diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb')
-rw-r--r-- | Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb | 291 |
1 files changed, 291 insertions, 0 deletions
diff --git a/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb new file mode 100644 index 0000000..02dbc3a --- /dev/null +++ b/Modern_Physics_by_B_L_Theraja/1-ELECTRIC_AND_MAGNETIC_FIELD.ipynb @@ -0,0 +1,291 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: ELECTRIC AND MAGNETIC FIELD" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: CALCUALTION_OF_ELECTROSTATIC_FORCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.1\n", +"//Comparision of electrostatic force of replusion between two particles with the gravitational forces between them\n", +"\n", +"//given values\n", +"q1=3.2*10^-19;\n", +"q2=q1;//q1 and q2 are the values of charge on alpha-particle in C\n", +"d=10^-13;//distance between two alpha-particles in m\n", +"m1=6.68*10^-27;\n", +"m2=m1;//m1 and m2 are masses of alpha-particles in kg\n", +"G=6.67*10^-11;//Gravitational constant in N-(m^2)/(kg^2)\n", +"\n", +"//calculation\n", +"F1=(9*10^9)*(q1*q2)/(d^2);//calculation of electrostatic force\n", +"disp(F1,'The electrosatic force(in N) is');\n", +"F2=G*(m1*m2)/(d^2);//calculation of electrostatic force\n", +"disp(F2,'The gravitational force (in N) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: CALCUALTION_OF_DISTANCE_OF_SEPARATION.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.2\n", +"//Calculation of the distance of separation between two electrons\n", +"\n", +"// given values\n", +"m=9.1*10^-31;//mass of elctron in kg\n", +"q=1.6*10^-19;//charge on electron in C\n", +"g=9.81;//acceleration due to gravity in m/(s^2)\n", +"\n", +"//calculation\n", +"Fg=m*g;//gravitational force in N\n", +"d=sqrt((9*10^9*q^2)/Fg);//equating gravitational force with electrosatic force for calculating distance\n", +"disp(d,'The distance of separation(in m) is') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: CALCULATE_FIELD_INTENSITY_AND_FORCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.3\n", +"//Calculation of electric intensity between plates and force on proton\n", +"\n", +"//given values\n", +"d=0.02//distance between plates in m\n", +"V=400;//potential differnce of plates in V\n", +"q=1.6*10^-19;//charge on a proton in C\n", +"\n", +"//calculation\n", +"E=V/d;//\n", +"disp(E,'The electric field intensity(in V/m) between plates is');\n", +"F=q*E;//\n", +"disp(F,'The force(in N) on proton is') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: CALCULATE_MASS_OF_OIL_DROP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.4\n", +"//calculation of mass of oil drop\n", +"\n", +"//given values\n", +"d=0.02//distance between plates in m\n", +"q=1.6*10^-19;//charge on oil drop in C\n", +"V=6000;//potential differnce of plates in V\n", +"g=9.81;//acceleration due to gravity in m/(s^2)\n", +"\n", +"//calculation\n", +"E=V/d;//electric field intensity between plates in V/m\n", +"F=q*E;//electrostatic force on oil drop in N\n", +"m=F/g;//equating the weight of oil drop to the electrostatic force on it\n", +"disp(m,'The mass(in kg) of oil drop') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: CALCULATE_VELOCITY_OF_ELECTRON.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.5\n", +"//Calculation of velocity of an electron\n", +"\n", +"//given values\n", +"V=150;//potential difference between anode and cathode in V\n", +"m=9.31*10^-31;//mass of an electron in kg\n", +"q=1.6*10^-19;//charge on an electron in C\n", +"\n", +"//Calculation\n", +"E=q*V;//energy(in J) gained by electron during speeding from cathode to anode\n", +"vel=sqrt(E*2/m);//equating with kinetic energy of electron i.e m(v^2)/2\n", +"disp(vel,'The velocity(in m/s) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: CALCULATE_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.6\n", +"//Calculation of energy in eV,MeV,J\n", +"\n", +"//given values\n", +"V=5*10^6;//potential differnce through which alpha-particle is accelerated\n", +"e=1.6*10^-19;//charge on electron in C\n", +"\n", +"//calculation\n", +"E1=2*V;//electronic charge on alpha-particle is 2e Coulombs\n", +"disp(E1,'The energy in eV is');\n", +"E2=E1/10^6;//energy in MeV\n", +"disp(E2,'The energy in MeV is');\n", +"E3=E1*e;//energy in Joules\n", +"disp(E3,'The energy in J is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: CALCULATE_TOTAL_ENERGY.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.7\n", +"//Calculation of the total energy \n", +"\n", +"//given values\n", +"r=0.528*10^-10;//radius of the orbit in m\n", +"q=-1.6*10^-19;//charge on electron in C\n", +"Q=1.6*10^-19;//charge on Hydrogen nucleus in C\n", +"Eo=8.854*10^-12;//permittivity in free space in F/m\n", +"\n", +"//calculation\n", +"E=(q*Q)/(8*3.14*Eo*r);//\n", +"disp(E,'The total energy(in J) is');\n", +"E1=E/(1.6*10^-19);//\n", +"disp(E1,'The total energy(in eV) is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: CALCULATE_FORCE_AND_RADIUS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 1.8\n", +"\n", +"//given values\n", +"Q=3.2*10^-19;//charge on alpha-particle in C\n", +"m=6.68*10^-27;//mass on alpha-particle in kg\n", +"B=1.5;//transverse magnetic field of flux density in Wb/(m^2)\n", +"v=5*10^6;//velocity of alpha-particle in m/s\n", +"\n", +"//Calculation\n", +"F=B*Q*v;//\n", +"disp(F,'The force(in N) on particle is');\n", +"R=m*v/(Q*B);//\n", +"disp(R,'The radius(in m) of its circular path')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |