summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb')
-rw-r--r--Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb184
1 files changed, 184 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb b/Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb
new file mode 100644
index 0000000..37d4efa
--- /dev/null
+++ b/Modern_Physics_by_K_S_Krane/13-Nuclear_Reaction_and_Applications.ipynb
@@ -0,0 +1,184 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Nuclear Reaction and Applications"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Rate_of_production_of_neutron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Ex-13.1')\n",
+"v=1*1*10^-6*10^2; p=7.9; m=p*v;Na=6.023*10^23 //given values and various constants in suitable units\n",
+"M=56;N=m*Na/M; //number of atoms\n",
+"i=3*10^-6;\n",
+"q=1.6*10^-19;\n",
+"Io=i/q; //intensity\n",
+"s=0.6*10^-24;S=1; //given values in suitable units\n",
+"R=N*s*Io/S; //rate of neutrons\n",
+"printf('The rate of neutrons emitted from the target is %.2e particles per second',R);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Resultant_activity_of_198Au.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-13.2')\n",
+"A=197; m=30*10^-3;phi=3*10^12; //given values and various constants taken in suitable units\n",
+"Ar=99*10^-24; Na=6.023*10^23\n",
+"R=(phi*Na*Ar*m/A); //rate or production of gold\n",
+"t=2.7*24*60 // time of decay\n",
+"Act=R*(0.693/t); //activity /sec\n",
+"ActCi=Act/(2.7*10^-4); // in terms of curie(Ci)\n",
+"printf('The activity is found out to be %.2e/sec i.e %.2e Ci',Act,ActCi);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-13.3(a)')\n",
+"v=1.5*1.5*2.5*(10^-6)*10^2; //volume in cm3\n",
+"p=8.9; //density in g/cm3\n",
+"m=p*v;Na=6.023*10^23 //mass and Avagadro's number\n",
+"M=58.9; //Given values\n",
+"N=m*Na/M;\n",
+"i=12*10^-6; //thickness of beam\n",
+"q=1.6*10^-19;\n",
+"Io=i/(2*q); //intensity\n",
+"s=0.64*10^-24; //Given values\n",
+"S=1.5*1.5;\n",
+"R=N*s*Io/S; //rate of production of 61Cu\n",
+"printf('The rate of neutrons emitted from the target is %.2e particles/second\n',R);\n",
+"disp('Exa-13.3(b)')\n",
+"act=R*(1-(%e^((0.693)*(-2/3.41)))); //activity\n",
+"printf('The activity after 2.0h is %e/sec',act);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-13.4(a)');\n",
+"m2H=2.014102; //mass of various particles\n",
+"mn=1.008665;m63Cu=62.929599;\n",
+"m64Zn=63.929145;c2=931.5; //c^2=931.5 MeV\n",
+"Q=(m2H+m63Cu-mn-m64Zn)*c2; //Q of the reaction\n",
+"printf('The value of Q is %f MeV\n',Q);\n",
+"disp('Exa-13.4(b)');\n",
+"Kx=12.00;Ky=16.85;\n",
+"Ky=Q+Kx-Ky //kinetic energy of 64Zn\n",
+"printf('The value of Ky was found out to be %.2f MeV',Ky);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-13.5(a)');\n",
+"mp=1.007825;m3H=3.016049; //mass of the particle\n",
+"m2H=2.014102;c2=931.5; //constant\n",
+"Q=(mp+m3H-(2*m2H))*c2; //Q of thereaction\n",
+"printf('The value of q was found out to be %f MeV\n',Q);\n",
+"disp('Exa-13.5(b)');\n",
+"Kth1= -Q*(1+(mp/m3H)); //threshold energy of kinetic energy\n",
+"printf('The threshold kinetic energy in case-1 is %f MeV\n',Kth1);\n",
+"Kth2=-Q*(1+(m3H/mp)); //threshold kinetic energy in case2\n",
+"printf('The threshold kinetic energy in case-2 is %f MeV',Kth2);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}