diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Physical_Chemistry_by_G_H_Duffey | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Physical_Chemistry_by_G_H_Duffey')
18 files changed, 3428 insertions, 0 deletions
diff --git a/Physical_Chemistry_by_G_H_Duffey/1-Matter_and_its_atomic_nature.ipynb b/Physical_Chemistry_by_G_H_Duffey/1-Matter_and_its_atomic_nature.ipynb new file mode 100644 index 0000000..1914ab2 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/1-Matter_and_its_atomic_nature.ipynb @@ -0,0 +1,171 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Matter and its atomic nature" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"A=[-1 -1 -1 ]\n", +"B=[1 1 -1]\n", +"//calculations\n", +"Ad=sqrt(1+1+1)\n", +"Bd=sqrt(1+1+1)\n", +"dot=A.*B /(Ad*Bd) \n", +"theta=acosd(dot)\n", +"//results\n", +"printf('Angle = %.2f degrees',theta(1,1))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"l=0.71 *10^-8 //cm\n", +"n=200 //lines/cm\n", +"v=0.00145 //radian\n", +"//calculations\n", +"d=1/n\n", +"phi2=2*l/d +v^2\n", +"phi=sqrt(phi2)\n", +"//results\n", +"printf('Angle required = %.2e radian',phi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"angle=37.25 //degrees\n", +"l=1.539 //A\n", +"n=1 //order\n", +"//calculations\n", +"d=n*l/(2*sind(angle))\n", +"//results\n", +"printf('Interplanar distance = %.3f A',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r1=sqrt(3)\n", +"r2=1\n", +"//calculations\n", +"ratio=r1-r2\n", +"//results\n", +"printf('Ratio of radii = %.3f',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"d=2.64 //g/cc\n", +"l=4.016*10^-8 //cm\n", +"n=4\n", +"M=25.94 //g/mol\n", +"//calculations\n", +"m=d*l^3 /n\n", +"N0=M/m\n", +"//results\n", +"printf('Avagadro number = %.3e molecule/mol',N0)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/10-Second_law_of_thermodynamics.ipynb b/Physical_Chemistry_by_G_H_Duffey/10-Second_law_of_thermodynamics.ipynb new file mode 100644 index 0000000..ee3c699 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/10-Second_law_of_thermodynamics.ipynb @@ -0,0 +1,168 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Second law of thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T2=100+273.2 //K\n", +"T1=50+273.2 //K\n", +"n=1 //mol\n", +"R=1.987 //cal/deg mol\n", +"//calculations\n", +"dS=5/2 *n*R*2.303*log10(T2/T1)\n", +"//results\n", +"printf('Change in entropy = %.3f eu',dS)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"H=380 //cal\n", +"T=273.2+32.1 //K\n", +"//calculations\n", +"dS=H/T\n", +"//results\n", +"printf('Entropy change = %.2f eu',dS)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Ha=0\n", +"Hb=0\n", +"//calculations\n", +"H=Ha+Hb\n", +"q=H\n", +"U=0\n", +"w=q-H\n", +"//results\n", +"printf('Work done = %d',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"prob=0.001\n", +"R=1\n", +"N=6.023*10^23\n", +"//calculations\n", +"dS=1.987*2.303*log10(prob) /N\n", +"//results\n", +"printf('change in entropy = %.1e eu',dS)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=373.2 //K\n", +"c=1.987 //cal/deg\n", +"//calculations\n", +"w=c*T\n", +"A=-w\n", +"//results\n", +"printf('Change in A = %d cal',A)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/11-Condensed_phases.ipynb b/Physical_Chemistry_by_G_H_Duffey/11-Condensed_phases.ipynb new file mode 100644 index 0000000..0a58c0d --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/11-Condensed_phases.ipynb @@ -0,0 +1,87 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Condensed phases" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"A=7.6546\n", +"B=1686.8\n", +"T=60+273.2\n", +"//calculations\n", +"logP=A-B/T\n", +"P=10^logP\n", +"//results\n", +"printf('Vapor Pressure = %d mm',P+1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"alpha=4.92*10^-5 //deg^-1\n", +"beta=7.85*10^-7 //atm^-1\n", +"d=8.93 //g/cm^3\n", +"T=298.15 //K\n", +"//calculations\n", +"dC=63.54*T*alpha^2 *1.987/(d*beta*82.06)\n", +"//results\n", +"printf('Change in c values = %.3f cal/deg mol',dC)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/12-Physical_Equilibria.ipynb b/Physical_Chemistry_by_G_H_Duffey/12-Physical_Equilibria.ipynb new file mode 100644 index 0000000..7480c5b --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/12-Physical_Equilibria.ipynb @@ -0,0 +1,284 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Physical Equilibria" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"p=3\n", +"c=2\n", +"//calculations\n", +"f=2-p+c\n", +"//results\n", +"printf('no. of degrees of freedom = %d ',f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=273.2 //K\n", +"vw=1.0001 //cm^3 /g\n", +"vi=1.0907 //cm^3 /g\n", +"hf=79.7 //cal/g\n", +"P1=76 //cm\n", +"P2=4.6 //cm\n", +"//calculations\n", +"dT=T*(vw-vi)*(P2-P1)*13.6*980.7/(hf*4.184*10^7)\n", +"//results\n", +"printf('change in temperature = %.4f deg',dT)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"V=6.84 //cm^3 /g\n", +"//calculations\n", +"dPbydT=-1.7*4.184*10^7 /(2.19*V*0.06*1.01*10^6)\n", +"//results\n", +"printf('dPbydT = %d atm/deg',dPbydT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=6 //atm\n", +"T=273.2+25 //K\n", +"P=23.8 //mm\n", +"V=0.018 //lt/mol\n", +"R=0.08206 //lt am/deg mol\n", +"//calculations\n", +"dPa=V*P*4536/(R*T*760)\n", +"Pa=dPa+P\n", +"//results\n", +"printf('Pressure = %.1f mm',Pa)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"x=0.25\n", +"Ps1=96 //mm\n", +"Ps2=43.9 //mm\n", +"//calculations\n", +"P1=x*Ps1\n", +"P2=(1-x)*Ps2\n", +"P=P1+P2\n", +"Xdash=P1/P\n", +"//results\n", +"printf('mole fraction of methanol in vapor = %.3f ',Xdash)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hv=539.6 //cal/g\n", +"T=273.2+100 //K\n", +"//calculations\n", +"Kb=1.987*T^2 /(1000*Hv)\n", +"//results\n", +"printf('Molal elevation constant = %.3f deg /mole /kg',Kb)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ms=0.5 //mol/kg\n", +"m=5 //g\n", +"mw=100 //g\n", +"Ws=1000 //g/kg\n", +"//calculations\n", +"Ma=m*Ws/(ms*mw)\n", +"//results\n", +"printf('Molecular weight of solute = %d g/mol ',Ma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"dT=0.23 //C\n", +"Kb=1.86 //deg/mol/kg\n", +"//calculations\n", +"m=dT/Kb\n", +"//results\n", +"printf('molality of solution = %.2f m',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"p=0.1 //m\n", +"T=30+273.2 //K\n", +"R=0.08206 //lt atm /deg/mol\n", +"P1=1 //atm\n", +"//calculations\n", +"w=1000/p\n", +"V=w/1000\n", +"dP=R*T/V\n", +"P=dP+P1\n", +"//results\n", +"printf('Osmotic Pressure =%.2f atm ',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/13-Thermodynamic_changes_accompanying_chemical_reaction.ipynb b/Physical_Chemistry_by_G_H_Duffey/13-Thermodynamic_changes_accompanying_chemical_reaction.ipynb new file mode 100644 index 0000000..9dd2b33 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/13-Thermodynamic_changes_accompanying_chemical_reaction.ipynb @@ -0,0 +1,323 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Thermodynamic changes accompanying chemical reaction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.10: Example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"x=0.5\n", +"P=0.468 //atm\n", +"//calculations\n", +"P1=x*P\n", +"P2=x*P\n", +"Kp=P1*P2\n", +"//results\n", +"printf('Final pressure after quilibrium = %.4f atm^2',Kp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"n1=10 //mol\n", +"n2=12 //mol\n", +"//calculations\n", +"dn=n1-n2\n", +"//results\n", +"printf('dHp = dEv- %d *RT',dn)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Ht1=-22063 //cal\n", +"T=298.15 //K\n", +"//calculations\n", +"H=Ht1 +0.5293*T + 0.3398*10^-3 *T^2 - 2.039*10^-7 *T^3\n", +"//results\n", +"printf('Enthalpy = %d cal',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Cp=0.797 //cal/deg/mol\n", +"//calculations\n", +"S=Cp/3\n", +"//results\n", +"printf('Entropy = %.3f eu/mol',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T1=77.32 //K\n", +"P=1 //atm\n", +"T2=126 //K\n", +"Pc=33.5 //atm\n", +"//calculations\n", +"dS=27/32 *1.987*P/Pc *(T2/T1)^3\n", +"//results\n", +"printf('Change in entropy = %.2f eu/mol',dS)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"S1=57.47\n", +"S2=50.34\n", +"S3=49\n", +"H1=8.09\n", +"H2=21.06\n", +"H3=0\n", +"F1=12.39\n", +"F2=20.72\n", +"F3=0\n", +"//calculations\n", +"dS=S1-S2-0.5*S3\n", +"dH=H1-H2-0.5*H3\n", +"dF=F1-F2-0.5*F3\n", +"//results\n", +"printf('Change in entropy = %.2f eu',dS)\n", +"printf('\n Change in enthalpy = %.2f kcal',dH)\n", +"printf('\n Change in free energy = %.2f kcal',dF)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P1=0.01\n", +"P2=0.1\n", +"P3=0.01\n", +"dF0=-54640 //cal\n", +"T=298.15 //K\n", +"R=1.987 //cal/deg\n", +"//calculations\n", +"Qp=P1/(P2*P3^0.5)\n", +"dF=dF0+R*T*log(Qp)\n", +"//results\n", +"printf('change in free energy = %d cal',dF)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"disp('From table 13.4 ')\n", +"logKfwater=40.04724\n", +"logKfH2=0\n", +"logKfO2=0\n", +"//calculations\n", +"logK=logKfwater-logKfH2-0.5*logKfO2\n", +"K=10^logK\n", +"//results\n", +"printf('Equilibrium constant = %.4e',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Kp=1.1*10^40 //atm^-0.5\n", +"dn=-0.5\n", +"R=0.08206 //lt atm/deg mol\n", +"T=298.15 //K\n", +"//calculations\n", +"Kc=Kp*(R*T)^(-dn)\n", +"//results\n", +"printf('Kc = %.1e (mol/lt)^-0.5',Kc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Kp=0.141 //atm\n", +"P=1 //atm\n", +"nu=2\n", +"R=0.08206 //lt atm/deg mol\n", +"T=298.15 //K\n", +"M=92.02 //g/mol\n", +"//calculations\n", +"a=poly(0,'a');\n", +"p=Kp*a^2 +4*a^2*P -Kp\n", +"z=roots(p)\n", +"alpha=z(1)\n", +"wbyV=P*M/(R*T*(1+(nu-1)*alpha))\n", +"//results\n", +"printf('Density of the equilibrium mixture = %.2f g/lt',wbyV)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/14-Development_and_use_of_activity_concepts.ipynb b/Physical_Chemistry_by_G_H_Duffey/14-Development_and_use_of_activity_concepts.ipynb new file mode 100644 index 0000000..c1f94b0 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/14-Development_and_use_of_activity_concepts.ipynb @@ -0,0 +1,470 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Development and use of activity concepts" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.10: Example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m1=0.1 //m\n", +"m2=0.1 //m\n", +"K=1.754*10^-5 //m\n", +"//calculations\n", +"mu=0.5*(m1*1^2 + m2*1^2)\n", +"disp('From table 14.5,')\n", +"aH=9 //A\n", +"aA=4.5 //A\n", +"disp('From table 14.6')\n", +"gH=0.825\n", +"gA=0.775\n", +"gHA=1\n", +"x1=gHA*K/(gH*gA)\n", +"disp('Assuming x to be small w.r.t m1,')\n", +"x=sqrt(x1*m1)\n", +"//results\n", +"printf('Concentration of H plus ions = %.2e m',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.11: Example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"K=1.754*10^-5 //m\n", +"c=0.1\n", +"//calculations\n", +"disp('Neglecting x w.r.t c,')\n", +"x2=K\n", +"x=sqrt(K)\n", +"mu=x\n", +"disp('From tables 14-5 and 14-6,')\n", +"gH=0.963\n", +"gA=0.960\n", +"x22=K/(gH*gA)\n", +"a=poly(0,'a');\n", +"p=a^2 +a*x22 -c*x22\n", +"z=roots(p)\n", +"alpha=z(2)\n", +"//results\n", +"printf('concentration of H plus ions = %.2e m',alpha)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.12: Example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"disp('From table 14.3')\n", +"K1=-13.5089\n", +"K2=-22.9792\n", +"K3=19.2218\n", +"c=0.1 //m\n", +"//calculations\n", +"logK=K1-K2-K3\n", +"K=10^logK\n", +"mu=0.5*(c*1^2 + c*1^2)\n", +"disp('From tables 14-5 and 14-6,')\n", +"gAg=0.745\n", +"gCl=0.755\n", +"x2=K/(gAg*gCl)\n", +"x=sqrt(x2)\n", +"//results\n", +"printf('Solubility of Agcl = %.2e m',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.13: Example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Cna=0.11\n", +"Ccl=0.1\n", +"//calculations\n", +"x=poly(0,'x');\n", +"p=99*x^2 - 2.1*x+Cna*Ccl\n", +"z=roots(p)\n", +"alpha=z(2)\n", +"Na1=Cna-10*alpha\n", +"Cl1=Ccl-10*alpha\n", +"//results\n", +"printf(' Concentration of Na in 1 = %.4f M',Na1)\n", +"printf('\n Concentration of Cl in 1 = %.4f M',Cl1)\n", +"printf('\n Concentration of Na in 2 = %.4f M',alpha)\n", +"printf('\n Concentration of Cl in 2 = %.4f M',alpha)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"x1=0.0200\n", +"Kx=812\n", +"//calculations\n", +"disp('Neglecting 2x in comparision with x1,')\n", +"x=x1/Kx\n", +"//results\n", +"printf('Moles of Iodine present = %.2e mole',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Kc=1.749*10^-5 //M\n", +"n1=0.1 //mole\n", +"n2=0.01 //mole\n", +"//calculations\n", +"c=n1/n2 *Kc\n", +"//results\n", +"printf('Concentration of Hplus ions = %.1e M',c)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=0.01 //M\n", +"kc=1.749*10^-5 //M\n", +"//calculations\n", +"x2=c*kc\n", +"x=sqrt(x2)\n", +"//results\n", +"printf('Concentraton of Hplus ions = %.1e M',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"K2=1.0008*10^-14 //m^2\n", +"K1=1.754*10^-5 //m\n", +"c=0.1\n", +"//calculations\n", +"disp('Neglecting x w.r.t c,')\n", +"x2=c*K2/K1\n", +"x=sqrt(x2)\n", +"//results\n", +"printf('Concentration of OH minus ions = %.1e m',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"disp('from table 14.1,')\n", +"r1=7.47*10^-5 //m\n", +"r2=4.57*10^-3 //m\n", +"mp=1.008*10^-14 //m^2\n", +"//calculations\n", +"r3=r2/r1\n", +"mH2=r3*mp\n", +"mH=sqrt(mH2)\n", +"//results\n", +"printf('Concentraton of Hplus ions = %.2e M',mH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"disp('from table 14.1,')\n", +"r1=1.75*10^-5 //m\n", +"r2=1.772*10^-4 //m\n", +"mp=1.008*10^-14 //m^2\n", +"//calculations\n", +"r3=r2/r1\n", +"mH2=r3*mp\n", +"mH=sqrt(mH2)\n", +"//results\n", +"printf('Concentraton of Hplus ions = %.1e M',mH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=1*10^-6 //m\n", +"K=1.754*10^-5 //m\n", +"Kp=1.008*10^-14 //m^2\n", +"//calculations\n", +"mH=c\n", +"//Iteration 1\n", +"mOH=Kp/mH\n", +"mA=mH-mOH\n", +"mHA=mH*mA/K\n", +"mH2=mH-mHA+mOH\n", +"//Iteration 2\n", +"mOH2=Kp/mH2\n", +"mA2=mH2-mOH2\n", +"mHA2=mH2*mA2/K\n", +"mH3=mH2-mHA2+mOH2\n", +"//From x2\n", +"x2=sqrt(Kp)\n", +"x1=c\n", +"mOH3=Kp/x2\n", +"y2=x1\n", +"//From x1\n", +"mOH4=Kp/c\n", +"mA4=mH-mOH4\n", +"mHA4=mH*mA4/K\n", +"y1=c-mHA4-mA4\n", +"//upon further iterations, we get\n", +"mHplus=mH3\n", +"//results\n", +"printf('Concentration of H plus ions = %.2e m',mHplus)\n", +"//The answer is a bit different due to rounding off error." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variableH\n", +"disp('From table 14-3,')\n", +"HH=0\n", +"HHcoo=-98\n", +"HHcooh=-98\n", +"SH=0\n", +"SHcoo=21.9\n", +"SHcooh=39.1\n", +"KH=0\n", +"KHcoo=58.64\n", +"KHcooh=62.38\n", +"//calculationH\n", +"dH=HH+HHcoo-HHcooh\n", +"dS=SH+SHcoo-SHcooh\n", +"dK=KH+KHcoo-KHcooh\n", +"K=10^dK\n", +"//results\n", +"printf(' dS0 = %.1f eu',dS)\n", +"printf('\n dH0 = %.1f kcal',dH)\n", +"printf('\n log Krm = %.2f ',dK)\n", +"printf('\n Krm = %.1e m',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"mca=0.01 //m\n", +"mcl=0.02 //m\n", +"//calculations\n", +"Mu=0.5*(mca*4 + mcl*1)\n", +"disp('From table 14-5,')\n", +"aca=6 //A\n", +"acl=3 //A\n", +"disp('From table 14-6,')\n", +"gaca=0.555 \n", +"gacl=0.843\n", +"Aca=gaca*mca\n", +"Acl=gacl*mcl\n", +"//results\n", +"printf('Activity of cl = %.4f ',Acl)\n", +"printf('\n Activity of ca = %.4f ',Aca)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/15-Electrochemistry.ipynb b/Physical_Chemistry_by_G_H_Duffey/15-Electrochemistry.ipynb new file mode 100644 index 0000000..6f7d74c --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/15-Electrochemistry.ipynb @@ -0,0 +1,236 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Electrochemistry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"I=0.5 //amp\n", +"t=55 //min\n", +"we=31.77\n", +"//calculations\n", +"Q=I*t*60\n", +"n=Q/96496\n", +"w=n*we\n", +"//results\n", +"printf('Weight of copper leaving = %.3f g',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"w1=0.7532 //g\n", +"w2=0.9972 //g\n", +"wdep=0.4 //g\n", +"we=31.77 //g\n", +"//calculations\n", +"dn=w2/we - w1/we\n", +"t=dn/(wdep/we)\n", +"dne=wdep/we\n", +"dnmig=dn-dne\n", +"tplus=-dnmig/dne\n", +"tminus=1-tplus\n", +"//results\n", +"printf('tplus = %.3f',tplus)\n", +"printf('\n tminus= %.3f',tminus)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"R1=312 //ohms\n", +"R2=1043 //ohms\n", +"c=0.01 //N\n", +"kdash=0.002768 //ohm^-1cm^-1\n", +"//calculations\n", +"k=kdash*R1\n", +"kdash2=k/R2\n", +"lambda=kdash2/(c/1000)\n", +"//results\n", +"printf('Equivalent conductance = %.1f ohm^-1 cm^2 equiv^-1',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"l1=349.8 \n", +"l2=40.9\n", +"//calculations\n", +"l=l1+l2\n", +"//results\n", +"printf('Conductance for acetic acid = %.1f ohm^-1 cm^2',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"l1=63.6\n", +"l2=79.8\n", +"n=1 //mg/lt\n", +"we=116.7 //g/equiv\n", +"//calculations\n", +"l=l1+l2\n", +"c=n*10^-3 /we\n", +"k=c*l/1000\n", +"//results\n", +"printf('Specific conductance = %.2e ohm^-1 cm^-1',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"e1=0.763 //volt\n", +"e2=0.337 //volt\n", +"//calculations\n", +"e0=e1+e2\n", +"//results\n", +"printf('Standard electrode potential of the cell = %.3f volts',e0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"aZn=0.1\n", +"aCu=0.01\n", +"e1=0.763 //volt\n", +"e2=0.337 //volt\n", +"//calculations\n", +"e0=e1+e2\n", +"Q=aZn/aCu\n", +"E=e0- 0.05915*log10(Q) /2\n", +"//results\n", +"printf('Emf of the cell = %.3f volts',E)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/16-Typical_mechanisms_and_rate_laws.ipynb b/Physical_Chemistry_by_G_H_Duffey/16-Typical_mechanisms_and_rate_laws.ipynb new file mode 100644 index 0000000..8b9411f --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/16-Typical_mechanisms_and_rate_laws.ipynb @@ -0,0 +1,111 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Typical mechanisms and rate laws" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P1=69.2 //mm\n", +"P2=39.8//mm\n", +"t=20 //min\n", +"//calculations\n", +"k=2.303*log10(P1/P2) /(t*60)\n", +"//results\n", +"printf('Rate constant = %.2e sec^-1',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"t=10 //min\n", +"x=90\n", +"//calculations\n", +"k=2.303*log10(100/(100-x)) /t\n", +"//results\n", +"printf('Rate constant = %.3f min^-1',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"t=242 //sec\n", +"P=229 //mm\n", +"P0=363 //mm\n", +"//calculations\n", +"k=(1/P -1/P0)/t\n", +"//results\n", +"printf('rate constant= %.2e sec^-1 mm^-1',k)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/17-Resolving_Kinetic_data.ipynb b/Physical_Chemistry_by_G_H_Duffey/17-Resolving_Kinetic_data.ipynb new file mode 100644 index 0000000..ae23630 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/17-Resolving_Kinetic_data.ipynb @@ -0,0 +1,152 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Resolving Kinetic data" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variablesx1=5\n", +"x2=20\n", +"x1=5\n", +"n1=7.49\n", +"n2=5.14\n", +"//calculations\n", +"n=(log(n1)-log(n2))/(log(100-x1) - log(100-x2))\n", +"//results\n", +"printf('Order of the reaction = %.2f',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"p2=169\n", +"p1=363\n", +"t1=410\n", +"t2=880\n", +"//calculations\n", +"ndash=(log(t2) - log(t1))/(log(p1) - log(p2))\n", +"n=ndash+1\n", +"//results\n", +"printf('Order of the reaction = %.2f',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"R=1.987 //cal/deg/mol\n", +"k1=4.45*10^-5\n", +"k2=2.52*10^-6\n", +"T1=283+273.2 //K\n", +"T2=356+273.2 //K\n", +"//calculations\n", +"Ea=2.303*R*1.7530 /(1/T1 - 1/T2)\n", +"logZ= log10(k1) +Ea/(2.303*R*T1)\n", +"Z=10^logZ\n", +"//results\n", +"printf('Activation energy = %d cal/mol',Ea)\n", +"printf('\n Z = %.1e lt /mol sec',Z)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"g1=0.661\n", +"g2=0.899\n", +"g3=0.405\n", +"g4=0.803\n", +"g5=0.946\n", +"g6=0.614\n", +"k=1.33\n", +"//calculations\n", +"k0=k*g3/(g1*g2)\n", +"k2=k0*g4*g5/g6\n", +"//results\n", +"printf('Equlibrium constant = %.2f lt/mol min',k2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/18-Catalysis.ipynb b/Physical_Chemistry_by_G_H_Duffey/18-Catalysis.ipynb new file mode 100644 index 0000000..2c3c7a0 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/18-Catalysis.ipynb @@ -0,0 +1,93 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Catalysis" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"V1=0.284 //cm^3 /g\n", +"V2=1.43 //cm^3 /g\n", +"P1=142.4 //mm\n", +"P2=760 //mm\n", +"//calculations\n", +"z=(1/V1 - 1/V2)/(1/P1 - 1/P2)\n", +"invVm=1/V2 - z/P2\n", +"Vm=1/invVm\n", +"//results\n", +"printf('Volume = %.1f cm^3/g',Vm)\n", +"//The answer in the textbook is a bit different due to rounding off error." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Vm=2.86 //cc/g\n", +"P=1 //atm\n", +"R=82.06 //cm^3 atm/deg mol\n", +"T=273.2 //deg\n", +"N=6.023*10^23\n", +"sigma=16.2*10^-16 //cm^2 /molecule\n", +"//calculations\n", +"n=P*Vm/(R*T)\n", +"A=N*n*sigma\n", +"//results\n", +"printf('total area = %.2e cm^2 (g catalyst)^-1',A)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/19-Photochemistry.ipynb b/Physical_Chemistry_by_G_H_Duffey/19-Photochemistry.ipynb new file mode 100644 index 0000000..6072349 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/19-Photochemistry.ipynb @@ -0,0 +1,287 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 19: Photochemistry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r1=0.727\n", +"r2=0.407\n", +"//calculations\n", +"r3=r1*r2\n", +"//results\n", +"printf('Overall transmittance = %.3f',r3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r=0.450\n", +"c=0.02 //M\n", +"l=4 //cm\n", +"//calculations\n", +"e=-log10(r) /(c*l)\n", +"//results\n", +"printf('Extinction coefficient = %.2f litres mole^-1 cm^-1',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r1=0.850\n", +"r2=0.50\n", +"//calculations\n", +"Da=-log10(r1)\n", +"Db=-log10(r2)\n", +"D=Da+Db\n", +"r3=10^(-D)\n", +"//results\n", +"printf('Transmittance of solution = %.3f ',r3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=0.000025 //M\n", +"l=2 //cm\n", +"D=0.417\n", +"//calculations\n", +"e=D/(c*l)\n", +"//result\n", +"printf('Extinction coefficient = %d liters mole^-1 cm^-1',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=0.5 //M\n", +"c1=0.000025 //M\n", +"D2=0.280\n", +"D1=0.417\n", +"//calculations\n", +"c2=D2*c1/(D1)\n", +"dC=c1-c2\n", +"SCN=c- 6*c2 -4*dC\n", +"K=dC*SCN^2 /c2\n", +"//results\n", +"printf('Kc for dissociation = %.2f M^2',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"D2=0.249\n", +"D1=0.172\n", +"a2=0.00752\n", +"a1=0.00527\n", +"//calculations\n", +"m=(log(D2) -log(D1))/(log(a2) - log(a1))\n", +"//results\n", +"printf('m = %.2f ',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=0.1 //M\n", +"V=100 //ml\n", +"v1=25 //ml\n", +"D=0.980\n", +"d1=0.090\n", +"d2=0.150\n", +"//calculations\n", +"a=v1*c/V\n", +"b=(V-v1)*c/V\n", +"Da=a*d1/c\n", +"Db=b*d2/c\n", +"Ddash=Da+Db\n", +"dD=D-Ddash\n", +"//results\n", +"printf('Increase in optical density = %.3f',dD)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.8: Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E=50000 //cal/mol\n", +"//calculations\n", +"lam=2.8593/E\n", +"//results\n", +"printf('For the reaction to occur lambda < %d A',lam*10^8)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"lam=3000*10^-8 //cm\n", +"yield=0.420\n", +"Et=70000 //cal\n", +"//calculations\n", +"E=2.8593/lam\n", +"n=yield*Et/E\n", +"//results\n", +"printf('Amount of reactant disappeared = %.3f mol',n)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/2-Particles_Atomic_and_subatomic.ipynb b/Physical_Chemistry_by_G_H_Duffey/2-Particles_Atomic_and_subatomic.ipynb new file mode 100644 index 0000000..86b9e17 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/2-Particles_Atomic_and_subatomic.ipynb @@ -0,0 +1,146 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Particles Atomic and subatomic" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m1=1.008142\n", +"m2=1.008982\n", +"//calculations\n", +"dm=m1-m2\n", +"dt=abs(dm) *931\n", +"//results\n", +"printf('Increase in kinetic energy = %.3f Mev',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"d=8.642 //g/cc\n", +"M=112.41 //g/mol\n", +"ratio=0.01/100\n", +"nb=2400\n", +"//calculations\n", +"n=d*6.02*10^23 /M\n", +"sigma=nb*10^-24\n", +"x=-2.303*log10(ratio) /(sigma*n)\n", +"//results\n", +"printf('Thickness = %.3f cm',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"M1=4\n", +"M2=14\n", +"E=-1.2 //Mev\n", +"//calculations\n", +"R1=1.5*10^-13 *(M1)^(1/3)\n", +"R2=1.5*10^-13 *(M2)^(1/3)\n", +"V1=2*7*(4.8*10^-10)^2 /(R1+R2)\n", +"V2=V1/(1.6*10^-6)\n", +"x=(M1+M2)*V2/M2\n", +"//results\n", +"printf('Threshold = %.1f Mev',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"t=1622 //years\n", +"per=1 //percent\n", +"//calculations\n", +"Nratio=1-per/100\n", +"x=t*log10(Nratio) / log10(0.5)\n", +"//results\n", +"printf('Time taken = %.1f years',x)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/3-Waves_and_Quanta.ipynb b/Physical_Chemistry_by_G_H_Duffey/3-Waves_and_Quanta.ipynb new file mode 100644 index 0000000..ab8c088 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/3-Waves_and_Quanta.ipynb @@ -0,0 +1,57 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Waves and Quanta" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"atoms=5\n", +"//calculations\n", +"f=3*atoms\n", +"fvib=f-3-3\n", +"//results\n", +"printf('Vibrational degrees of freedom = %d',fvib)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/4-Molecular_energy_levels.ipynb b/Physical_Chemistry_by_G_H_Duffey/4-Molecular_energy_levels.ipynb new file mode 100644 index 0000000..0539393 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/4-Molecular_energy_levels.ipynb @@ -0,0 +1,143 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Molecular energy levels" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"B=10.34 //cm^-1\n", +"c=2.998*10^10 //cm/s\n", +"h=6.625*10^-27 //erg sec\n", +"//calculations\n", +"I=h/(8*%pi^2 *B*c)\n", +"//results\n", +"printf('Moment of inertia = %.2e g cm^2',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ma=1.0080\n", +"mb=35.457\n", +"Na=6.0232*10^23\n", +"I=2.707*10^-40 //g cm^2\n", +"//calculations\n", +"mu1=ma*mb/(ma+mb)\n", +"mu2=mu1/Na\n", +"r=sqrt(I/mu2)\n", +"//results\n", +"printf('Bond length = %.2e cm',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=2.998*10^10 //cm/s\n", +"wave=2990 //cm^-1\n", +"mu=1.627*10^-24 //g\n", +"//calculations\n", +"k=mu*(2*%pi*c*wave)^2\n", +"//results\n", +"printf('Force constant = %.2e dynes/cm',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"l1=2886 //cm^-1\n", +"l2=5668 //cm^-1\n", +"//calculations\n", +"wave=2*l1-l2 \n", +"wave2= wave+l1\n", +"x=wave/(2*wave2)\n", +"//results\n", +"printf('anharmonicity constant = %.4f ',x)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/6-Valence_electrons_in_molecules.ipynb b/Physical_Chemistry_by_G_H_Duffey/6-Valence_electrons_in_molecules.ipynb new file mode 100644 index 0000000..99525e9 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/6-Valence_electrons_in_molecules.ipynb @@ -0,0 +1,187 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Valence electrons in molecules" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"DHH=42 //kcal/mol\n", +"//calculations\n", +"DHHp=0.5*(DHH)\n", +"//results\n", +"printf('Exchange energy = %.1f kcal/mol',DHHp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"a2=1/8\n", +"//calculations\n", +"b2=1-a2\n", +"a1=sqrt(a2)\n", +"b1=sqrt(b2)\n", +"//results\n", +"printf(' Wave function is %.2f phi1 +%.2f phi2',a1,b1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"sinu=2/sqrt(3)\n", +"cosu=sqrt(2/3)\n", +"//calculations\n", +"tanu=sinu/cosu\n", +"u=atand(sinu/cosu)\n", +"//results\n", +"printf('Bond anagle = %.2f degrees',2*u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"cosu=1/sqrt(3)\n", +"sinu=sqrt(2/3)\n", +"//calculations\n", +"f=1/2 + sqrt(3) /2 *cosu + sqrt(3/2) *sinu\n", +"//results\n", +"printf('Pauling strength = %d ',f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"alpha=60\n", +"//calculations\n", +"cosa=cosd(alpha)\n", +"sina=sind(alpha)\n", +"//results\n", +"printf('Wave function = %.2f s + %.2f pz',cosa,sina)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialization of variables\n", +"DHH=103 //kcal/mol\n", +"//calculations\n", +"DHHp=0.5*(DHH)\n", +"//results\n", +"printf('Bond energy = %.1f kcal/mol',DHHp)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/7-Gases_and_Introductory_stastical_thermodynamics.ipynb b/Physical_Chemistry_by_G_H_Duffey/7-Gases_and_Introductory_stastical_thermodynamics.ipynb new file mode 100644 index 0000000..cf16198 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/7-Gases_and_Introductory_stastical_thermodynamics.ipynb @@ -0,0 +1,243 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Gases and Introductory stastical thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"h=76 //cm\n", +"d=13.5951 //g/cc\n", +"g=980.655 //cm/s^2\n", +"T=273.15 //K\n", +"v=22414.6 //cm^3 /mol\n", +"//calculations\n", +"P=h*d*g\n", +"R=P*v/(T)\n", +"//results\n", +"printf('Gas constant = %.3e ergs/deg. mol',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"cal=4.184*10^7 //ergs\n", +"R=8.315*10^7 //ergs/deg/mol\n", +"//calculations\n", +"Rdash=R/cal\n", +"//results\n", +"printf('R in calories = %.3f cal/ deg mol',Rdash)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"R=8.315*10^7 //ergs/deg/mol\n", +"T=273.2 //deg\n", +"M=4 //g/mol\n", +"//calculations\n", +"u2=3*T*R/M\n", +"u=sqrt(u2)\n", +"//results\n", +"printf('root mean square velocity = %.2e cm/sec',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"n1=2\n", +"n2=10\n", +"n3=3\n", +"P=720 //mm of Hg\n", +"//calculations\n", +"n=n1+n2+n3\n", +"x1=n1/n\n", +"P1=x1*P\n", +"x2=n2/n\n", +"P2=x2*P\n", +"x3=n3/n\n", +"P3=x3*P\n", +"//results\n", +"printf('\n Partial pressure of N2 = %d mm',P1)\n", +"printf('\n Partial pressure of O2 = %d mm',P2)\n", +"printf('\n Partial pressure of CO2 = %d mm',P3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=273.2+25 //K\n", +"n=1 //mol\n", +"R=1.987 //cal/deg mol\n", +"//calculations\n", +"Etr=1.5*n*R*T\n", +"Erot=1.5*n*R*T\n", +"Evib=0\n", +"Eel=0\n", +"Etot=Etr+Erot+Evib+Eel\n", +"//results\n", +"printf('Total energy = %d cal',Etot)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"b=24.1 //cm^2/mol\n", +"N=6.023*10^23 //mole^-1\n", +"//calculations\n", +"d=(3*b/(2*%pi*N))^(1/3)\n", +"//results\n", +"printf('Molecular diameter of He = %.2e cm',d)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=100 //atm\n", +"T=200 //K\n", +"n=1 //mole\n", +"R=0.08206 //l atm/deg mol\n", +"disp('From psychrometric charts,')\n", +"Tc=126.2 //K\n", +"Pc=33.5 //K\n", +"//calculations\n", +"Pr=P/Pc\n", +"Tr=T/Tc\n", +"disp('From z charts,')\n", +"z=0.83\n", +"V=z*n*R*T/P\n", +"//results\n", +"printf('Volume = %.3f liter',V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/8-First_law_of_thermodynamics.ipynb b/Physical_Chemistry_by_G_H_Duffey/8-First_law_of_thermodynamics.ipynb new file mode 100644 index 0000000..e75b11a --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/8-First_law_of_thermodynamics.ipynb @@ -0,0 +1,177 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: First law of thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=1.0132*10^6 //dynes/cm^2\n", +"A=100 //cm^2\n", +"z=10 //cm\n", +"//calculations\n", +"w=P*A*z*10^-7\n", +"//results\n", +"printf('Joules = %.4e J',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=1.0132*10^6 //dynes/cm^2\n", +"A=100 //cm^2\n", +"z=10 //cm\n", +"//calculations\n", +"w=P*A*z*10^-7\n", +"cal=w/4.184\n", +"//results\n", +"printf('Calories = %.3f cal',cal)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=373.2 //K\n", +"n=1 //mol\n", +"qp=9720 //cal/mol\n", +"//calculations\n", +"q=n*qp\n", +"w=1.987*T\n", +"dE=q-w\n", +"//results\n", +"printf('Heat of vaporization = %d cal',q)\n", +"printf('\n Change in energy = %d cal',dE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T1=25+273 //K\n", +"T2=25+273 //K\n", +"//calculations\n", +"disp('Since, T2=T1, dE=0')\n", +"dE=0\n", +"w=0\n", +"q=dE+w\n", +"//results\n", +"printf('\n Work done = %d ',w)\n", +"printf('\n Heat transferred = %d ',q)\n", +"printf('\n Change in energy = %d',dE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"R=1.987 //cal/deg mol\n", +"//calculations\n", +"Cvtr=1.5*R\n", +"Cvrot=1.5*R\n", +"Cvt=Cvtr+Cvrot\n", +"disp('Observed Cv= 6.43')\n", +"Cvobs=6.43\n", +"Cvvib=Cvobs-Cvt\n", +"//results\n", +"printf('Vibrational = %.2f cal/deg mol',Cvvib)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Physical_Chemistry_by_G_H_Duffey/9-Boltzmann_distribution_law.ipynb b/Physical_Chemistry_by_G_H_Duffey/9-Boltzmann_distribution_law.ipynb new file mode 100644 index 0000000..fd8df12 --- /dev/null +++ b/Physical_Chemistry_by_G_H_Duffey/9-Boltzmann_distribution_law.ipynb @@ -0,0 +1,93 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Boltzmann distribution law" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r=2.1*10^-6 //cm\n", +"n=889\n", +"x=0.1 //cm\n", +"T=298.2 //K\n", +"//calculations\n", +"V=4/3 *%pi *r^3\n", +"rho=19.3-1\n", +"ffd=rho*V*980.7\n", +"eps=ffd*x\n", +"logN=-6.96*10^-14 /(2.303*1.38*10^-16 *T)\n", +"N=10^logN *n\n", +"//results\n", +"printf('No. of particles = %d ',N+1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"x=1 //percent\n", +"wave=1595 //cm^-1\n", +"//calculations\n", +"E=2.8593*wave\n", +"Nratio=(100-x)/x\n", +"logN=log10(Nratio)\n", +"T=E/(2.303*1.987*logN)\n", +"//results\n", +"printf('Temperature = %d K',T)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |