diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb')
-rw-r--r-- | Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb b/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb new file mode 100644 index 0000000..d9d028d --- /dev/null +++ b/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Molecular Structure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Charge_on_the_sphere.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-9.1');\n", +"E=-2.7;\n", +"K=9*(10^9)*((1.6*(10^-19))^2)/(0.106*10^-9);// taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n", +"q=((K-E*10^-9)/(4*K))*10^-9; //balancin by multiplying 10^-9 on numerator. to eV.vm terms\n", +"printf('Charge on the sphere required is %.2f times the charge of electron.',q);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Solution_for_a_and_b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Exa-9.2(a)');\n", +"K=1.44; Req=0.236; // K=e^2/(4*pi*e0)=1.44 eV.nm\n", +"Uc=-K/(Req); //coulomb energy\n", +"printf('The coulomb energy at an equilirium separation distance is %.2f eV\n',Uc);\n", +"E=-4.26; delE=1.53; //various standars values of NaCl\n", +"Ur=E-Uc-delE; \n", +"printf('The pauli''s repulsion energy is %.2f eV\n',Ur);\n", +"disp('Exa-9.2(b)');\n", +"Req=0.1; //pauli repulsion energy\n", +"Uc=-K/(Req);\n", +"E=4; delE=1.53;\n", +"Ur=E-Uc-delE;\n", +"printf('The pauli''s repulsion energy respectively is is %.2f eV\n',Ur);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: vibrational_frequency_and_photon_energy_of_H2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-9.3');\n", +"delE=0.50; delR=0.017*10^-9; //delE= E-Emin; delR=R-Rmin;\n", +"k=2*(delE)/(delR^2);c=3*10^8; //force constant\n", +"m=(1.008)*(931.5*10^6)*0.5; //mass of molecular hydrogen\n", +"v= sqrt(k*c^2/m)/(2*%pi); //vibrational frequency\n", +"h=4.14*(10^-15);\n", +"E=h*v;\n", +"printf('The value of corresponding photon energy is %.2f eV',E);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Energies_and_wavelengths_of_3_lowest_radiations_emitted_by_molecular_H2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-9.4');\n", +"hc=1240; //in eV.nm\n", +"m=0.5*1.008*931.5*10^6; //mass of hydrogen atom\n", +"Req=0.074; //equivalent radius\n", +"a=((hc)^2)/(4*(%pi^2)*m*(Req^2)); //reduced mass of hydrogen atom\n", +"for L=1:3,\n", +" delE= L*a; printf('The value of energy is %f eV\n',delE); \n", +" w=(hc)/delE;printf('The respective wavelength is is %f um\n',w*10^-3); \n", +"end\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Rotational_Inertia_of_molecule.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Exa-9.5'); \n", +"delv=6.2*(10^11); //change in frequency\n", +"h=1.05*(10^-34); //value of h in J.sec\n", +"I= h/(2*%pi*delv); //rotational inertia\n", +"printf('The value of rotational inertia is %.2e kg m2 ',I);\n", +"I=I/(1.684604e-045);\n", +"printf('which in terms of amu is %.3f u.nm2',I);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Solution_for_a_and_b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-9.6(a)');\n", +"delE=0.358;hc=4.14*10^-15; //hc in eV.nm and delE=1.44eV(given values)\n", +"f=(delE)/hc; //frequency \n", +"printf('The frequency of the radiation is %.3e.\n',f);\n", +"m=0.98; //mass in terms of u\n", +"k=4*%pi^2*m*f^2; //value of k in eV/m^2\n", +"printf('The force constant is %.3e.\n',k); \n", +"disp('Ex-9.6(b)');\n", +"hc=1240; m=0.98*1.008*931.5*10^6; Req=0.127; //various constants in terms of \n", +"s=((hc)^2)/(4*(%pi^2)*m*(Req^2)); // expeted spacing \n", +"printf('The spacing was found out to be %f which is very close to the graphical value of 0.0026 eV.',s);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |