q/(U*LMTD)\n",
+"\n",
+"A1 = A;//To be used further as a copy of this area\n",
+"\n",
+"disp('Counterflow exchanger with 2 shell passes and 72 tube passes')\n",
+"\n",
+"//Correction factor found from Fig. 8.15 to the mean temperature for counterflow\n",
+"P = (Tcout-Tcin)/(Thin-Tcin);\n",
+"//Heat capacity ratio\n",
+"Z = (mh*ch)/(mc*cc);\n",
+"//From the chart of Fig. 8.15, F= 0.97\n",
+"F = 0.97; //F-Factor\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2 is\n",
+"A = A1/F\n",
+"\n",
+"disp('Cross-flow, with one tube pass and one shell pass, shell-side fluid mixed')\n",
+"//Using same procedure, we get from charts\n",
+"F = 0.88; //F-Factor\n",
+"disp('Heat transfer surface area in m2 is')\n",
+"//Heat transfer surface area in m2 is\n",
+"A = A1/F"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Oil_Water_Heat_Exchanger_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.2 ')\n",
+"\n",
+"//mass flow rate of hot fluid in kg/s\n",
+"mh = 1;\n",
+"//Specific heat of hot fluid n J/kgK\n",
+"ch = 2100;\n",
+"//Inlet temperature of hot fluid in degree C\n",
+"Thin = 340;\n",
+"//Outlet temperature of hot fluid in degree C\n",
+"Thout = 310;\n",
+"//Specific heat of cold fluid n J/kgK\n",
+"cc = 4187;\n",
+"//Inlet temperature of cold fluid in degree C\n",
+"Tcin = 290;\n",
+"//Outlet temperature of cold fluid in degree C\n",
+"Tcout = 300;\n",
+"\n",
+"//The heat capacity rate of the water in J/kgK is, from Eq. (8.14)\n",
+"cc = ch*((Thin-Thout)/(Tcout-Tcin));\n",
+"\n",
+"//Temperature ratio P and Z is, from Eq. (8.20)\n",
+"P = (Thin-Thout)/(Thin-Tcin); // P Temperature ratio\n",
+"Z = (Tcout-Tcin)/(Thin-Thout); // Z Temperature ratio\n",
+"\n",
+"//From Fig. 8.14, F0.94 and the mean temperature difference in degree K is\n",
+"//F Value\n",
+"F = 0.94;\n",
+"//Temperature difference at inlet in degree K\n",
+"deltaTa = Thin-Tcout;\n",
+"//Temperature difference at outlet in degree K\n",
+"deltaTb = Thout-Tcin;\n",
+"//LMTD in degree K\n",
+"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
+"//Mean temperature difference in degree K\n",
+"deltaTmean = F*LMTD;\n",
+"\n",
+"//From Eq. (8.17) the overall conductance in W/K is\n",
+"UA = ((mh*ch)*(Thin-Thout))/deltaTmean;\n",
+"\n",
+"//With reference to the new conditions and Eq. 6.62\n",
+"//Conductance in W/K\n",
+"UA = UA*((3/4)^0.8);\n",
+"//Number of transfer units(NTU) value\n",
+"NTU = UA/(((3/4)*mh)*ch);\n",
+"//Heat capacity ratio\n",
+"K = (((3/4)*mh)*ch)/cc;\n",
+"\n",
+"//From Fig. 8.20 the effectiveness is equal to 0.61\n",
+"//Effectiveness\n",
+"E = 0.61;\n",
+"//New inlet temperaturre of oil in degree K\n",
+"Toilin = 370;\n",
+"//From eq. 8.22a\n",
+"disp('Outlet temperature of oil in degree K')\n",
+"//Outlet temperature of oil in degree K\n",
+"Toilout = Toilin-E*(Toilin-Tcin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Heating_of_Air_From_Gases.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.3 ')\n",
+"\n",
+"//Airflow rate in kg/s\n",
+"mair = 0.75;\n",
+"//Inlet temperature of air in degree K\n",
+"Tairin = 290;\n",
+"//Hot gas flow rate in kg/s\n",
+"mgas = 0.6;\n",
+"//Inlet temperature of hot gases in degree K\n",
+"Tgasin = 1150;\n",
+"//wetted perimeter on air side in m\n",
+"Pa = 0.703;\n",
+"//wetted perimeter on gas side in m\n",
+"Pg = 0.416;\n",
+"//cross-sectional area of gas passage (per passage) in m2\n",
+"Ag = 0.0016;\n",
+"//cross-sectional area of air passage (per passage) in m2\n",
+"Aa = 0.002275;\n",
+"//heat transfer surface area in m2\n",
+"A = 2.52;\n",
+"\n",
+"//Given that unit is of the cross-flow type, with both fluids unmixed.\n",
+"\n",
+"//length of air duct in m\n",
+"La = 0.178;\n",
+"//hydraulic diameter of air duct in m\n",
+"Dha = (4*Aa)/Pa;\n",
+"//length of gas duct in m\n",
+"Lg = 0.343;\n",
+"//hydraulic diameter of gas duct in m\n",
+"Dhg = (4*Ag)/Pg;\n",
+"\n",
+"//The heat transfer coefficients can be evaluated from Eq. (6.63) for flow\n",
+"//in ducts.\n",
+"//Heat transfer coefficient for air in W/m2K\n",
+"ha = La/Dha;\n",
+"//Heat transfer coefficient for gas in W/m2K\n",
+"hg = Lg/Dhg;\n",
+"\n",
+"//Assuming the average air-side bulk temperature to be 573 K and the average\n",
+"//gas-side bulk temperature to be 973 K, the properties at those temperatures are, from Appendix 2, Table 28.\n",
+"\n",
+"//Specific heat of air in J/kgK\n",
+"cair = 1047;\n",
+"//Thermal conductivity of air in W/mK\n",
+"kair = 0.0429;\n",
+"//Dynamic viscosity of air in Ns/m2\n",
+"muair = 0.0000293;\n",
+"//Prandtl number of air\n",
+"Prair = 0.71;\n",
+"\n",
+"//Specific heat of hot gas in J/kgK\n",
+"cgas = 1101;\n",
+"//Thermal conductivity of hot gas in W/mK\n",
+"kgas = 0.0623;\n",
+"//Dynamic viscosity of hot gas in Ns/m2\n",
+"mugas = 0.00004085;\n",
+"//Prandtl number of hot gas\n",
+"Prgas = 0.73;\n",
+"\n",
+"//The mass flow rates per unit area in kg/m2s\n",
+"//mass flow rate of air in kg/m2s\n",
+"mdotair = mair/(19*Aa);\n",
+"//mass flow rate of gas in kg/m2s\n",
+"mdotgas = mgas/(18*Ag);\n",
+"\n",
+"//The Reynolds numbers are\n",
+"//Reynolds number for air\n",
+"Reair = (mdotair*Dha)/muair;\n",
+"//Reynolds number for gas\n",
+"Regas = (mdotgas*Dhg)/mugas;\n",
+"\n",
+"//Using Eq. (6.63), the average heat transfer coefficients in W/m2K\n",
+"hair = (((0.023*kair)*(Reair^0.8))*(Prair^0.4))/Dha;\n",
+"\n",
+"//Since La/DHa=13.8, we must correct this heat transfer coefficient for\n",
+"//entrance effects, per Eq. (6.68). The correction factor is 1.377.\n",
+"//Corrected heat transfer coefficient of air in W/m2K\n",
+"hair = 1.377*hair;\n",
+"\n",
+"//Similarly for hot gas\n",
+"//Heat transfer coefficient in W/m2K\n",
+"hgas = (((0.023*kgas)*(Regas^0.8))*(Prgas^0.4))/Dhg;\n",
+"//Correction factor=1.27;\n",
+"//Corrected heat transfer coefficient of gas in W/m2K\n",
+"hgas = 1.27*hgas;\n",
+"\n",
+"//Overall conductance in W/K\n",
+"UA = 1/(1/(hair*A)+1/(hgas*A));\n",
+"\n",
+"//The number of transfer units, based on the gas, which has the smaller heat capacity rate\n",
+"NTU = UA/(mgas*cgas);\n",
+"\n",
+"//The heat capacity-rate ratio\n",
+"Z = (mgas*cgas)/(mair*cair);\n",
+"\n",
+"//and from Fig. 8.21, the effectiveness is approximately 0.13.\n",
+"//Effectiveness\n",
+"E = 0.13;\n",
+"\n",
+"disp('Gas outlet temperature in degree K')\n",
+"//Gas outlet temperature in degree K\n",
+"Tgasout = Tgasin-E*(Tgasin-Tairin)\n",
+"\n",
+"disp('Air outlet temperature in degree K')\n",
+"//Gas outlet temperature in degree K\n",
+"Tairout = Tairin+(Z*E)*(Tgasin-Tairin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Heating_Seawater_From_Condenser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.4 ')\n",
+"\n",
+"//Pressure of steam in inches of Hg\n",
+"P = 4;\n",
+"//At this pressure, temperture of condensing steam in degree F\n",
+"Thin = 125.4;\n",
+"\n",
+"//Flow rate of seawater in lb/s\n",
+"mw = 25000;\n",
+"//Specific heat of water in Btu/lb F\n",
+"c = 0.95;\n",
+"//Inlet and outlet temperature of seawater in degree F\n",
+"Tcin = 60;\n",
+"Tcout = 110;\n",
+"//Heat transfer coefficient of steam in Btu/h ft2 F\n",
+"hsteam = 600;\n",
+"//Heat transfer coefficient of water in Btu/h ft2 F\n",
+"hwater = 300;\n",
+"//Outer diameter in inches\n",
+"OD = 1.125;\n",
+"//Inner diameters in inches\n",
+"ID = 0.995;\n",
+"\n",
+"//required effectiveness of the exchanger\n",
+"E = (Tcout-Tcin)/(Thin-Tcin);\n",
+"\n",
+"//For a condenser, Cmin/Cmax=0, and from Fig. 8.20, NTU =1.4.\n",
+"NTU = 1.4;\n",
+"\n",
+"//The fouling factors from Table 8.2 are 0.0005 h ft2°F/Btu for both sides of the tubes.\n",
+"//F-Factor\n",
+"F = 0.0005;\n",
+"\n",
+"//The overall design heat-transfer coefficient in Btu/h ft2 F per unit outside area of tube is, from Eq. (8.6)\n",
+"U = 1/(1/hsteam+F+(OD/((2*12)*60))*log(OD/ID)+(F*OD)/ID+OD/(hwater*ID));\n",
+"\n",
+"//The total area A is 20*pi*D*L, and since U*A/Cmin=1.4\n",
+"\n",
+"disp('The length of the tube in ft is')\n",
+"//The length of the tube in ft\n",
+"L = (((1.4*mw)*c)*12)/(((Tcin*%pi)*OD)*U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Theoretical_Problem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Display mode\n",
+"mode(0);\n",
+"\n",
+"// Display warning for floating point exception\n",
+"ieee(1);\n",
+"\n",
+"clc;\n",
+"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ')\n",
+"\n",
+"disp('There is no computations in this example.')\n",
+"disp('It is theoretical')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}