diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb')
-rw-r--r-- | Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb | 350 |
1 files changed, 350 insertions, 0 deletions
diff --git a/Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb b/Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb new file mode 100644 index 0000000..9da380b --- /dev/null +++ b/Principles_Of_Geotechnical_Engineering_by_B_M_Das/13-Lateral_Earth_Pressure.ipynb @@ -0,0 +1,350 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Lateral Earth Pressure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.10: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"H=28\n", +"C=210\n", +"b=10\n", +"G=118\n", +"c=20\n", +"kh=0.1\n", +"Ka=tand(45-c/2)\n", +"zo=2*C/(G*(Ka))\n", +"n=zo/(H-zo)\n", +"Nac=1.60\n", +"Nav=0.375\n", +"L=1.17\n", +"Pae= G*(H-zo)^2*(L*Nav)-C*(H-zo)*Nac\n", +"printf('The magnitude of the active force, Pae = %f lb/ft',Pae)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"OCR=2\n", +"a=30\n", +"Ko=(1-sind(a))*(OCR)^sind(a)\n", +"//at z=0\n", +"To1=0\n", +"Th1=0\n", +"u1=0\n", +"//at z=10\n", +"To2=10*100\n", +"Th2=Ko*To2\n", +"u2=0\n", +"//at z=15\n", +"To3= 10*100+5*(122.4-62.4)\n", +"Th3=Ko*To3\n", +"u3=5*62.4\n", +"//Lateral force Po =Area 1 + Area 2+ Area3+ Area 4\n", +"Po =(1/2)*10*707+5*707+(1/2)*5*212.1+(1/2)*5*312\n", +"z=((3535)*(5+10/3)+3535*(5/2)+530.3*(5/3)+780*(5/3))/Po\n", +"printf('z = %f ft',z)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//c=0\n", +"a=36\n", +"G=16\n", +"Ka=(1-sind(a))/(1+sind(a))\n", +"//at z=0 Tp=0\n", +"z=6\n", +"To=G*z\n", +"Ta=Ka*To\n", +"Pa=z*Ta/2\n", +"\n", +"printf('a)Rankine active force per unit length of the wall = %f kN/m',Pa)\n", +"printf(' and the location of the resultant is z = 2m\n')\n", +"\n", +"\n", +"p=36\n", +"G=16\n", +"Kp=(1+sind(a))/(1-sind(a))\n", +"//at z=0 Tp=0\n", +"z=6\n", +"To=G*z\n", +"Tp=Kp*To\n", +"Pp=z*Tp/2\n", +"\n", +"printf(' b)Rankine passive force per unit length of the wall = %f kN/m',Pp)\n", +"printf(' and the location of the resultant is z = 2m')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"H=12\n", +"a=20\n", +"b=20\n", +"G=115\n", +"c=30\n", +"Oa= asind(sind(a)/sind(c))-a+2*b\n", +"Ka= (cosd(a-b)*sqrt(1+(sind(c))^2-2*sind(c)*cosd(Oa)))/((cosd(b))^2*(cosd(a)+sqrt((sind(c))^2-(sind(a))^2)))\n", +"Pa=G*H^2*Ka/2\n", +"B= atand((sind(c)*sind(Oa))/(1-(sind(c)*cosd(Oa))))\n", +"printf('The active force Pa per unit length of the wall = %f lb/ft\n',Pa)\n", +"printf( ' The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = %f degree',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"a=30\n", +"Ka1=(1-sind(a))/(1+sind(a))\n", +"a=35\n", +"Ka2=(1-sind(a))/(1+sind(a))\n", +"//at z=0 so T0=0\n", +"//atz=3\n", +"To=3*16\n", +"Ta1=Ka1*To\n", +"Ta2=Ka2*To\n", +"\n", +"// At z=6\n", +"To=3*16+3*(18-9.81)\n", +"Ta2=Ka2*To\n", +"\n", +"Pa =(1/2)*3*16+3*13.0+ (1/2)*3*36.1\n", +"z= (24 *(3+3/3)+39.0*(3/2)+54.15*(3/3))/Pa\n", +"printf('The force per unit length of the wall = %f kN/m\n',Pa)\n", +"printf (' The location of the resultant = %f m ',z)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"Ka= (tand(1))^2\n", +"G=16.5\n", +"cu=10\n", +"H=6\n", +"//at z=0\n", +"z=0\n", +"Ta=G*z-2*cu\n", +"//zt z=6\n", +"z=6\n", +"Ta=G*z-2*cu\n", +"\n", +"zo=2*cu/G\n", +"// Before the tensile crack occurs\n", +"Pa= G*H^2/2 - 2*cu*H\n", +"printf('Pa before the tensile crack occurs = %f kN/m\n',Pa)\n", +"//After the tensile crack occurs\n", +"Pa=(H-zo)*Ta/2\n", +"printf(' Pa after the tensile crack occurs = %f kN/m',Pa)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"H=15\n", +"a=10\n", +"G=118\n", +"b=20\n", +"C=250\n", +"Zo=2*C*sqrt((1+sind(b))/(1-sind(b)))/G\n", +"//at z=0 Ta=0\n", +"//at z=15 \n", +"z=15\n", +"K=0.3\n", +"Ta=G*z*K*cosd(a)\n", +"Pa=(H -Zo)*Ta/2\n", +"printf('The Rankine active force Pa on the retaining wall after the tensile crack occurs = %f lb/ft',Pa)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"c=30\n", +"b=15\n", +"a=10\n", +"Ka=0.3872 // from table 13.8\n", +"H=4\n", +"G=15\n", +"Pa=G*H^2*Ka/2\n", +"printf('The active force per unit length Pa = %f kN/m\n',Pa)\n", +"printf(' The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above \n the bottom of the wall and will be inclined at an angle of 15to the back face of the wall.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: solved.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"kh=0.2\n", +"kv=0\n", +"H=4\n", +"a=0\n", +"b=0\n", +"c=15\n", +"d=30\n", +"G=15.5\n", +"B= atand(kh/(1-kv))\n", +"b1=b+B\n", +"a1=a+B\n", +"Ka=0.452\n", +"Pa=G*H^2*Ka/2\n", +"Pae=Pa*(1-kv)*((cosd(b1))^2/((cosd(b))^2*(cosd(B))^2))\n", +"Ka=0.3014\n", +"Pa=G*H^2*Ka/2\n", +"P1=Pae-Pa\n", +"z= ((Pa*H/3)+P1*0.6*H)/Pae\n", +"printf('Pae = %f kN/m\n',Pae)\n", +"printf(' Z = %f m',z)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |