summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb')
-rw-r--r--Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb202
1 files changed, 202 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb b/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb
new file mode 100644
index 0000000..a4c419a
--- /dev/null
+++ b/Modern_Physics_by_K_S_Krane/3-Review_of_Electromagnetic_waves.ipynb
@@ -0,0 +1,202 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Review of Electromagnetic waves"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Atomic_Spacing_of_Nacl.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.1');\n",
+"w=0.250; theta=26.3;n=1 // n=1 for hydrogen atom and rest all are given values\n",
+"d=n*w/(2*sind(theta)); // bragg's law\n",
+"printf('Hence the atomic spacing is %.3f nm.',d);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Time_taken_to_release_an_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.2');\n",
+"I=120;r=0.1*10^-9;Eev=2.3 //I-intensity in W/m^2 r in m & E in electron volt\n",
+"A=%pi*r^2;K=1.6*10^-19; // A=area and K is conversion factor from ev to joules\n",
+"t= Eev*K/(I*A); //time interval\n",
+"printf('The value of time interval was found out to be %.1f sec',t);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.3(a)');\n",
+"w=650*10^-9;h=6.63*10^-34;c=3*10^8; //given values and constant taken in comfortable units\n",
+"E=h*c/w; printf('The Energy of the electron is %.3e J ',E);\n",
+"E=E/(1.6*10^-19);printf('which is equivalent to %f eV\n',E);\n",
+"printf('The momentum of electron is p=E/c i.e %.2f/c \n',E);\n",
+"disp('Exa-3.3(b)');\n",
+"E2=2.40; //given energy of photon.\n",
+"w2=h*c*10^9/(E2*1.6*10^-19); //converting the energy in to eV and nm \n",
+"printf('The wavelength of the photon is %.2f nm',w2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Solution_for_a_b_and_c.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.4(a)');\n",
+"hc=1240; phi=4.52 //both the values are in eV\n",
+"w1=hc/phi; \n",
+"printf('The cutoff wavelength of the tungsten metal is %.3fnm\n ',w1);\n",
+"disp('Exa-3.4(b)');\n",
+"w2=198; //given value of wavelength \n",
+"Kmax=(hc/w2)-phi;printf('The max value of kinetic energy is %.3f eV\n',Kmax);\n",
+"disp('Exa-3.4(c)');\n",
+"Vs=Kmax; printf('The numerical value of the max kinetic energy is same as stopping potential in volts.Hence %.2f V',Vs);\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Solution_for_a_b_and_c.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.5(a)');\n",
+"T1=293; Kw=2.898*10^-3;\n",
+"w1=Kw/T1;\n",
+"printf('The wavelength at which emits maximum radiation is %.2f um.\n',w1*10^6);\n",
+"disp('Exa-3.5(b)');\n",
+"w2=650*10^-9; \n",
+"T2=Kw/w2;\n",
+"printf('The temperature of the object must be raised to %.0f K.\n',T2);\n",
+"disp('Exa-3.5(c)');\n",
+"x=(T2/T1)^4; printf('Thus the thermal radiation at higher temperature is %.2e times the room (lower) tempertaure.\n',x);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Solution_for_a_b_c_and_d.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear \n",
+"clc\n",
+"disp('Exa-3.6(a)');\n",
+"w1=0.24;wc=0.00243;theta=60; //given values w=wavelength(lambeda)\n",
+"w2=w1+(wc*(1-cosd(theta))); \n",
+"printf('The wavelength of x-rays after scattering is %.4f nm\n',w2);\n",
+"disp('Exa-3.6(b)');\n",
+"hc=1240;\n",
+"E2=hc/w2;E1=hc/w1; printf('The energy of scattered x-rays is %.0f eV\n',E2);\n",
+"disp('Exa-3.6(c)');\n",
+"K= E1-E2; //The kinetic energy is the difference in the energy before and after the collision;\n",
+"printf('The kinetic energy of the x-rays is %.3f eV\n',K);\n",
+"disp('Exa-3.6(d)');\n",
+"phi2=atand(E2*sind(theta)/(E1-E2*cosd(theta)))\n",
+"printf('The direction of the scattered eletron is %.1f degrees',phi2);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}