diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb')
-rw-r--r-- | Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb | 202 |
1 files changed, 202 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb b/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb new file mode 100644 index 0000000..a4c419a --- /dev/null +++ b/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb @@ -0,0 +1,202 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Review of Electromagnetic waves" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Atomic_Spacing_of_Nacl.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.1');\n", +"w=0.250; theta=26.3;n=1 // n=1 for hydrogen atom and rest all are given values\n", +"d=n*w/(2*sind(theta)); // bragg's law\n", +"printf('Hence the atomic spacing is %.3f nm.',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Time_taken_to_release_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.2');\n", +"I=120;r=0.1*10^-9;Eev=2.3 //I-intensity in W/m^2 r in m & E in electron volt\n", +"A=%pi*r^2;K=1.6*10^-19; // A=area and K is conversion factor from ev to joules\n", +"t= Eev*K/(I*A); //time interval\n", +"printf('The value of time interval was found out to be %.1f sec',t);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Solution_for_a_and_b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.3(a)');\n", +"w=650*10^-9;h=6.63*10^-34;c=3*10^8; //given values and constant taken in comfortable units\n", +"E=h*c/w; printf('The Energy of the electron is %.3e J ',E);\n", +"E=E/(1.6*10^-19);printf('which is equivalent to %f eV\n',E);\n", +"printf('The momentum of electron is p=E/c i.e %.2f/c \n',E);\n", +"disp('Exa-3.3(b)');\n", +"E2=2.40; //given energy of photon.\n", +"w2=h*c*10^9/(E2*1.6*10^-19); //converting the energy in to eV and nm \n", +"printf('The wavelength of the photon is %.2f nm',w2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Solution_for_a_b_and_c.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.4(a)');\n", +"hc=1240; phi=4.52 //both the values are in eV\n", +"w1=hc/phi; \n", +"printf('The cutoff wavelength of the tungsten metal is %.3fnm\n ',w1);\n", +"disp('Exa-3.4(b)');\n", +"w2=198; //given value of wavelength \n", +"Kmax=(hc/w2)-phi;printf('The max value of kinetic energy is %.3f eV\n',Kmax);\n", +"disp('Exa-3.4(c)');\n", +"Vs=Kmax; printf('The numerical value of the max kinetic energy is same as stopping potential in volts.Hence %.2f V',Vs);\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Solution_for_a_b_and_c.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.5(a)');\n", +"T1=293; Kw=2.898*10^-3;\n", +"w1=Kw/T1;\n", +"printf('The wavelength at which emits maximum radiation is %.2f um.\n',w1*10^6);\n", +"disp('Exa-3.5(b)');\n", +"w2=650*10^-9; \n", +"T2=Kw/w2;\n", +"printf('The temperature of the object must be raised to %.0f K.\n',T2);\n", +"disp('Exa-3.5(c)');\n", +"x=(T2/T1)^4; printf('Thus the thermal radiation at higher temperature is %.2e times the room (lower) tempertaure.\n',x);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Solution_for_a_b_c_and_d.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear \n", +"clc\n", +"disp('Exa-3.6(a)');\n", +"w1=0.24;wc=0.00243;theta=60; //given values w=wavelength(lambeda)\n", +"w2=w1+(wc*(1-cosd(theta))); \n", +"printf('The wavelength of x-rays after scattering is %.4f nm\n',w2);\n", +"disp('Exa-3.6(b)');\n", +"hc=1240;\n", +"E2=hc/w2;E1=hc/w1; printf('The energy of scattered x-rays is %.0f eV\n',E2);\n", +"disp('Exa-3.6(c)');\n", +"K= E1-E2; //The kinetic energy is the difference in the energy before and after the collision;\n", +"printf('The kinetic energy of the x-rays is %.3f eV\n',K);\n", +"disp('Exa-3.6(d)');\n", +"phi2=atand(E2*sind(theta)/(E1-E2*cosd(theta)))\n", +"printf('The direction of the scattered eletron is %.1f degrees',phi2);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |