summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb')
-rw-r--r--Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb205
1 files changed, 205 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb b/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb
new file mode 100644
index 0000000..d9d028d
--- /dev/null
+++ b/Modern_Physics_by_K_S_Krane/9-Molecular_Structure.ipynb
@@ -0,0 +1,205 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Molecular Structure"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Charge_on_the_sphere.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Ex-9.1');\n",
+"E=-2.7;\n",
+"K=9*(10^9)*((1.6*(10^-19))^2)/(0.106*10^-9);// taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n",
+"q=((K-E*10^-9)/(4*K))*10^-9; //balancin by multiplying 10^-9 on numerator. to eV.vm terms\n",
+"printf('Charge on the sphere required is %.2f times the charge of electron.',q);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-9.2(a)');\n",
+"K=1.44; Req=0.236; // K=e^2/(4*pi*e0)=1.44 eV.nm\n",
+"Uc=-K/(Req); //coulomb energy\n",
+"printf('The coulomb energy at an equilirium separation distance is %.2f eV\n',Uc);\n",
+"E=-4.26; delE=1.53; //various standars values of NaCl\n",
+"Ur=E-Uc-delE; \n",
+"printf('The pauli''s repulsion energy is %.2f eV\n',Ur);\n",
+"disp('Exa-9.2(b)');\n",
+"Req=0.1; //pauli repulsion energy\n",
+"Uc=-K/(Req);\n",
+"E=4; delE=1.53;\n",
+"Ur=E-Uc-delE;\n",
+"printf('The pauli''s repulsion energy respectively is is %.2f eV\n',Ur);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: vibrational_frequency_and_photon_energy_of_H2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-9.3');\n",
+"delE=0.50; delR=0.017*10^-9; //delE= E-Emin; delR=R-Rmin;\n",
+"k=2*(delE)/(delR^2);c=3*10^8; //force constant\n",
+"m=(1.008)*(931.5*10^6)*0.5; //mass of molecular hydrogen\n",
+"v= sqrt(k*c^2/m)/(2*%pi); //vibrational frequency\n",
+"h=4.14*(10^-15);\n",
+"E=h*v;\n",
+"printf('The value of corresponding photon energy is %.2f eV',E);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Energies_and_wavelengths_of_3_lowest_radiations_emitted_by_molecular_H2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-9.4');\n",
+"hc=1240; //in eV.nm\n",
+"m=0.5*1.008*931.5*10^6; //mass of hydrogen atom\n",
+"Req=0.074; //equivalent radius\n",
+"a=((hc)^2)/(4*(%pi^2)*m*(Req^2)); //reduced mass of hydrogen atom\n",
+"for L=1:3,\n",
+" delE= L*a; printf('The value of energy is %f eV\n',delE); \n",
+" w=(hc)/delE;printf('The respective wavelength is is %f um\n',w*10^-3); \n",
+"end\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Rotational_Inertia_of_molecule.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-9.5'); \n",
+"delv=6.2*(10^11); //change in frequency\n",
+"h=1.05*(10^-34); //value of h in J.sec\n",
+"I= h/(2*%pi*delv); //rotational inertia\n",
+"printf('The value of rotational inertia is %.2e kg m2 ',I);\n",
+"I=I/(1.684604e-045);\n",
+"printf('which in terms of amu is %.3f u.nm2',I);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Ex-9.6(a)');\n",
+"delE=0.358;hc=4.14*10^-15; //hc in eV.nm and delE=1.44eV(given values)\n",
+"f=(delE)/hc; //frequency \n",
+"printf('The frequency of the radiation is %.3e.\n',f);\n",
+"m=0.98; //mass in terms of u\n",
+"k=4*%pi^2*m*f^2; //value of k in eV/m^2\n",
+"printf('The force constant is %.3e.\n',k); \n",
+"disp('Ex-9.6(b)');\n",
+"hc=1240; m=0.98*1.008*931.5*10^6; Req=0.127; //various constants in terms of \n",
+"s=((hc)^2)/(4*(%pi^2)*m*(Req^2)); // expeted spacing \n",
+"printf('The spacing was found out to be %f which is very close to the graphical value of 0.0026 eV.',s);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}