summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb')
-rw-r--r--Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb291
1 files changed, 291 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb
new file mode 100644
index 0000000..02dbc3a
--- /dev/null
+++ b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb
@@ -0,0 +1,291 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: ELECTRIC AND MAGNETIC FIELD"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: CALCUALTION_OF_ELECTROSTATIC_FORCE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.1\n",
+"//Comparision of electrostatic force of replusion between two particles with the gravitational forces between them\n",
+"\n",
+"//given values\n",
+"q1=3.2*10^-19;\n",
+"q2=q1;//q1 and q2 are the values of charge on alpha-particle in C\n",
+"d=10^-13;//distance between two alpha-particles in m\n",
+"m1=6.68*10^-27;\n",
+"m2=m1;//m1 and m2 are masses of alpha-particles in kg\n",
+"G=6.67*10^-11;//Gravitational constant in N-(m^2)/(kg^2)\n",
+"\n",
+"//calculation\n",
+"F1=(9*10^9)*(q1*q2)/(d^2);//calculation of electrostatic force\n",
+"disp(F1,'The electrosatic force(in N) is');\n",
+"F2=G*(m1*m2)/(d^2);//calculation of electrostatic force\n",
+"disp(F2,'The gravitational force (in N) is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: CALCUALTION_OF_DISTANCE_OF_SEPARATION.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.2\n",
+"//Calculation of the distance of separation between two electrons\n",
+"\n",
+"// given values\n",
+"m=9.1*10^-31;//mass of elctron in kg\n",
+"q=1.6*10^-19;//charge on electron in C\n",
+"g=9.81;//acceleration due to gravity in m/(s^2)\n",
+"\n",
+"//calculation\n",
+"Fg=m*g;//gravitational force in N\n",
+"d=sqrt((9*10^9*q^2)/Fg);//equating gravitational force with electrosatic force for calculating distance\n",
+"disp(d,'The distance of separation(in m) is') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: CALCULATE_FIELD_INTENSITY_AND_FORCE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.3\n",
+"//Calculation of electric intensity between plates and force on proton\n",
+"\n",
+"//given values\n",
+"d=0.02//distance between plates in m\n",
+"V=400;//potential differnce of plates in V\n",
+"q=1.6*10^-19;//charge on a proton in C\n",
+"\n",
+"//calculation\n",
+"E=V/d;//\n",
+"disp(E,'The electric field intensity(in V/m) between plates is');\n",
+"F=q*E;//\n",
+"disp(F,'The force(in N) on proton is') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: CALCULATE_MASS_OF_OIL_DROP.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.4\n",
+"//calculation of mass of oil drop\n",
+"\n",
+"//given values\n",
+"d=0.02//distance between plates in m\n",
+"q=1.6*10^-19;//charge on oil drop in C\n",
+"V=6000;//potential differnce of plates in V\n",
+"g=9.81;//acceleration due to gravity in m/(s^2)\n",
+"\n",
+"//calculation\n",
+"E=V/d;//electric field intensity between plates in V/m\n",
+"F=q*E;//electrostatic force on oil drop in N\n",
+"m=F/g;//equating the weight of oil drop to the electrostatic force on it\n",
+"disp(m,'The mass(in kg) of oil drop') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: CALCULATE_VELOCITY_OF_ELECTRON.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.5\n",
+"//Calculation of velocity of an electron\n",
+"\n",
+"//given values\n",
+"V=150;//potential difference between anode and cathode in V\n",
+"m=9.31*10^-31;//mass of an electron in kg\n",
+"q=1.6*10^-19;//charge on an electron in C\n",
+"\n",
+"//Calculation\n",
+"E=q*V;//energy(in J) gained by electron during speeding from cathode to anode\n",
+"vel=sqrt(E*2/m);//equating with kinetic energy of electron i.e m(v^2)/2\n",
+"disp(vel,'The velocity(in m/s) is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: CALCULATE_ENERGY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.6\n",
+"//Calculation of energy in eV,MeV,J\n",
+"\n",
+"//given values\n",
+"V=5*10^6;//potential differnce through which alpha-particle is accelerated\n",
+"e=1.6*10^-19;//charge on electron in C\n",
+"\n",
+"//calculation\n",
+"E1=2*V;//electronic charge on alpha-particle is 2e Coulombs\n",
+"disp(E1,'The energy in eV is');\n",
+"E2=E1/10^6;//energy in MeV\n",
+"disp(E2,'The energy in MeV is');\n",
+"E3=E1*e;//energy in Joules\n",
+"disp(E3,'The energy in J is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: CALCULATE_TOTAL_ENERGY.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.7\n",
+"//Calculation of the total energy \n",
+"\n",
+"//given values\n",
+"r=0.528*10^-10;//radius of the orbit in m\n",
+"q=-1.6*10^-19;//charge on electron in C\n",
+"Q=1.6*10^-19;//charge on Hydrogen nucleus in C\n",
+"Eo=8.854*10^-12;//permittivity in free space in F/m\n",
+"\n",
+"//calculation\n",
+"E=(q*Q)/(8*3.14*Eo*r);//\n",
+"disp(E,'The total energy(in J) is');\n",
+"E1=E/(1.6*10^-19);//\n",
+"disp(E1,'The total energy(in eV) is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: CALCULATE_FORCE_AND_RADIUS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 1.8\n",
+"\n",
+"//given values\n",
+"Q=3.2*10^-19;//charge on alpha-particle in C\n",
+"m=6.68*10^-27;//mass on alpha-particle in kg\n",
+"B=1.5;//transverse magnetic field of flux density in Wb/(m^2)\n",
+"v=5*10^6;//velocity of alpha-particle in m/s\n",
+"\n",
+"//Calculation\n",
+"F=B*Q*v;//\n",
+"disp(F,'The force(in N) on particle is');\n",
+"R=m*v/(Q*B);//\n",
+"disp(R,'The radius(in m) of its circular path')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}