diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Mechanics_of_Materials_by_R_C_Hibbeler | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Mechanics_of_Materials_by_R_C_Hibbeler')
14 files changed, 9072 insertions, 0 deletions
diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/1-Stress.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/1-Stress.ipynb new file mode 100644 index 0000000..0da90e7 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/1-Stress.ipynb @@ -0,0 +1,1022 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Stress" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: S10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.10 : ')\n", +"\n", +"//Given:\n", +" af = 800; //N Axial force along centroidal axis\n", +"t = 0.040; //m thickness of square cross section\n", +"ang_b = 30 *(%pi/180) ;\n", +"ang_b_comp = 60 *(%pi/180);\n", +"a = t^2; //m^2 Area of cross section\n", +"a_new = ((t*1000)^2)/(sin(ang_b_comp)); // mm^2 Area of section at b-b\n", +"\n", +"//Part(a)\n", +"\n", +"//Internal Loading: The bar is sectioned, Fig 1-24b, and the internal resultant loading consists of only axial force.\n", +"\n", +"// Average Stress: \n", +"avg_stress = af/(a* 1000);\n", +"\n", +"//Shear Force at the section is zero.\n", +"//The average normal stress distribution over the cross section is shown in Fig 1-24c.\n", +"\n", +"\n", +"//Part(b)\n", +"\n", +"\n", +"//solve the two equations for two unknowns:\n", +"\n", +"N = af * cos(ang_b); \n", +"V = af * sin(ang_b);\n", +"avg_normal_stress = (N*1000)/ a_new; // kPa\n", +"avg_shear_stress = (V*1000)/a_new; //kPa\n", +"\n", +"//Display\n", +"\n", +"printf('\n\nThe average stress for section a-a = %.2f kPa',avg_stress);\n", +"printf('\nThe Normal Force for section b-b = %.2f N',N);\n", +"printf('\nThe Shear Force for section b-b = %.2f N',V);\n", +"printf('\nThe Average Normal Stress for section b-b = %.2f kPa',avg_normal_stress);\n", +"printf('\nThe Average Shear Stress for section b-b = %.2f kPa',ceil(avg_shear_stress));\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: S11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.11 : ')\n", +"\n", +"//Given :\n", +"f = 5000; //N\n", +"d_rod = 10;//Diameter of steel rod in mm.\n", +"l_bc = 20; //Length of side bc in mm.\n", +"l_bd = 40; //Length of side bd in mm.\n", +"a_rod = (%pi/4)* (d_rod^2); //Area of cross section of the rod in mm^2.\n", +"a_strut = l_bc*l_bd ; //Area of strut in mm^2.\n", +"\n", +"\n", +"//Average shear stress\n", +"\n", +"avg_shear_rod = f/a_rod; //for rod in Mpa\n", +"avg_shear_strut = (f/2)/a_strut; //for strut\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe average shear stress for the rod = %.2f MPa',avg_shear_rod);\n", +"printf('\nThe average shear stress for the strut = %.2f MPa',avg_shear_strut);\n", +"\n", +"\n", +"\n", +"//--------------------------------------------------------------END----------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: S12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.12 : ')\n", +"\n", +"//Given:\n", +"l_bc = 50; //Length of BC in mm.\n", +"l_db = 75; // mm.\n", +"l_ed = 40; // mm.\n", +"l_ab = 25; // mm.\n", +"f_diagonal = 3000; //N\n", +"a1 = l_ab*l_ed; //Area of face AB in mm^2.\n", +"a2 = l_bc*l_ed ; //mm^2.\n", +"a3 = l_db*l_ed ; // mm^2.\n", +"\n", +"//Internal loadings - The free body diagram of the inclined member is shown in 1-26b. \n", +"\n", +"//Equilibrium Equations\n", +"\n", +"//Balancing forces along the x- direction.\n", +"f_ab = f_diagonal*(3/5); //Force on segment AB in N\n", +"V = f_ab; //Shear force acting on the sectioned horizontal plane EDB in N\n", +"\n", +"//Balancing forces along the Y direction.\n", +"f_bc = f_diagonal*(4/5); //Force on segment BC in N.\n", +"\n", +"//Average compressive stresses along the horizontal and vertical planes:\n", +"\n", +"avg_comp_ab = f_ab/a1; // N/mm^2\n", +"avg_comp_bc = f_bc/a2; // N/mm^2\n", +"\n", +"//Average shear stress acting on the horizontal plane defined by EDB :\n", +"\n", +"avg_shear = f_ab/a3; // N/mm^2\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe Force on segment AB = %.2f N',f_ab);\n", +"printf('\nThe Shear Force on sectioned plane EDB = %.2f N',V);\n", +"printf('\nThe Force on segment BC = %.2f N',f_bc);\n", +"printf('\nThe average compressive stress along AB = %.2f N/mm^2',avg_comp_ab);\n", +"printf('\nThe average compressive stress along BC = %.2f N/mm^2',avg_comp_bc);\n", +"printf('\nThe average shear stress along EDB = %.2f N/mm^2',avg_shear);\n", +"\n", +"//-------------------------------------------------------------------------------END---------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: S13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.13 : ')\n", +"\n", +"//Given:\n", +"shear_allow = 90; //MPa\n", +"tensile_allow = 115; //MPa\n", +"\n", +"l_AP = 2; //m\n", +"l_PB = 1; //m\n", +"resultant_A = 5.68; //kN\n", +"resultant_B = 6.67; //kN\n", +"v_a = 2.84; //kN\n", +"v_b = 6.67; //kN\n", +"\n", +"\n", +"//Diameter of the Pins:\n", +"A_A = (v_a*10^3)/(shear_allow*10^6); //Area of pin A\n", +"da = (sqrt((4*A_A)/%pi))*10^3 // d = (square root of(area*4/pi)) in mm\n", +"A_B = (v_b*10^3)/(shear_allow*10^6) ; //Area of pin B\n", +"db = (sqrt((4*A_B)/%pi))*10^3 // Area = (%pi\4)d^2 in mm^2\n", +"\n", +"chosen_da = ceil(da);\n", +"chosen_db = ceil(db);\n", +"\n", +"//Diameter of Rod:\n", +"A_bc = (resultant_B*10^3)/(tensile_allow*10^6); //Area of BC\n", +"dbc = (sqrt((4*A_bc)/%pi)*10^3); // Area = %pi\4)d^2\n", +"chosen_dbc = ceil(dbc);\n", +"\n", +"//Displaying Results:\n", +"\n", +"printf ('\n\n The diameter of pin A = %.3f mm',da);\n", +"printf ('\n The diameter of pin B = %.3f mm',db);\n", +"printf ('\n The diameter of rod BC = %.2f mm',dbc);\n", +"printf ('\n\n\nThe chosen diameters are: ');\n", +"printf ('\n The diameter of pin A = %.3f mm',chosen_da);\n", +"printf ('\n The diameter of pin B = %.3f mm',chosen_db);\n", +"printf ('\n The diameter of rod BC = %.2f mm',chosen_dbc);\n", +"\n", +"//-----------------------------------------------------------------------END--------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: S14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.14 : ')\n", +"\n", +"//Given:\n", +"shear_allow = 55; //MPa\n", +"l_ac = 200; //mm\n", +"l_cd= 75; //mm\n", +"l_de = 50; //mm\n", +"l_ce = l_cd + l_de;\n", +"load_d =15; //kN\n", +"load_e = 25; //kN\n", +"\n", +"//Internal Shear Force:\n", +"//summation Mc = 0\n", +"\n", +"f_ab = ((load_d*l_cd +load_e*(3/5)*l_ce)/l_ac);\n", +"c_x =-load_d + (load_e*(4/5)); //resolving C in x dir\n", +"c_y = load_d + (load_e*(3/5)); //resolving C in y dir\n", +"\n", +"f_c = sqrt(c_x^2 + c_y^2); //kN\n", +"V = f_c/2;\n", +"\n", +"//Required Area\n", +"A = ((V*10^3)/(shear_allow)); //A = V/Allowable shear in mm^2\n", +"d = ((sqrt((4*A)/%pi))) // Area = (%pi\4)d^2 in mm^2\n", +"\n", +"chosen_d = ceil(ceil(d))+1;\n", +"\n", +"//Displaying Results:\n", +"\n", +"\n", +"printf('\n\nThe force at AB = %.2f kN',f_ab);\n", +"printf('\nThe resultant force at C = %.2f kN',f_c);\n", +"printf('\nThe area of pin = %.2f mm^2',A);\n", +"printf('\nThe diameter of pin = %.2f mm',chosen_d);\n", +"\n", +"//---------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.15: S15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.15 : ')\n", +"\n", +"//Given:\n", +"P= 20; //kN\n", +"d_hole = 40; //mm\n", +"normal_allow = 60; //MPa\n", +"shear_allow = 35; //MPa\n", +"\n", +"\n", +"//Diameter of Rod:\n", +"area1 = (P*10^3)/(normal_allow*10^6); //Area in m^2\n", +"d = ((sqrt((4*area1)/%pi))*1000); // Area = (%pi\4)d^2\n", +"\n", +"\n", +"//Thickness of disc:\n", +"V = P;\n", +"area2 = (V*10^3)/(shear_allow*10^6); //Area in m^2\n", +"thickness = (area2*10^6)/(d_hole*%pi);// A = pi*d*t\n", +" \n", +"\n", +"printf('\n\nThe cross sectional area of disc = %.8f m^2',area1);\n", +"printf('\nThe diameter of rode = %.2f mm',d);\n", +"printf('\nThe thickness of disc = %.2f mm',thickness);\n", +"\n", +"//------------------------------------------------------------------------END------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: S16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.16 : ')\n", +"\n", +"//Given:\n", +"bearing_allow = 75; //MPa\n", +"tensile_allow = 55; //MPa\n", +"d_shaft = 60; //mm\n", +"r_shaft = d_shaft/2; //mm\n", +"area_shaft = %pi*(r_shaft^2); //Area = pi*r^2\n", +"d_collar = 80; //mm\n", +"r_collar = d_collar/2; //mm\n", +"area_collar = %pi*(r_collar^2); //Area = pi*r^2\n", +"thick_collar = 20; //mm\n", +"\n", +"//Normal Stress:\n", +"P1 = (tensile_allow* area_shaft)/3; //Tensile stress = 3P/A.\n", +"P1_kN = P1/1000;\n", +"\n", +"\n", +"//Bearing Stress:\n", +"bearing_area = area_collar-area_shaft; //mm^2\n", +"P2 = (bearing_allow*bearing_area)/3; //Bearing stress = 3P/A.\n", +"P2_kN= P2/1000;\n", +"\n", +"if(P2_kN<P1_kN)\n", +" big = P2_kN;\n", +"else big = P1_kN;\n", +" end\n", +" \n", +"//Displaying Results:\n", +"\n", +"printf('\n\nThe load calculated by Normal Stress = %.1f kN',P1_kN);\n", +"printf('\nThe load calculated by Bearing Stress = %.1f kN',P2_kN);\n", +"printf('\nThe largest load that can be applied to the shaft = %.1f kN',big);\n", +"\n", +"//----------------------------------------------------------------------------END----------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.17: S17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.17 : ')\n", +"\n", +"//Given:\n", +"d_ac= 20; //mm\n", +"area_ac = %pi*(d_ac/2)^2; //Area = (%pi\4)d^2\n", +"area_al = 1800; //mm^2\n", +"d_pins = 18; //mm\n", +"area_pins = %pi*(d_pins/2)^2;\n", +"st_fail_stress = 680; //MPa\n", +"al_fail_stress = 70; //MPa\n", +"shear_fail_pin = 900; //MPa\n", +"fos = 2; //Factor of safety\n", +"l_ab = 2; //m\n", +"l_ap = 0.75; //m\n", +"\n", +"\n", +"st_allow= st_fail_stress /fos; //MPa\n", +"al_allow = al_fail_stress/fos; //MPa\n", +"pin_allow_shear = shear_fail_pin/fos; //MPa\n", +"\n", +"//Rod AC\n", +"f_ac = (st_allow*area_ac)/1000;\n", +"P1 = ((f_ac*l_ab)/(l_ab-l_ap));\n", +"\n", +"//Block B\n", +"f_b =(al_allow*area_al)/1000;\n", +"P2 = ((f_b*l_ab)/l_ap);\n", +"\n", +"//Pin A or C:\n", +"V = (pin_allow_shear*area_pins)/1000;\n", +"P3 = (V*l_ab)/(l_ab-l_ap);\n", +"\n", +"if(P1<P2 & P1<P3)\n", +" big = P1;\n", +"else if(P2<P1 & P2<P3)\n", +" big = P2;\n", +"else big = P3;\n", +"end\n", +"\n", +"//Displaying Results:\n", +"\n", +"printf('\n\nThe load allowed on rod AC = %.1f kN',round(P1));\n", +"printf('\nThe load allowed on block B = %.1f kN',P2);\n", +"printf('\nThe load allowed on pins A or C = %.1f kN',P3);\n", +"printf('\nThe largest load that can be applied to the bar = %.1f kN ',big);\n", +"\n", +"//----------------------------------------------------------------------------------END----------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: S1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.1 :')\n", +"\n", +"w_varying = 270;\n", +"l_crossection = 9;\n", +"l_cb = 6;\n", +"l_ac = 2;\n", +"w_c = (w_varying/l_crossection) * l_cb //By proportion, load at C is found.\n", +"f_resultant_c = 0.5* w_c *l_cb \n", +"// Equations of Equilibrium\n", +"\n", +"//Balancing forces in the x direction:\n", +"n_c = 0\n", +"\n", +"//Balncing forces in the y direction:\n", +"v_c = f_resultant_c\n", +"\n", +"// Balncing the moments about C:\n", +"m_c = - (f_resultant_c*l_ac)\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"printf('\n\nThe resultant force at C = %.2f N',f_resultant_c);\n", +"printf('\nThe horizontal force at C = %.2f N',n_c);\n", +"printf('\nThe vertical force at C = %.2f N',v_c);\n", +"printf('\nThe moment about C = %.2f Nm',m_c);\n", +"\n", +"\n", +"// ---------------------------------------------------------END-------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: S2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.2 : ')\n", +"\n", +"f_d = 225; //N\n", +"w_uniform = 800; // N/m\n", +"l_ac = 0.200; //m\n", +"l_cb = 0.05+0.1; //m\n", +"l_bd = 0.100; //m\n", +"l_bearing = 0.05; //m\n", +"f_resultant = w_uniform*l_cb //120N\n", +"l_f_resultant_b = (l_cb/2)+ l_bearing; //0.125m\n", +"l = l_ac + l_cb + l_bearing + l_bd \n", +"\n", +"\n", +"// This problem is solved by considering segment AC of the shaft.\n", +"\n", +"//Support Reactions:\n", +"\n", +"m_b = 0; // Net moment about B is zero for equilibrium . Sum Mb = 0.\n", +"a_y = -((f_d*l_bd) - (f_resultant*l_f_resultant_b))/ (l - l_bd) // finding the reaction force at A\n", +"\n", +"// Refer to the free body diagram in Fig.1-5c.\n", +"f_c = 40 //N\n", +"//Balancing forces in the x direction:\n", +"n_c = 0\n", +"\n", +"//Balncing forces in the y direction:\n", +"v_c = a_y - f_c //-18.75N - 40N-Vc = 0\n", +"\n", +"// Balncing the moments about C:\n", +"m_c = ((a_y * (l_ac + 0.05)) - f_c*(0.025) ) // Mc+40N(0.025m)+ 18.75N(0.250m) = 0\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"printf('\n\nThe resultant force = %.2f N',f_resultant);\n", +"printf('\nThe reaction force at A = %.2f N',a_y);\n", +"printf('\nThe horizontal force at C = %.2f N',n_c);\n", +"printf('\nThe vertical force at C = %.2f N',v_c);\n", +"printf('\nThe moment about C = %.2f Nm',m_c);\n", +"\n", +"//-------------------------------------------------------------------END-----------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: S3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.3 :')\n", +"\n", +"// Given:\n", +"l_ac = 1; //m.\n", +"l_cd = 1.5 ; //m.\n", +"l_bd = 0.5; //m.\n", +"r_a = 0.125; //m.\n", +"r_d = 0.125; //m.\n", +"W = 2000; // N\n", +"\n", +"\n", +"// Equations of equilibrium:\n", +"\n", +"//Balancing forces in the x direction:\n", +"n_c = -W; // N\n", +"\n", +"//Balncing forces in the y direction:\n", +"v_c = -W; //N\n", +"\n", +"// Balncing the moments about C:\n", +"m_c = - (W*(r_a +l_ac)- W*r_a)\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"printf('\n\nThe horizontal force at C = %.2f N',n_c);\n", +"printf('\nThe vertical force at C = %.2f N',v_c);\n", +"printf('\nThe moment about C = %.2f Nm',m_c);\n", +"\n", +"//----------------------------------------------------------------------------END--------------------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: S4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.4 :')\n", +"\n", +"// Given:\n", +"l_ag = 1; //Length of AG is 1m.\n", +"l_gd = 1; //Length of GD is 1m.\n", +"l_de = 3; //Length of DE is 1m.\n", +"f_a = 1500; //Force at A is 1500N.\n", +"l_ec = 1.5; //Length of EC is 1m.\n", +"l = l_ag +l_gd +l_de;\n", +"w_uniform_varying = 600; //Nm.\n", +"\n", +"w_resultant = 0.5*l_de*w_uniform_varying;\n", +"// calling point of action of resultant as P\n", +"l_ep = (2/3)*l_de; //Distance between points P and E.\n", +"l_ap = l - l_ep; // Distance between points A and P.\n", +"\n", +"\n", +"f_ba = 7750; //N\n", +"f_bc = 6200; //N\n", +"f_bd = 4650; //N\n", +"\n", +"//Free Body Diagram: Using the result for Fba, the left section AG of the beam is shown in Fig 1-7d.\n", +"\n", +"// Equations of equilibrium:\n", +"\n", +"//Balancing forces in the x direction:\n", +"n_g = -f_ba * (4/5); // N\n", +"\n", +"//Balncing forces in the y direction:\n", +"v_g = -f_a + f_ba*(3/5); //N\n", +"\n", +"// Balncing the moments about C:\n", +"m_g = (f_ba * (3/5)*l_ag) - (f_a * l_ag); //Nm\n", +"\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"\n", +"printf('\n\nThe horizontal force at G = %.2f N',n_g);\n", +"printf('\nThe vertical force at G = %.2f N',v_g);\n", +"printf('\nThe moment about G = %.2f Nm',m_g);\n", +"\n", +"\n", +"//-------------------------------------------------------------------END----------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: S5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.5 :')\n", +"\n", +"// Given:\n", +"f_a = 50; //N\n", +"m_a = 70; // Moment at A in Nm\n", +"l_ad = 1.25; //Length of AD in m.\n", +"l_bd = 0.5; //Length of BD in m.\n", +"l_cb = 0.75; //Length of BC in m.\n", +"w_l = 2; //Kg/m\n", +"g = 9.81; //N/kg- acceleration due to gravity\n", +"\n", +"\n", +"\n", +"//Free Body Diagram :\n", +"\n", +"w_bd = w_l*l_bd*g; //in N. Weight of each segment of pipe that acts through the centre of gravity of each segment.\n", +"w_ad = w_l*l_ad*g;\n", +"\n", +"// Equations of Equilibrium\n", +"\n", +"//Balancing forces in the x direction:\n", +"f_b_x = 0; // N\n", +"\n", +"//Balncing forces in the y direction:\n", +"f_b_y = 0; //N\n", +"\n", +"//Balncing forces in the z direction:\n", +"f_b_z = g + w_ad + f_a; //N\n", +"\n", +"// Balancing Moments in the x direction:\n", +"m_b_x = - m_a + (f_a*l_bd) + (w_ad*l_bd) + (l_bd/2)*g; //Nm\n", +"\n", +"// Balancing Moments in the y direction:\n", +"m_b_y = - (w_ad*(l_ad/2)) - (f_a*l_ad); //Nm\n", +"\n", +"// Balancing Moments in the z direction:\n", +"m_b_z = 0; //Nm\n", +"\n", +"v_b_shear = sqrt(f_b_z ^2 + 0); //Shear Force in N\n", +"t_b = - m_b_y; //Torsional Moment in Nm\n", +"m_b = sqrt(m_b_x ^2+ 0); // Bending moment in Nm\n", +"\n", +"\n", +"//Display\n", +"\n", +"// Displaying results:\n", +"\n", +"\n", +"printf('\n\n The weight of segment BD = %.1f N',w_bd);\n", +"printf('\n The weight of segment AD = %.1f N',w_ad);\n", +"printf('\n The force at B in the Z direction = %.1f N',f_b_z);\n", +"printf('\n The moment about B in the X direction = %.1f Nm',m_b_x);\n", +"printf('\n The moment about G in the Y direction = %.1f Nm',m_b_y);\n", +"printf('\n The Shear Force at B = %.1f N',v_b_shear);\n", +"printf('\n The Torsional Moment at B = %.1f Nm',t_b);\n", +"printf('\n The Bending Moment at B = %.1f Nm',m_b);\n", +"\n", +"\n", +"\n", +"//-----------------------------------------------------END-----------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: S6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.6 :')\n", +"\n", +"//Given:\n", +"netf_b = 18*(10 ^3); //N Net force at B.\n", +"netf_c = 8*(10^3); //N Net force at C.\n", +"f_a = 12 *(10^3); //N Force at A.\n", +"f_d = 22* (10^3); //N Force at D.\n", +"w = 35; //mm Width.\n", +"t = 10; //mm Thickness.\n", +"\n", +"//calculations:\n", +"p_bc = netf_b + f_a; //N Net force in region BC.\n", +"a = w*t; //m^2 The area of the cross section.\n", +"avg_normal_stress = p_bc/a; //Average Normal Stress.\n", +"\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"printf('\n\n Net force in the region BC = %.2f N',p_bc);\n", +"printf('\nThe Area of cross section = %.2f m^2',a);\n", +"printf('\nThe Average Normal Stress in the bar when subjected to load = %.2f MPa',avg_normal_stress);\n", +"\n", +"//---------------------------------------------------------END----------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: S7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.7 :')\n", +"\n", +"//Given :\n", +"m_lamp = 80; //Mass of lamp in Kg.\n", +"d_ab = 10; // Diameter of AB in mm.\n", +"d_bc = 8; // Diameter of BC in mm.\n", +"ab_h = 60 *(%pi/180); // In degrees - Angle made by AB with the horizontal.\n", +"w = m_lamp*9.81; //N\n", +"a_bc = (%pi/4)*(d_bc^2); //m^2 Area of cross section of rod BC\n", +"a_ab = (%pi/4)*(d_ab^2); //m^2 Area of cross section of rod AB\n", +"\n", +"\n", +"\n", +"// Equations of equilibrium: Solving equilibrium equations simultaneously ,using matrices ,in the x and y directions to obtain force in BC and force in BA.\n", +"\n", +"\n", +"a = [(4/5) -(cos(ab_h)) ; (3/5) (sin(ab_h))];\n", +"b = [0 ; w];\n", +"f = zeros(1)\n", +"\n", +"f = a\b;\n", +"f_bc = f(1); // Force in BC in N.\n", +"f_ba = f(2); //Force in BA in N.\n", +"avg_normal_stress_a = f_ba / a_ab; //Mpa Average Normal Stress in AB\n", +"avg_normal_stress_c = f_bc/ a_bc;// Mpa Average Normal Stress in BC\n", +"\n", +"\n", +"// Displaying results:\n", +"\n", +"\n", +"printf('\n\nThe Weight of lamp = %.2f N',w);\n", +"printf('\nThe Net force in BC = %.2f N',f_bc);\n", +"printf('\nTheNet force in BA = %.2f N',f_ba);\n", +"printf('\nThe Average Normal Stress in AB when subjected to load = %.2f MPa',avg_normal_stress_a);\n", +"printf('\nThe Average Normal Stress in BC when subjected to load = %.2f MPa',avg_normal_stress_c);\n", +"\n", +"//------------------------------------------------------------------END----------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: S8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 1.8 :')\n", +"\n", +"//Given:\n", +"h_above_ab = 0.8; \n", +"h_below_ab = 0.2; \n", +"d_a = 0.2; \n", +"d_b = 0.1; \n", +"sp_w = 80; \n", +"\n", +"// Equation of Equilibrium:\n", +"\n", +"\n", +"a = %pi* (d_a^2); // Area of cross section in m^2\n", +"p = sp_w * h_above_ab * a;\n", +"avg_comp_stress = p/a; // The average compressive stress in kN/m^2\n", +"\n", +"//Display:\n", +"\n", +"printf('\nThe internal Axial force P = %.2f kN',p);\n", +"printf('\nThe average compressive stress = %.2f kN/m^2',avg_comp_stress);\n", +"\n", +"\n", +"//--------------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: S9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 1.9 : ')\n", +"\n", +"//Given :\n", +"f = 3000; //N Force acting at distance x from AB.\n", +"l_ac = 200; //Length of AC in mm.\n", +"a_ab = 400; //Cross sectional area of AB in mm^2.\n", +"a_c = 650; // area of C in mm^2.\n", +"\n", +"\n", +"f_ans = zeros(3)\n", +"\n", +"k = [1 1 0;0 l_ac -f; 1.625 -1 0]\n", +"l = [f ; 0 ; 0 ]\n", +"f_ans = k\l;\n", +"\n", +"f_ab = f_ans(1)\n", +"f_c = f_ans(2)\n", +"x = f_ans(3)\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe Net force on AB = %.2f N',ceil(f_ab));\n", +"printf('\nNet force on C = %.2f N',f_c);\n", +"printf('\nDistance of force from AB = %.2f mm',ceil(x));\n", +"\n", +"\n", +"//------------------------------------------------------------------------------END------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/10-Strain_Transformation.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/10-Strain_Transformation.ipynb new file mode 100644 index 0000000..254bce5 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/10-Strain_Transformation.ipynb @@ -0,0 +1,777 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Strain Transformation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.10: StnT10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.10 : ')\n", +"\n", +"//Given:\n", +"a = 300; //mm\n", +"b = 50; //mm\n", +"t = 20; //mm\n", +"E_cu = 120*10^3; //MPa\n", +"nu_cu = 0.34;// Poisson's ratio\n", +"\n", +"//By inspection:\n", +"sigma_x = 800; //MPa\n", +"sigma_y = -500; //MPa\n", +"tou_xy = 0;\n", +"sigma_z = 0;\n", +"\n", +"//By Hooke's Law:\n", +"ep_x = (sigma_x/E_cu) - (nu_cu/E_cu)*(sigma_y + sigma_z);\n", +"ep_y = (sigma_y/E_cu) - (nu_cu/E_cu)*(sigma_x + sigma_z);\n", +"ep_z = (sigma_z/E_cu) - (nu_cu/E_cu)*(sigma_y + sigma_x);\n", +"\n", +"//New lengths:\n", +"\n", +"a_dash = a + ep_x*a;\n", +"b_dash = b + ep_y*b;\n", +"t_dash = t + ep_z*t;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe new length = %1.2fmm ',a_dash);\n", +"printf('\nThe new width = %1.2f mm ',b_dash);\n", +"printf('\nThe new thickness = %1.2f mm ',t_dash);\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.11: StnT11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.11 : ')\n", +"\n", +"//Given:\n", +"p = 20; //kPa\n", +"E = 600; //kPa\n", +"nu = 0.45\n", +"a = 4; //cm\n", +"b = 2; //cm\n", +"c = 3; //cm\n", +"\n", +"//Dilatation:\n", +"sigma_x = -p;\n", +"sigma_y = -p;\n", +"sigma_z = -p;\n", +"\n", +"e = ((1-2*nu)/E)*(sigma_x + sigma_y + sigma_z);\n", +"\n", +"//Change in Length:\n", +"ep = (sigma_x - nu*(sigma_y + sigma_z))/E;\n", +"\n", +"del_a = ep*a;\n", +"del_b = ep*b;\n", +"del_c = ep*c;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe change in length a = %1.4fcm ',del_a);\n", +"printf('\nThe change in length b = %1.5fcm ',del_b);\n", +"printf('\nThe change in length c = %1.4fcm ',del_c);\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.12: StnT12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.12 : ')\n", +"\n", +"//Given:\n", +"di = 60/1000; //m\n", +"ri = di/2;\n", +"d0 = 80/1000;//m\n", +"ro = d0/2;\n", +"T = 8000;//Nm\n", +"M = 3500; //Nm\n", +"sigma_y_sqr = 250^2; //MPa\n", +"\n", +"//Calculations:\n", +"c = ro;\n", +"J = (%pi/2)*(ro^4 - ri^4)*(10^6);\n", +"I = (%pi/4)*(ro^4 - ri^4)*(10^6);\n", +"tou_a = (T*c)/J;\n", +"sigma_a = (M*c)/I;\n", +"\n", +"sigma_avg = (0-sigma_a)/2;\n", +"\n", +"R = sqrt(116.4^2 + sigma_avg^2);\n", +"sigma1 = sigma_avg + R;\n", +"sigma2 = sigma_avg - R;\n", +"\n", +"test = (sigma1^2 - (sigma1*sigma2) + sigma2^2);\n", +"\n", +"\n", +"if(test<sigma_y_sqr)\n", +" printf('\n\nThe material within the pipe will not yield.');\n", +"end\n", +"\n", +"//-----------------------------------------------------------------------END---------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.13: StnT13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.13 : ')\n", +"\n", +"//Given:\n", +"T = 400; //Nm\n", +"sigma_ult = 150*10^6; //N/m^2\n", +"\n", +"//Calculations:\n", +"\n", +"x = T/(%pi/2);\n", +"r_3 = [x/sigma_ult];\n", +"r = nthroot(r_3, 3);\n", +"r= r*1000; //in mm\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe smallest radius of the solid cast iron shaft = %1.2fmm ',r);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.14: StnT14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.14 : ')\n", +"\n", +"//Given:\n", +"r = 0.5; //cm\n", +"sigma_yield = 360; //MPa\n", +"T = 3.25; //kN/cm\n", +"A= (%pi*r^2);\n", +"P = 15; //kN\n", +"J = (%pi/2)*(r^4);\n", +"sigma_y_sqr = sigma_yield^2;\n", +"\n", +"//Calculations:\n", +"sigma_x = -(P/A)*10;\n", +"sigma_y = 0;\n", +"tou_xy = (T*r*10)/J;\n", +"\n", +"k = (sigma_x + sigma_y)/2;\n", +"R = sqrt(k^2 + (tou_xy^2));\n", +"\n", +"sigma1 = k+R;\n", +"sigma2 = k-R;\n", +"l = sigma1 - sigma2;\n", +"\n", +"//Maximum Shear Stress Theory:\n", +"test1 = abs(l);\n", +"\n", +"if(test1 >= sigma_yield)\n", +" \n", +" printf('\n\nFailure occurs by Maximum Shear Stress Theory.');\n", +"end\n", +"\n", +"\n", +"//Maximum Distortion-Energy Theory:\n", +"test2 = (sigma1^2 - (sigma1*sigma2) + sigma2^2);\n", +"\n", +"\n", +"if(test2<sigma_y_sqr)\n", +" \n", +" printf('\n\nFailure will not occur by Maximum Distortion-Energy Theory.');\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: StnT1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.1 : ')\n", +"\n", +"//Given:\n", +"ep_x = 500; //Normal Strain\n", +"ep_y = -300; //Normal Strain\n", +"gamma_xy = 200; //Shear Strain\n", +"theta = 30*(%pi/180);\n", +"theta = theta*-1;\n", +"\n", +"ep_x_new = ((ep_x+ep_y)/2) + ((ep_x - ep_y)/2)*cos(2*theta) + (gamma_xy/2)*sin(2*theta);\n", +"\n", +"gamma_xy_new = -((ep_x - ep_y)/2)*sin(2*theta) + (gamma_xy/2)*cos(2*theta);\n", +"gamma_xy_new = 2*gamma_xy_new;\n", +"\n", +"phi = 60*(%pi/180);\n", +"ep_y_new = (ep_x+ep_y)/2 + ((ep_x - ep_y)/2)*cos(2*phi) + (gamma_xy/2)*sin(2*phi);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe equivalent strain acting on the element in the x plain oriented at 30 degrees clockwise = %1.1f *10^-6',ep_x_new);\n", +"printf('\nThe equivalent strain acting on the element in the y plain oriented at 30 degrees clockwise = %1.1f *10^-6',ep_y_new);\n", +"printf('\nThe equivalent shear strain acting on the element = %1.0f *10^-6',gamma_xy_new);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: StnT2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.2 : ')\n", +"\n", +"//Given:\n", +"ep_x = -350;//(*10^-6) Normal Strain\n", +"ep_y = 200; //*(10^-6) Normal Strain\n", +"gamma_xy = 80; //*(10^-6) Shear Strain\n", +"\n", +"//Orientation of the element:\n", +"tan_thetap = (gamma_xy)/(ep_x - ep_y);\n", +"thetap1 = (0.5)*(atan(tan_thetap));\n", +"\n", +"//Principal Strains:\n", +"\n", +"k = (ep_x + ep_y)/2;\n", +"l = (ep_x - ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"R = sqrt( (l)^2 + tou^2);\n", +"ep1 = R + k;\n", +"ep2 = k -R ;\n", +"ep = [ep1 ep2];\n", +"\n", +"ep_x1 = k + l*cos(2*thetap1)+ tou*sin(2*thetap1);\n", +"thetap1 = thetap1*(180/%pi);\n", +"thetap2 = (90 + thetap1);\n", +"thetap =[thetap1 thetap2];\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe orientation of the element in the positive counterclockwise direction = %1.2f degrees, %1.2f degrees ',thetap);\n", +"printf('\nThe principal strains are = %1.0f *10^-6 , %1.0f *10^-6 ',ep);\n", +"printf('\nThe principal strain in the new x direction is = %1.0f *10^-6 ',ep_x1);\n", +"\n", +"//----------------------------------------------------------------------END---------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: StnT3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.3 : ')\n", +"\n", +"//Given:\n", +"ep_x = -350;//(*10^-6) Normal Strain\n", +"ep_y = 200; //*(10^-6) Normal Strain\n", +"gamma_xy = 80; //*(10^-6) Shear Strain\n", +"\n", +"//Orientation of the element:\n", +"tan_thetap = -(ep_x - ep_y)/(gamma_xy);\n", +"thetap1 = (0.5)*(atan(tan_thetap));\n", +"\n", +"//Maximum in-plane shear strain:\n", +"\n", +"l = (ep_x - ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"R = sqrt( l^2 + tou^2);\n", +"max_inplane_strain = 2*R;\n", +"\n", +"gamma_xy_1 = (-l*sin(2*thetap1)+ tou*cos(2*thetap1))*2;\n", +"strain_avg = (ep_x + ep_y)/2;\n", +"\n", +"thetap1 = thetap1*(180/%pi);\n", +"thetap2 = (90 + thetap1);\n", +"thetap =[thetap1 thetap2];\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe orientation of the element = %1.1f degrees, %1.1f degrees ',thetap);\n", +"printf('\nThe maximum in-plane shear strain = %1.0f *10^-6 ',max_inplane_strain);\n", +"printf('\nThe average strain = %1.0f *10^-6 ',strain_avg);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: StnT4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.4 : ')\n", +"\n", +"//Given:\n", +"ep_x = 250;//(*10^-6) Normal Strain\n", +"ep_y = -150; //*(10^-6) Normal Strain\n", +"gamma_xy = 120; //*(10^-6) Shear Strain\n", +"\n", +"//Construction of the circle:\n", +"strain_avg = (ep_x + ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"R = sqrt((ep_x - strain_avg)^2 + (tou^2));\n", +"\n", +"//Principal Strains:\n", +"ep1 = (strain_avg + R);\n", +"ep2 = (strain_avg - R);\n", +"strain = [ep1 ep2];\n", +"\n", +"tan_thetap = (tou)/(ep_x - strain_avg);\n", +"thetap1 = (atan(tan_thetap))/2;\n", +"thetap1 = thetap1*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe principal strains are = %1.0f *10^-6, %1.0f*10^-6 ',strain);\n", +"printf('\nThe orientation of the element = %1.2f degrees',thetap1);\n", +"printf('\nThe average strain = %1.0f *10^-6 ',strain_avg);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: StnT5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.5 : ')\n", +"\n", +"//Given:\n", +"ep_x = 250;//(*10^-6) Normal Strain\n", +"ep_y = -150; //*(10^-6) Normal Strain\n", +"gamma_xy = 120; //*(10^-6) Shear Strain\n", +"\n", +"//Orientation of the element:\n", +"thetas = 90 - 2*8.35;\n", +"thetas1 = thetas/2;\n", +"\n", +"//Maximum in-plane shear strain:\n", +"\n", +"l = (ep_x - ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"R = sqrt( l^2 + tou^2);\n", +"max_inplane_strain = 2*R;\n", +"\n", +"\n", +"strain_avg = (ep_x + ep_y)/2;\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe orientation of the element = %1.1f degrees ',thetas1);\n", +"printf('\nThe maximum in-plane shear strain = %1.0f *10^-6 ',max_inplane_strain);\n", +"printf('\nThe average strain = %1.0f *10^-6 ',strain_avg);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: StnT6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.6 : ')\n", +"\n", +"//Given:\n", +"ep_x = -300;//(*10^-6) Normal Strain\n", +"ep_y = -100; //*(10^-6) Normal Strain\n", +"gamma_xy = 100; //*(10^-6) Shear Strain\n", +"theta = 20; //degrees\n", +"\n", +"\n", +"//Construction of the circle:\n", +"strain_avg = (ep_x+ ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"R = sqrt((-ep_x + strain_avg)^2 + tou^2);\n", +"\n", +"//Strains on Inclined Element:\n", +"theta1 = 2*theta;\n", +"\n", +"phi = atan((tou)/(-ep_x +strain_avg));\n", +"phi = phi*(180/%pi);\n", +"psi = theta1 - phi;\n", +"psi = psi*(%pi/180);\n", +"\n", +"ep_x1 = -(-strain_avg+ R*cos(psi));\n", +"gamma_xy1 = -(R*sin(psi))*2;\n", +"\n", +"ep_y1 = -(-strain_avg - R*cos(psi));\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe normal strain in the new x direction = %1.0f *10^-6 ',ep_x1);\n", +"printf('\nThe normal strain in the new y direction = %1.1f *10^-6 ',ep_y1);\n", +"printf('\nThe shear strain in the new xy direction = %1.0f *10^-6 ',gamma_xy1);\n", +"printf('\nThe average strain = %1.0f *10^-6 ',strain_avg);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: StnT7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.7 : ')\n", +"\n", +"//Given:\n", +"ep_x = -400;//(*10^-6) Normal Strain\n", +"ep_y = 200; //*(10^-6) Normal Strain\n", +"gamma_xy = 150; //*(10^-6) Shear Strain\n", +"\n", +"//Maximum in-plane Shear Strain:\n", +"strain_avg = (ep_x+ ep_y)/2;\n", +"tou = gamma_xy/2;\n", +"\n", +"R = sqrt((-ep_x + strain_avg)^2 + tou^2); \n", +"strain_max = strain_avg + R;\n", +"strain_min = strain_avg - R;\n", +"\n", +"max_shear_strain = strain_max - strain_min;\n", +"\n", +"//Absolute Maximum Shear Strain:\n", +"abs_max_shear = max_shear_strain;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum in-plane principal strain = %1.0f *10^-6 ',strain_max);\n", +"printf('\nThe minimum in-plane principal strain = %1.0f *10^-6 ',strain_min);\n", +"printf('\nThe maximum in-plane shear strain = %1.0f *10^-6 ',max_shear_strain);\n", +"printf('\nThe absolute maximum shear strain = %1.0f *10^-6 ',abs_max_shear);\n", +"printf('\nThe average strain = %1.0f *10^-6 ',strain_avg);\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: StnT8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.8 : ')\n", +"\n", +"//Given:\n", +"ep_a = 60;//(*10^-6) Normal Strain\n", +"ep_b = 135; //*(10^-6) Normal Strain\n", +"ep_c = 264; //*(10^-6) Normal Strain\n", +"\n", +"theta_a = 0;\n", +"theta_b = 60*(%pi/180);\n", +"theta_c = 120*(%pi/180);\n", +"\n", +"//Using matrices to solve the equations: \n", +"a1 = (cos(theta_a))^2;\n", +"b1 = (sin(theta_a))^2;\n", +"c1 = cos(theta_a)*sin(theta_a);\n", +"\n", +"a2 = (cos(theta_b))^2;\n", +"b2 = (sin(theta_b))^2;\n", +"c2 = cos(theta_b)*sin(theta_b);\n", +"\n", +"a3 = (cos(theta_c))^2;\n", +"b3 = (sin(theta_c))^2;\n", +"c3 = cos(theta_c)*sin(theta_c);\n", +"\n", +"A = [a1 b1 c1 ; a2 b2 c2; a3 b3 c3 ]\n", +"b = [ep_a ; ep_b ; ep_c];\n", +"strain = A\b;\n", +"\n", +"ep_x = strain(1);\n", +"ep_y = strain(2);\n", +"gamma_xy = strain(3);\n", +"\n", +"strain_avg = (ep_x + ep_y )/2;\n", +"tou = gamma_xy/2;\n", +"\n", +"R = sqrt((-ep_x + strain_avg)^2 + tou^2); \n", +"\n", +"ep1 = strain_avg + R;\n", +"ep2 = strain_avg - R;\n", +"ep = [ep1 ep2];\n", +"\n", +"tan_thetap =atan(-tou/(-ep_x + strain_avg));\n", +"thetap = tan_thetap/2;\n", +"thetap2 = thetap*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe maximum in-plane principal strains are = %1.0f *10^-6 , %1.1f *10^-6',ep);\n", +"printf('\nThe angle of orientation = %1.1f degrees',thetap2);\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"\n", +"\n", +" \n", +" \n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.9: StnT9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 10.9 : ')\n", +"\n", +"//Given:\n", +"E_st = 200*10^9; //GPa\n", +"nu_st = 0.3; //Poisson's ratio\n", +"ep1 = 272 *10^-6;\n", +"ep2 = 33.8 *10^-6;\n", +"\n", +"//Solving for sigma using matrices:\n", +"A = [1 -nu_st; -nu_st 1];\n", +"b = [(ep1*E_st) ; (ep2*E_st)];\n", +"sigma = A\b;\n", +"\n", +"sigma1= sigma(1)/(10^6);\n", +"sigma2= sigma(2)/(10^6);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe principal stresses at point A are = %1.0f MPa , %1.1f MPa',sigma1, sigma2);\n", +"\n", +"\n", +"//--------------------------------------------------------------------------END--------------------------------------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/11-Design_of_Beams_and_Shafts.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/11-Design_of_Beams_and_Shafts.ipynb new file mode 100644 index 0000000..944e9b8 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/11-Design_of_Beams_and_Shafts.ipynb @@ -0,0 +1,301 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Design of Beams and Shafts" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: DBS1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 11.1 : ')\n", +"\n", +"//Given:\n", +"sigma_allow = 170; //MPa\n", +"tou_allow = 100; //MPa\n", +"\n", +"//Shear and Moment Diagrams:\n", +"V_max = 90; //kN\n", +"M_max = 120; //kNm\n", +"\n", +"//Bending Stress:\n", +"S_reqd = (M_max*(10^3))/sigma_allow;\n", +"\n", +"W = [60 67 64 74 80 100];\n", +"S = [1120 1200 1030 1060 984 987];\n", +"\n", +"i = find(min(W));\n", +"S_chosen = S(i);\n", +"flag1 = 0;\n", +"flag2 = 0;\n", +"\n", +"if (S_reqd<S_chosen) \n", +" flag1 =1; \n", +"end\n", +"\n", +"//Shear Stress:\n", +"d = 455; //mm\n", +"tw = 8; //mm\n", +"tou_avg = (V_max*10^3)/(d*tw);\n", +"\n", +"if(tou_avg<tou_allow)\n", +" flag2 =1;\n", +"end\n", +"\n", +"if(flag1==1 & flag2==1)\n", +" \n", +" \n", +" printf('\n\nUse a W460X60 standard shape.');\n", +"end\n", +"\n", +"//--------------------------------------------------------------------------END-------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: DBS2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 11.2 : ')\n", +"\n", +"//Given:\n", +"l = 200/1000;//m\n", +"t = 30/1000;//m\n", +"sigma_allow = 12; //MPa\n", +"tou_allow = 0.8; //MPa\n", +"V_nail = 1.50; //kN\n", +"l_bc = 2; //m\n", +"l_cd = 2; //m\n", +"\n", +"//Shear and Moment Diagrams:\n", +"V_max = 1.5; //kN\n", +"M_max = 2; //kNm\n", +"\n", +"//Bending Stress:\n", +"y1 = l/2;\n", +"A1 = l*t;\n", +"y2 = l+(t/2);\n", +"A2 = t*l;\n", +"y_dash = (y1*A1 + y2*A2)/(A1 + A2);\n", +"\n", +"I1 = (t*l^3)/12 + (t*l*(y_dash - y1)^2);\n", +"I2 = (l*t^3)/12 + (t*l*(y2 - y_dash)^2);\n", +"I =I1 + I2;\n", +"\n", +"c = y_dash;\n", +"sigma = (M_max*c)/(I);\n", +"flag1 = 0;\n", +"sigma_allow = sigma_allow*1000; //kPa\n", +"\n", +"if(sigma<sigma_allow)\n", +" flag1 = 1;\n", +"end\n", +"\n", +"//Shear Stress:\n", +"y3 = y_dash/2;\n", +"A3 = y_dash*t;\n", +"Q = y3*A3;\n", +"\n", +"tou = (V_max*Q)/(I*t);\n", +"tou_allow = tou_allow*1000; //kPa\n", +"flag2 =0;\n", +"\n", +"if(tou<tou_allow)\n", +" flag2 = 1;\n", +"end\n", +"\n", +"//Nail Spacing:\n", +"y4a = (l+t-y_dash);\n", +"y4 = y4a - (t/2);\n", +"A4 = l*t;\n", +"Q4 = y4*A4;\n", +"V_bc = 1.5; //kN\n", +"V_cd = 1; //kN\n", +"\n", +"q_bc = (V_bc*Q4)/I;\n", +"q_cd = (V_cd*Q4)/I;\n", +"\n", +"s_bc = (V_nail)/(q_bc);\n", +"s_cd = (V_nail)/(q_cd);\n", +"\n", +"chosen_bc = 150; //mm\n", +"chosen_cd = 250; //mm\n", +"\n", +"if(flag1==1 & flag2==1)\n", +" \n", +" printf('\n\nThe design is safe in bending and shear.');\n", +" printf('\nThe calculated nail spacing BC = %1.3f m',s_bc);\n", +" printf('\nThe calculated nail spacing CD = %1.3f m',s_cd);\n", +" printf('\nThe chosen nail spacing BC = %1.0f mm',chosen_bc);\n", +" printf('\nThe chosen nail spacing CD = %1.0f mm',chosen_cd);\n", +"end\n", +"\n", +"//--------------------------------------------------------------------------END-------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: DBS3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 11.3 : ')\n", +"\n", +"//Given:\n", +"udl = 12; //kN/m\n", +"h_by_a = 1.5;\n", +"sigma_allow = 9; //MPa\n", +"tou_allow = 0.6; //MPa\n", +"\n", +"//Shear and Moment Diagrams:\n", +"V_max = 20; //kN\n", +"M_max =10.67; //kNm\n", +"\n", +"//Bending Stress:\n", +"S_reqd = (M_max)/(sigma_allow*1000);\n", +"c = h_by_a/2;\n", +"a_cube = (S_reqd*c*12)/(1.5^3); //S_reqd = I/c\n", +"a = a_cube^(1/3);\n", +"\n", +" \n", +"A = a*h_by_a*a;\n", +"tou_max = (1.5*V_max)/(A*1000);\n", +"\n", +"\n", +"if(tou_max>tou_allow)\n", +" a_sqr = (3/2)*(V_max)/(h_by_a*tou_allow*1000);\n", +" a =sqrt(a_sqr);\n", +"end\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe smallest width for the laminated wooden beam = %1.3f m', a);\n", +"\n", +"//----------------------------------------------------------------------END-----------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: DBS6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 11.6 : ')\n", +"\n", +"//Given:\n", +"tou_allow = 50*10^6; //MPa\n", +"T = 7.5; //Nm\n", +"R_ah = 150; //N\n", +"R_av = 475; //N\n", +"l_ac = 0.25; //m\n", +"\n", +"mc = R_ah*l_ac;\n", +"m = R_av*l_ac;\n", +"\n", +"M_c = sqrt(m^2 + mc^2);\n", +"\n", +"k = sqrt(M_c^2 + T^2);\n", +"c1 = (2*k)/(%pi*tou_allow);\n", +"c = c1^(1/3);\n", +"\n", +"d = 2*c*1000;\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe smallest allowable diameter of the shaft = %1.1f mm', d);\n", +"\n", +"//----------------------------------------------------------------------END------------------------------------------------------------------------------" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/12-Deflection_of_Beams_and_Shafts.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/12-Deflection_of_Beams_and_Shafts.ipynb new file mode 100644 index 0000000..92c4fa8 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/12-Deflection_of_Beams_and_Shafts.ipynb @@ -0,0 +1,547 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Deflection of Beams and Shafts" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: DefBS10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.10 : ')\n", +"\n", +"//Given:\n", +"E = 200*10^6; //kN/m^2\n", +"I = 17*10^-6;//mm^4\n", +"l_ac = 2; //m\n", +"l_cF = 4; //m\n", +"l_Fb = 2; //m\n", +"l_cb = 6; //m\n", +"l_aF = 6; //m\n", +"l_ab = 8; //m\n", +"F = 16; //kN\n", +"R_b = (F*l_cb)/l_ab;\n", +"R_a = F - R_b;\n", +"\n", +"mc = R_a*l_ac;\n", +"mf = R_b*l_Fb;\n", +"theta_ca = (0.5*l_ac*mc)/(E*I);\n", +"\n", +"A1 = 0.5*l_aF*mf;\n", +"t1_ba = (l_Fb + l_aF/3)*(A1);\n", +"\n", +"A2 = 0.5*l_Fb*mf;\n", +"t2_ba = (l_Fb*2*A2)/3;\n", +"\n", +"t_ba = (t1_ba+t2_ba)/(E*I);\n", +"\n", +"theta_c = (t_ba/l_ab)-(theta_ca);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe slope at point C of the steel beam = %1.5f rad',theta_c);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.12: DefBS12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.12 : ')\n", +"\n", +"//Given:\n", +"E = 200; //kN/m^2\n", +"I = 50*10^6;//mm^4\n", +"l_ab = 4; //m\n", +"l_bc = 4; //m\n", +"l_ac = l_ab+l_bc;\n", +"R_a = -25; //kN\n", +"R_b = 50; //kN\n", +"R_c = 25; //kN\n", +"\n", +"mb = R_a*l_ab;\n", +"\n", +"//Moment-Area Theorem:\n", +"\n", +"t_ca = (l_ab*0.5*l_ac*mb*(10^3)^3)/(E*I);\n", +"t_ba = (l_ab*0.5*l_ab*mb*(10^3)^3)/(E*I*3);\n", +"\n", +"del_c = -t_ca + 2*t_ba;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe displacement at point C for the steel overhanging beam = %1.1f mm',del_c);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.13: DefBS13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.13 : ')\n", +"\n", +"//Given:\n", +"w = 2; //kN/m\n", +"L = 8; //m\n", +"P = 8; //kN\n", +"\n", +"//Calculations:\n", +"EI_theta_A1 = (3*w*L^3)/(128); //ThetaA1 = (3wL^3)/(128EI)\n", +"EI_nu_C1 = (5*w*L^4)/(768); //NuC1 = (5wL^4)/(768EI)\n", +"\n", +"EI_theta_A2 = (P*L^2)/(16); //theta_A2 = (PL^2)/(16EI)\n", +"EI_nu_C2 = (P*L^3)/(48); //nu_C2 = (PL^3)/(48EI)\n", +"\n", +"theta_A = EI_theta_A1 + EI_theta_A2;\n", +"nu_C = EI_nu_C1 + EI_nu_C2;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe slope at A in terms of EI = %1.0f/EI kNm^2',theta_A);\n", +"printf('\nThe displacement at point C in terms of EI = %1.0f/EI kNm^3',nu_C);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.14: DefBS14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.14 : ')\n", +"\n", +"//Given:\n", +"w = 5; //kN/m\n", +"l_ab = 4; //m\n", +"l_bc = 2; //m\n", +"P = 10; //kN\n", +"M = w*l_ab; //kNm\n", +"\n", +"//Calculations:\n", +"EI_theta_B1 = (w*l_ab^3)/(24); //ThetaB1 = (wL^3)/(24EI)\n", +"EI_nu_C1 = l_bc*EI_theta_B1;\n", +"\n", +"EI_theta_B2 = (M*l_ab)/(3); //\n", +"EI_nu_C2 = l_bc*EI_theta_B2;\n", +"\n", +"EI_nu_C3 = (P*l_bc^3)/(3); //nuC3 = (PL^3)/(24EI)\n", +"\n", +"nu_C = -EI_nu_C1 + EI_nu_C2 + EI_nu_C3;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe displacement at end C of the overhanging beam, in terms of EI = %1.1f/EI kNm^3',nu_C);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.15: DefBS15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.15 : ')\n", +"\n", +"//Given:\n", +"w = 4; //kN/m\n", +"l = 10; //m\n", +"l_bc =3; //m\n", +"\n", +"//Calculations:\n", +"EI_theta_B = (w*l^3)/(24); //ThetaB1 = (wL^3)/(24EI)\n", +"EI_nu_B = (w*l^4)/(30); //nuB = (wL^4)/(30EI)\n", +"\n", +"nu_C = EI_nu_B + (EI_theta_B*l_bc);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe displacement at end C of the cantilever beam, in terms of EI = %1.0f/EI kNm^3',nu_C);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.16: DefBS16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.16 : ')\n", +"\n", +"//Given:\n", +"k = 45; //kN/m\n", +"F = 3; //kN\n", +"E = 200*10^6; //kPa\n", +"l_ab = 3; //m\n", +"l_ac = 1; //m\n", +"l_cb = 2; //m\n", +"I = 4.687*10^-6; //m^4\n", +"R_a = (F*l_cb)/(l_ab);\n", +"R_b = F-R_a;\n", +"\n", +"//Calculations:\n", +"nu_a = (R_a)/k;\n", +"nu_b = (R_b)/k;\n", +"\n", +"nu_c1 = nu_b + (l_cb/l_ab)*(nu_a - nu_b);\n", +"nu_c2 = ((F*l_ac*l_cb)*(l_ab^2 - l_ac^2 - l_cb^2))/(6*E*I*l_ab);\n", +"\n", +"nu_c = nu_c1 + nu_c2;\n", +"nu_C = nu_c*1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe vertical displacement of the force at C = %1.3f mm',nu_C);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.21: DefBS21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.21 : ')\n", +"\n", +"//Given:\n", +"l = 3; //m\n", +"l_af = l/2; //m\n", +"P = 8; //kN\n", +"w = 6; //kN/m\n", +"\n", +"//Compatibility Equation:\n", +"EI_nu_b1 = (w*l^4)/8 + (5*P*l^3)/48; //nu_b = (wl^4)/8EI + (5Pl^3)/48EI\n", +"EI_nu_b2 = (l^3)/3;\n", +"\n", +"B_y = EI_nu_b1 / EI_nu_b2;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe reactions at roller support B = %1.2f kN',B_y);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.22: DefBS22.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.22 : ')\n", +"\n", +"//Given:\n", +"l = 8; //m\n", +"l_ab = l/2; //m\n", +"l_bc = l/2; //m\n", +"l_af = l_ab/2; //m\n", +"b = 12/1000; //m\n", +"w = 24; //kN/m\n", +"E = 200*10^6; //Kn/m^2\n", +"I = 80*10^-6;// m^4\n", +"\n", +"//Compatibility Equation:\n", +"nu_b = (5*w*l^4)/(768*E*I); //nu_b = (5wl^4)/768EI\n", +"nu_b_byBy = (l^3)/(48*E*I); //nu_b' = (Pl^3)/48EI\n", +"\n", +"B_y = (nu_b-b)/nu_b_byBy;\n", +"\n", +"C_y = ((w*l_ab*l_af) - (B_y*l_ab))/l;\n", +"\n", +"A_y = (w*l_ab - B_y - C_y);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe reaction at A = %1.0f kN',A_y);\n", +"printf('\nThe reaction at B = %1.0f kN',B_y);\n", +"printf('\nThe reaction at C = %1.0f kN',C_y);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.23: DefBS23.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.23 : ')\n", +"\n", +"//Given:\n", +"d = 12; //mm\n", +"E = 210; //GPa\n", +"I = 186*10^6; //mm^4\n", +"P = 40; //kN\n", +"l_bc = 3; //m\n", +"l_ab = 4;//m\n", +"l = 5; //m\n", +"\n", +"//Compatibility Equation: nuB'' = nuB - nuB'\n", +"A = (%pi/4)*(d^2);\n", +"\n", +"nuB1_by_Fbc = (l_bc*1000)/(A*E*1000); //nuB'' = PL/AE\n", +"nuB2 = (5*P*1000*(l_ab*1000)^3)/(48*E*1000*I); //nuB = (5PL^3)/(48EI)\n", +"nuB2_by_Fbc = ((l*1000)^3)/(3*E*1000*I); //nuB' = (PL^3)/(3EI)\n", +"\n", +"F_bc = (nuB2)/(nuB1_by_Fbc + nuB2_by_Fbc );\n", +"F_bc = F_bc/1000; //in kN\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe force in the rod due to loading = %1.3f kN',F_bc);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.24: DefBS24.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.24 : ')\n", +"\n", +"//Given:\n", +"l_ab = 4; //m\n", +"l = l_ab/2;\n", +"w = 9; //kN/m\n", +"\n", +"//Compatibility Equations:\n", +"\n", +"EI_thetaB = (w*l_ab^3)/(48); //thetaB = (wL^3)/(48EI)\n", +"EI_nuB = (7*w*l_ab^4)/(384); //nuB = (7wl^4)/(384EI)\n", +"\n", +"//Only redundant By applied:\n", +"EI_thetaB_by_By = (l_ab^2)/(2); //thetaB' = (PL^2)/(2EI)\n", +"EI_nuB_by_By = (l_ab^3)/(3); //nuB' = (PL^3)/(3EI)\n", +"\n", +"//Only redundant Mb is applied:\n", +"EI_thetaB_by_Mb = l_ab; //thetaB'' = (ML)/(EI)\n", +"EI_nuB_by_Mb = (l_ab^2)/(2); //nuB'' = (ML^2)/(2EI)\n", +"\n", +"//Solving for By and Mb using matrices:\n", +"\n", +"A = [EI_thetaB_by_By EI_thetaB_by_Mb; EI_nuB_by_By EI_nuB_by_Mb ];\n", +"b = [-EI_thetaB; -EI_nuB ] ;\n", +"moments = A\b;\n", +"\n", +"By = moments(1);\n", +"Mb = moments(2);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe vertical force at B for the beam = %1.3f kN',By);\n", +"printf('\nThe moment at B for the beam = %1.2f kNm',Mb);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: DefBS6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 12.6 : ')\n", +"\n", +"//Display:\n", +" printf('\n\nRefer to the relation derived in the book.');\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/13-Buckling_of_Columns.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/13-Buckling_of_Columns.ipynb new file mode 100644 index 0000000..38eebef --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/13-Buckling_of_Columns.ipynb @@ -0,0 +1,740 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Buckling of Columns" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.10: BoC10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.10 : ')\n", +"\n", +"//Given:\n", +"L = 750; //mm\n", +"P = 60; //kN\n", +"sigma = 195; //N/mm^2\n", +"K = 1;\n", +"\n", +"//Calculations:\n", +"b2 = (P*1000)/(2*sigma);\n", +"b = sqrt(b2);\n", +"\n", +"A = 2*b*b;\n", +"Iy = (1/12)*(2*b*b^3);\n", +"ry = sqrt(Iy/A);\n", +"\n", +"sl_ratio = (K*L)/(ry);\n", +"\n", +"\n", +"\n", +"if(sl_ratio>12)\n", +" b4 = (P*1000*2598.1^2)/(2*378125); //Eqn 13.26\n", +" b = b4^(1/4);\n", +" \n", +" sl_ratio = (2598.1)/(b);\n", +" w = 2*b;\n", +" \n", +" if(sl_ratio>55)\n", +" printf('\n\nThe thickness of the bar = %1.0fmm',b);\n", +" printf('\nThe width of the bar = %1.0fmm',w);\n", +" end\n", +"end\n", +"\n", +"//-------------------------------------------------------------------------END----------------------------------------------------------------------------\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11: BoC11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.11 : ')\n", +"\n", +"//Given:\n", +"P = 20*10^3; //N\n", +"y1 = 150; //mm\n", +"x1 = 40; //mm\n", +"A = (x1*y1);\n", +"d = 40;\n", +"K = 1;\n", +"\n", +"//Eqn 13.29\n", +"\n", +"L2 = (3718*A*d^2)/(P);\n", +"L = sqrt(L2);\n", +"KL_d = (K*L)/(d);\n", +"\n", +"if(KL_d>26 & KL_d<=50)\n", +" printf('\n\nThe greatest allowable length L as specified by the NFPA = %1.0f mm',L);\n", +" \n", +"end \n", +"\n", +"//------------------------------------------------------------------------END----------------------------------------------------------------------------- \n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.12: BoC12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.12 : ')\n", +"\n", +"//Given:\n", +"L = 1600; //mm\n", +"K = 2;\n", +"l = 80; //mm\n", +"b = 40; //mm\n", +"e = 20; //mm\n", +"c = 40; //mm\n", +"\n", +"//Calculations:\n", +"I1 = (1/12)*(l*b^3);\n", +"A = l*b;\n", +"r = sqrt(I1/A);\n", +"sl_ratio = (K*L)/(r);\n", +"\n", +"//Eqn 13.26:\n", +"sigma_allow = (378125)/(sl_ratio^2);\n", +"\n", +"I2 = (1/12)*(b*l^3);\n", +"coefficient = (1/A) + (e*c)/I2;\n", +"sigma_max = sigma_allow;\n", +"P = sigma_max/coefficient;\n", +"P = P/1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe load that can be supported if the column is fixed at its base = %1.2f kN',P);\n", +"\n", +"//------------------------------------------------------------------------END-----------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.13: BoC13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.13 : ')\n", +"\n", +"//Given:\n", +"sigmaB_allow = 160; //MPa\n", +"E = 200; //GPa\n", +"sigma_y = 250; //MPa\n", +"K= 1;\n", +"A = 3790; //mm^2\n", +"Ix = 17.1*10^6; //mm^4\n", +"ry = 38.2; //mm\n", +"d = 157; //mm\n", +"c= d/2; \n", +"e = 750; //mm\n", +"L = 4000; //mm\n", +"\n", +"sl_ratio = (K*L)/(ry);\n", +"sl_ratio_c = sqrt((2*%pi^2*E*1000)/(sigma_y));\n", +"\n", +"\n", +"\n", +"if(sl_ratio<sl_ratio_c)\n", +" num = (1 - (sl_ratio^2/(2*sl_ratio_c^2)))*sigma_y;\n", +" denom1 = (5/3) + ((3/8)*sl_ratio/sl_ratio_c);\n", +" denom2 = (sl_ratio^3)/(8*sl_ratio_c^3);\n", +" sigmaA_allow = num/(denom1 - denom2);\n", +" \n", +" coeffP = 1/(sigmaA_allow*A) + (e*c)/(Ix*sigmaB_allow);\n", +" P = 1/coeffP;\n", +" \n", +" sigA = (P/A)/(sigmaA_allow);\n", +" P = P/1000; //in kN\n", +" \n", +" \n", +" if(sigA < 0.15)\n", +" printf('\n\nThe maximum allowable value of eccentric load = %1.2f kN',P);\n", +" end\n", +"end\n", +"\n", +"//---------------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.14: BoC14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.14 : ')\n", +"\n", +"//Given:\n", +"K = 2;\n", +"d= 60; //mm\n", +"L = 1200; //mm\n", +"e = 80; //mm\n", +"c = d;\n", +"A = 60*120; //mm^2\n", +"l = 60; //mm\n", +"b = 120;//mm\n", +"\n", +"\n", +"//Calculations:\n", +"sl_ratio = (K*L)/(d);\n", +"\n", +"if(sl_ratio>26 & sl_ratio<50)\n", +" sigma_allow = (3718)/(sl_ratio^2);\n", +" sigma_max = sigma_allow;\n", +" \n", +" I = (1/12)*(l*b^3);\n", +" coeffP = (1/A) + (e*c)/(I);\n", +" P = sigma_max/coeffP;\n", +" P = P/1000; //kN\n", +" \n", +" printf('\n\nThe eccentric load that can be supported = %1.2f kN',P);\n", +"end\n", +"\n", +"//Answer given in the textbook varies.\n", +"\n", +"//-------------------------------------------------------------------------END-------------------------------------------------------------------------------------\n", +" \n", +" \n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: BoC1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.1 : ')\n", +"\n", +"//Given:\n", +"l = 7.2*1000; //mm\n", +"E = 200; //GPa\n", +"ro = 75; //mm\n", +"ri = 70; //mm\n", +"sigma_y = 250; //MPa\n", +"\n", +"//Calculations:\n", +"I = (%pi/4)*(ro^4 - ri^4)\n", +"A = (%pi)*(ro^2 -ri^2);\n", +"\n", +"Pcr = (%pi^2*(E*10^6)*I*(1000)^-2)/(l^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"\n", +"sigma_cr = (Pcr*1000)/A;\n", +"\n", +"if(sigma_cr<sigma_y)\n", +" \n", +" printf('\n\nThe maximum allowable axial load that the column can support = %1.1f kN',Pcr);\n", +"end\n", +"\n", +"//-------------------------------------------------------------------------END--------------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: BoC2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.2 : ')\n", +"\n", +"//Given:\n", +"E = 200; //GPa\n", +"I = 15.3*10^6; //mm^4\n", +"l= 4*1000; //mm\n", +"A = 5890; //mm^2\n", +"sigma_y = 250; //MPa\n", +"\n", +"//Calculations:\n", +"\n", +"Pcr = ((%pi^2)*E*10^6*I*1000^-2)/(l^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"\n", +"sigma_cr = (Pcr*1000)/A;\n", +"\n", +"if(sigma_cr>sigma_y)\n", +" Pcr = (sigma_y*A);\n", +" Pcr = Pcr/1000; //in kN\n", +"end\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum allowable axial load that the column can support = %1.1f kN',Pcr);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: BoC3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.3 : ')\n", +"\n", +"//Given:\n", +"E = 200;//GPa\n", +"Ix = 13.4*10^-6;\n", +"Iy = 1.83*10^-6;\n", +"l = 8;\n", +"KLx = 0.5*l; //m\n", +"KLy = 0.7*(l/2); //m\n", +"rx = 66.2; //mm\n", +"ry = 24.5; //mm\n", +"\n", +"Pcrx = (%pi^2*E*10^6*Ix)/(KLx^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"Pcry = (%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"\n", +"Pcr = min(Pcrx,Pcry);\n", +"A = 3060; //mm^2\n", +"sigma_cr = Pcr/A;\n", +"\n", +"sl_ratio_x = (KLx*1000)/(rx);\n", +"sl_ratio_y = (KLy*1000)/(ry);\n", +"s_ratio = max(sl_ratio_x, sl_ratio_y);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum load that the column can support without buckling = %1.0f kN',Pcr);\n", +"printf('\nThe largest slenderness ratio = %1.1f N/mm^2',s_ratio);\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: BoC4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.4 : ')\n", +"\n", +"//Given:\n", +"E = 70;//GPa\n", +"Ix = 61.3*10^-6;\n", +"Iy = 23.2*10^-6;\n", +"l = 5;\n", +"KLx = 2*l; //m\n", +"KLy = 0.7*(l); //m\n", +"FS = 3; //Factor of safety\n", +"sigma_y = 215; //MPa\n", +"\n", +"\n", +"Pcrx = (%pi^2*E*10^6*Ix)/(KLx^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"Pcry = (%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"\n", +"Pcr = min(Pcrx,Pcry);\n", +"A = 7.5*10^-3; //mm^2\n", +"P_allow = Pcr/FS;\n", +"sigma_cr = (Pcr*10^-3)/A;\n", +"\n", +"\n", +"if(sigma_cr<sigma_y)\n", +"\n", +" printf('\n\nThe largest allowable load that the column can support = %1.0f kN',P_allow);\n", +"end\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: BoC5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"disp('Scilab Code Ex 13.5 : ')\n", +"//Given:\n", +"E = 200*10^3; //MPa\n", +"sigma_y = 250; //MPa\n", +"x1 = 50; //mm\n", +"y1 = 75; //mm\n", +"z1 = 4.5; //m\n", +"e = 25; //mm\n", +"Ix = (1/12)*x1*(y1*2)^3;\n", +"A = x1*2*y1;\n", +"rx = sqrt(Ix/A);\n", +"L = z1*1000;\n", +"KL = 1*L;\n", +"sl_ratio = KL/rx;\n", +"c = y1;\n", +"ec_r = e*c/(rx^2);\n", +"P_a = 83; //MPa\n", +"A = 7500; //mm^2\n", +"P = P_a*A;\n", +"P = P/1000; //in kN\n", +"k = (L/(2*rx))*(sqrt(P/(E*A)));\n", +"sigma_max = (P*1000/A)*(1+ec_r*sec(k)); //Secant Formula\n", +"l = sqrt((P*1000)/(E*Ix));\n", +"nu_max = e*(sec(l*L/2)-1);\n", +"//Display:\n", +"printf('\n\nThe allowable eccentric load that can be applied on the column = %1.1fkN',P);\n", +"printf('\nThe maximum deflection of the column due to the loading = %1.0f mm',nu_max);\n", +"//--------------------------------------------------------------------------END------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: BoC6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.6 : ')\n", +"\n", +"//Given:\n", +"z1 = 4*1000; //mm\n", +"e = 200; //mm\n", +"KLy = 0.7*z1;\n", +"Iy = 20.4*10^6;\n", +"E = 200*10^3; //N/mm^2\n", +"sigma_y =250; //MPa\n", +"\n", +"//y-y Axis Buckling:\n", +"Pcry = (%pi^2*E*10^6*Iy)/(KLy^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"Pcry = Pcry/1000;\n", +"\n", +"//x-x Axis Yielding:\n", +"Kx= 2;\n", +"KLx = Kx*z1;\n", +"c = (z1-KLy)/2;\n", +"rx = 89.9;\n", +"\n", +"//Solved by applying the Secant Formula and then finding Px by trial and error:\n", +"\n", +"trial_Px = 419.4; //kN\n", +"\n", +"A = 7850;//mm^2\n", +"sigma = (trial_Px*1000)/(A);\n", +"\n", +"if(Pcry>trial_Px & sigma<sigma_y)\n", +"printf('\n\nThe maximum eccentric load that the column can support = %1.1fkN',trial_Px);\n", +"printf('\nFailure will occur about the x-x axis.');\n", +"\n", +"end\n", +"\n", +"//--------------------------------------------------------------------------END------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: BoC7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.7 : ')\n", +"\n", +"//Given:\n", +"d = 30; //mm\n", +"r = d/2;\n", +"L = 600; //mm\n", +"sigma_pl = 150;//MPa\n", +"\n", +"//Calculations:\n", +"I = (%pi/4)*(r^4);\n", +"A = %pi*r^2;\n", +"r_gyr = sqrt(I/A);\n", +"K = 1;\n", +"sl_ratio = (K*L)/(r_gyr);\n", +"flag1 = 0;\n", +"\n", +"//Assuming the critical stress is elastic:\n", +"E = 150/0.001;\n", +"sigma_cr1 = (%pi^2*E)/(sl_ratio^2); //Pcr = (%pi^2*EI)/(l^2)\n", +"\n", +"\n", +"if(sigma_cr1 > sigma_pl)\n", +" Et = (270 - 150)/(0.002 - 0.001);\n", +" sigma_cr2 = (%pi^2*Et)/(sl_ratio^2); //Pcr = (%pi^2*EI)/(l^2)\n", +" \n", +" if(sigma_cr2>150 & sigma_cr2<270) \n", +" Pcr = sigma_cr2*A;\n", +" Pcr = Pcr/1000; //in kN\n", +" printf('\n\nThe critical load when used as a pin supported column = %1.0fkN',Pcr);\n", +" \n", +" end\n", +" \n", +" \n", +"end\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: BoC8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.8 : ')\n", +"\n", +"//Given:\n", +"E = 200*10^3; //MPa\n", +"sigma_y = 250; //MPa\n", +"L = 5*1000; //mm\n", +"K = 1;\n", +"A = 19000; //mm^2\n", +"rx = 117; //mm\n", +"ry = 67.4; //mm\n", +"\n", +"//Calculations:\n", +"sl_ratio = (K*L)/(ry);\n", +"sl_ratio_c = sqrt((2*%pi^2*E)/(sigma_y));\n", +"\n", +"if(sl_ratio>0 & sl_ratio<sl_ratio_c)\n", +" num = (1 - (sl_ratio^2/(2*sl_ratio_c^2)))*sigma_y;\n", +" denom1 = (5/3) + ((3/8)*sl_ratio/sl_ratio_c);\n", +" denom2 = (sl_ratio^3)/(8*sl_ratio_c^3);\n", +" sigma_allow = num/(denom1 - denom2);\n", +" \n", +" P = sigma_allow*A;\n", +" P = P/1000;\n", +" printf('\n\nThe largest load the pin supported column can safely bear = %1.0f kN',P);\n", +" \n", +" end\n", +" \n", +"//---------------------------------------------------------------------END----------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: BoC9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 13.9 : ')\n", +"\n", +"//Given:\n", +"P = 80; //kN\n", +"E = 210*10^3; //MPa\n", +"sigma_y = 360; //MPa\n", +"L = 5000; //mm\n", +"K = 0.5;\n", +"\n", +"//Calculations:\n", +"I_by_d = (1/4)*(%pi)*(0.5^4);\n", +"A_by_d = (1/4)*(%pi);\n", +"r_by_d = sqrt(I_by_d/A_by_d);\n", +"\n", +"sl_ratio_c = sqrt((2*%pi^2*E)/(sigma_y));\n", +"sigma_allow = (P*1000)/A_by_d;\n", +"\n", +"d4 = (sigma_allow*23*(K*L)^2*16)/(12*%pi^2*E);\n", +"d = d4^(1/4);\n", +"\n", +"//Check:\n", +"d = ceil(d);\n", +"r = d/4;\n", +"KL_r = (K*L)/r;\n", +"\n", +"\n", +"if(KL_r>sl_ratio_c & KL_r<200)\n", +" printf('\n\nThe smallest diameter of the rod as allowed by AISC specification = %1.0fmm',d);\n", +" \n", +"end \n", +"\n", +"//------------------------------------------------------------------------END----------------------------------------------------------------------------- " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/14-Energy_Methods.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/14-Energy_Methods.ipynb new file mode 100644 index 0000000..79c1a07 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/14-Energy_Methods.ipynb @@ -0,0 +1,692 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Energy Methods" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.10: EM10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.10 : ')\n", +"\n", +"//Given:\n", +"m = 80*1000; //kg\n", +"v = 0.2; //m/s\n", +"l_ac = 1.5; //m\n", +"E = 200*10^9; //N/m^2\n", +"w = 0.2; //m\n", +"I = (1/12)*(w^4);\n", +"l_ab = 1000; //mm\n", +"\n", +"//Calculations:\n", +"del_Amax = sqrt((m*v^2*l_ac^3)/(3*E*I));\n", +"\n", +"P_max = (3*E*I*del_Amax)/(l_ac^3);\n", +"theta_A = (P_max*l_ac^2)/(2*E*I);\n", +"del_Amax = del_Amax*1000;\n", +"del_Bmax = del_Amax + (theta_A*l_ab);\n", +"\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe maximum horizontal displacement of the post at B due to impact = %1.1f mm',del_Bmax);\n", +" \n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.11: EM11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.11 : ')\n", +"\n", +"//Given:\n", +"A = 400*10^-6; //m^2\n", +"E = 200*10^6; //kN/m^2\n", +"P = 100; //kN\n", +"\n", +"//Virtual Work Equation:\n", +"\n", +"n = [0 0 -1.414 1];\n", +"N = [-100 141.4 -141.4 200];\n", +"L = [4 2.828 2.828 2];\n", +"del_cv = 0;\n", +"\n", +"for i=1:4\n", +" del_cv = del_cv + (n(i)*N(i)*L(i))/(A*E);\n", +"end\n", +"\n", +"del_cv = del_cv*1000;\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe vertical displacement of joint C of the steel truss = %1.1f mm',del_cv);\n", +" \n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.12: EM12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.12 : ')\n", +"\n", +"//Given:\n", +"A = 300*10^-6; //m^2\n", +"E = 210*10^6; //kN/m^2\n", +"P = 60; //kN\n", +"F_ac = 1.25; //kN\n", +"\n", +"//Part a:\n", +"\n", +"//Virtual Work Equation:\n", +"\n", +"n = [0 1.25 0 -0.75];\n", +"N = [0 75 -60 -45];\n", +"L = [1.5 2.5 2 1.5];\n", +"del_ch = 0;\n", +"\n", +"for i=1:4\n", +" del_ch = del_ch + (n(i)*N(i)*L(i))/(A*E);\n", +"end\n", +"\n", +"del_chA = del_ch*1000;\n", +"\n", +"//Part b:\n", +"\n", +"del_L = -6; //mm\n", +"del_chB = F_ac*del_L;\n", +"\n", +"if(del_chB<0)\n", +" \n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe horizontal displacement of joint C if a force is applied to B = %1.3f mm',del_chA);\n", +" printf('\nThe horizontal displacement of joint C if AC is fabricated short = %1.1f mm',del_chB);\n", +"end\n", +"\n", +" \n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.13: EM13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.13 : ')\n", +"\n", +"//Given:\n", +"del_T = 60; //degree celcius\n", +"alpha = 12*10^-6; //per degree celcius\n", +"E = 200*10^6; //kN/m^2\n", +"A = 250*10^-6; //m^2\n", +"L = 4; //m\n", +"\n", +"//Virtual Work Equation:\n", +"n = 1.155; //kN\n", +"N = -12; //kN\n", +"\n", +"del_bh = (n*N*L)/(A*E) + (n*alpha*del_T*L);\n", +"del_bh = del_bh*1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe horizontal displacement of joint B of the truss = %1.2f mm',del_bh);\n", +"\n", +"//---------------------------------------------------------------------END--------------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.16: EM16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.16 : ')\n", +"\n", +"//Given:\n", +"I = 175.8*10^-6; //m^4\n", +"E = 200*10^6; //kN/m^2\n", +"Ra = 1;//kN\n", +"l_ab = 3; //m\n", +"l_bc = 6; //m\n", +"\n", +"\n", +"//Virtual Work Equation:\n", +"m1 = -1; //*x1\n", +"M1 = -2.5; //*x1^3\n", +"m2 = -0.5; //*x2\n", +"\n", +"x10 = 0;\n", +"x11 = l_ab;\n", +"I1 = integrate('m1*M1*(x1^4)','x1',x10,x11);\n", +"\n", +"x20 = 0;\n", +"x21 = l_bc;\n", +"I2 = integrate('m2*123.75*(x2^2)','x2',x20,x21);\n", +"\n", +"x20 = 0;\n", +"x21 = l_bc;\n", +"I3 = integrate(' -m2*22.5*(x2^3)','x2',x20,x21);\n", +"\n", +"In = I1 + I2 + I3;\n", +"del_A = (In)/(E*I);\n", +"del_A = del_A*1000;\n", +"\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe displacement of point A of the steel beam = %1.1f mm',del_A);\n", +" \n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.17: EM17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.17 : ')\n", +"\n", +"//Given:\n", +"E = 210*10^3; //N/mm^2\n", +"P = 40*10^3;//N\n", +"A_ab = 1250; //mm^2\n", +"A_ac = 625; //mm^2\n", +"A_cd = 1250; //mm^2\n", +"A_bc = 625; //mm^2\n", +"\n", +"N_by_P = [0 0 1.67 -1.33];\n", +"L = [4000 3000 5000 4000];\n", +"A = [A_ab A_bc A_ac A_cd];\n", +"N = zeros(4);\n", +"sum = 0;\n", +"\n", +"\n", +"for i =1:4\n", +" N(i) = N_by_P(i)*P;\n", +" num(i) = N(i)*N_by_P(i)*L(i);\n", +" \n", +"end\n", +"\n", +"for i = 1:4\n", +" sum = sum + (num(i)/(A(i)*E)); //By Castigliano's Second theorem.\n", +"end\n", +"\n", +"del_ch = sum;\n", +"\n", +"//Display:\n", +" printf('\n\nThe horizontal displacement of joint C of the steel truss = %1.2f mm',sum);\n", +" \n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.18: EM18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.18 : ')\n", +"\n", +"//Given:\n", +"E = 200*10^6; //kN/m^2\n", +"P = 0;//N\n", +"A = 400*10^-6; //m^2\n", +"\n", +"N_by_P = [0 0 -1.414 1];\n", +"L = [4 2.828 2.828 2];\n", +"N = [-100 141.4 -141.4 200];\n", +"sum = 0;\n", +"\n", +"\n", +"for i =1:4\n", +" num(i) = N(i)*N_by_P(i)*L(i); \n", +"end\n", +"\n", +"for i = 1:4\n", +" sum = sum + (num(i)/(A*E)); //By Castigliano's Second theorem.\n", +"end\n", +"\n", +"del_ch = sum*1000;\n", +"\n", +"//Display:\n", +" printf('\n\nThe vertical displacement of joint C of the steel truss = %1.1f mm',del_ch);\n", +" \n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: EM1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.1 : ')\n", +"\n", +"//Given:\n", +"sigma_y = 310; //N/mm^2\n", +"db =18; //mm\n", +"rb = db/2;\n", +"Ab = %pi*(rb^2);\n", +"E = 210*10^3; //N/mm^2\n", +"da1 = 20; //mm\n", +"ra1 = da1/2;\n", +"Aa1 = %pi*(ra1^2);\n", +"La1 = 50;//mm\n", +"La2= 6; //mm\n", +"da2 =18; //mm\n", +"ra2 = da2/2;\n", +"Aa2 = %pi*(ra2^2);\n", +"Lb = 56; //mm\n", +"\n", +"\n", +"//Bolt A:\n", +"P_max = sigma_y*Ab;\n", +"Uia = (P_max^2/(2*E))*(La1/Aa1 + La2/Aa2); //Ui = (N^2L)/(2AE)\n", +"Uia = Uia/1000;\n", +"\n", +"//Bolt B:\n", +"Uib = (P_max^2/(2*E))*(Lb/Ab);\n", +"Uib = Uib/1000;\n", +"\n", +"//Display:\n", +" printf('\n\nThe greatest amount of strain energy absorbed by bolt A = %1.3f J',Uia);\n", +" printf('\nThe greatest amount of strain energy absorbed by bolt B = %1.3f J',Uib);\n", +" \n", +" //-------------------------------------------------------------------------END---------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.21: EM21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.21 : ')\n", +"\n", +"//Given:\n", +"I = 125*10^-6; //m^4\n", +"E = 200*10^6; //kN/m^2\n", +"Rc = 5;//kN\n", +"l_ac = 6; //m\n", +"l_cb = 4; //m\n", +"\n", +"\n", +"//Castigliano's Second Theorem:\n", +"m = 0.4/9;\n", +"\n", +"x10 = 0;\n", +"x11 = l_ac;\n", +"I11 = integrate('4.4*(x1^2)','x1',x10,x11);\n", +"I12 = integrate('-m*(x1^4)','x1',x10,x11);\n", +"I1 = I11 + I12;\n", +"\n", +"x20 = 0;\n", +"x21 = l_cb;\n", +"I21 = integrate('6*0.6*(x2^2)','x2',x20,x21);\n", +"I22 = integrate('18*0.6*(x2)','x2',x20,x21);\n", +"I2 = I21+I22;\n", +"\n", +"In = I1 + I2 ;\n", +"del_cv = (In)/(E*I);\n", +"del_cv = del_cv*1000;\n", +"\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe vertical displacement of point C of the steel beam = %1.1f mm',del_cv);\n", +" \n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: EM5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.5 : ')\n", +"\n", +"//Given:\n", +"G = 75*10^9; //N/m^2\n", +"ro = 80/1000; //m\n", +"t = 15/1000; //m\n", +"ri = ro - t;\n", +"l1 = 750/1000; //m\n", +"l2 = 300/1000; //m\n", +"T1 = 40; //Nm\n", +"T2 =15; //Nm\n", +"\n", +"//Calculations:\n", +"\n", +"J = (%pi/2)*(ro^4 - ri^4);\n", +"\n", +"//Eqn 14-22\n", +"U1 = (T1^2*l1)/(2*G*J); \n", +"U2 = (T2^2*l2)/(2*G*J);\n", +"Ui = U1 + U2;\n", +"Ui = Ui*10^6; //in micro Joule\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe strain energy stored in the shaft = %1.0fX10^-6 J',Ui);\n", +" \n", +"//-------------------------------------------------------------------------END-------------------------------------------------------------------------------------------\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: EM6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.6 : ')\n", +"\n", +"//Given:\n", +"l_ab = 1; //m\n", +"l_bc = 2; //m\n", +"N_ab = 11.547*1000; //N\n", +"Nb = 20*1000; //N\n", +"Nc = -23.094*1000; //N\n", +"N_ac = -20*1000; //N\n", +"A = 100/(1000^2); //mm^2\n", +"E = 200*10^9; //N/m^2\n", +"P = 20*10^3;//N\n", +"\n", +"//Eqn 14-26\n", +"P_by_2 = P/2;\n", +"l_ac = sqrt(l_bc^2 - l_ab^2);\n", +"del = 0;\n", +"\n", +"N2= [N_ab^2 Nc^2 N_ac^2];\n", +"L = [l_ab l_bc l_ac];\n", +"\n", +"for i = 1:3\n", +" del = del + (N2(i)*L(i))/(2*A*E);\n", +"end\n", +"\n", +"del_bh = del/P_by_2;\n", +"del_bh = del_bh*1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe horizontal displacement at point B = %1.2fmm',del_bh);\n", +" \n", +"//-------------------------------------------------------------------------END-------------------------------------------------------------------------------------------\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: EM8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.8 : ')\n", +"\n", +"//Given:\n", +"ro = 60; //mm\n", +"ri = 50; //mm\n", +"E = 70; //kN/mm^2\n", +"W = 600; //kN\n", +"L = 240; //mm\n", +"h = 0;\n", +"\n", +"//Part a:\n", +"\n", +"A = (%pi)*(ro^2 - ri^2);\n", +"del_st= (W*L)/(A*E);\n", +"\n", +"//Part b:\n", +"\n", +"del_max = del_st*(1 + sqrt(1 + 2*(h/del_st)));\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe maximum displacement at the top of the pipe for gradually applied load = %1.4f mm',del_st);\n", +" printf('\nThe maximum displacement at the top of the pipe for suddenly applied load = %1.4f mm',del_max);\n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: EM9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 14.9 : ')\n", +"\n", +"//Given:\n", +"W = 6000; //N\n", +"h = 50; //mm\n", +"E = 210*1000; //N/mm^2\n", +"L = 5000; //mm\n", +"I = 87.3*10^6; //mm^2\n", +"\n", +"//Calculations:\n", +"\n", +"del_st = (W*L^3)/(48*E*I);\n", +"del_max = del_st*(1 + sqrt(1 + 2*(h/del_st)));\n", +"\n", +"c = 252/2;\n", +"sigma_max = (12*E*del_max*c)/(L^2);\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe maximum bending stress in the steel beam = %1.2f N/mm^2',sigma_max);\n", +" printf('\nThe maximum deflection in the beam = %1.3f mm',del_max);\n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------------" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/2-Strain.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/2-Strain.ipynb new file mode 100644 index 0000000..595dbf4 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/2-Strain.ipynb @@ -0,0 +1,222 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Strain" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Strain1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 2.1 : ')\n", +"\n", +"//Given:\n", +"e_z= 4;\n", +"ab = 0.200; //m\n", +"\n", +"\n", +"//Calculations:\n", +"\n", +"//Part a)\n", +"\n", +"z=integrate('1+(40*10^-3)*(sqrt(z))','z',0,ab); //Strain formula for short line segment = delta(sdash) =(1+e_z)delta(s) \n", +"deltaB= z-ab;\n", +"deltaB_mm= deltaB*1000;\n", +"\n", +"//Part b)\n", +"\n", +"e_avg = deltaB/ab;// Normal strain formula : e = (delta(sdash) -delta(s))/delta(s)\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe value of integration is =%10.5f m',z);\n", +"printf('\nThe displacement at the end of the rod is = %0.2f mm',deltaB_mm);\n", +"printf('\nThe average normal strain in the rod is =%10.4f mm/mm',e_avg);\n", +"\n", +"//-------------------------------------------------------------------------END----------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Strain2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 2.2 : ')\n", +"\n", +"//Given:\n", +"theta = 0.002; //radians\n", +"bc=1; //m\n", +"ba = 0.5;//m\n", +"\n", +"//Calculations:\n", +"\n", +"bb_dash = theta*ba;\n", +"avg_normal_strain = bb_dash/bc;//m/m\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe average normal strain =%10.3f m/m',avg_normal_strain);\n", +"\n", +"//---------------------------------------END---------------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Strain3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 2.3 : ')\n", +"\n", +"//Given:\n", +"\n", +"ab= 250; //mm\n", +"bbdash_x = 3; //mm\n", +"bbdash_y = 2; //mm\n", +"ac = 300; //mm\n", +"\n", +"//calculations:\n", +"\n", +"//Part(a)\n", +"abdash = sqrt((ab - bbdash_y)^2 + (bbdash_x)^2); //Pythagoras theorem\n", +"avg_normal_strain = (abdash-ab)/ab;\n", +"\n", +"//Part(b)\n", +"gamma_xy = atan(bbdash_x/(ab - bbdash_y)); //shear strain formula\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe average normal strain along AB is =%10.5f mm/mm',avg_normal_strain);\n", +"printf('\nThe average shear strain = %10.5f rad',gamma_xy);\n", +"\n", +"//--------------------------------------------------------------------END-----------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Strain4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 2.4 : ')\n", +"\n", +"//Given:\n", +"ab = 150; //mm\n", +"bc = 150; //mm\n", +"disp_cd= 2; //mm\n", +"ab_half = ab/2;\n", +"addash_half = (bc+disp_cd)/2 ;\n", +"\n", +"//Calculations:\n", +"\n", +"//Part(a)\n", +"\n", +"ac = sqrt((ab)^2 + (bc)^2); //Pythagoras theorem in mm\n", +"ac_m = ac/1000; //in m\n", +"acdash = sqrt((ab)^2 + (bc+disp_cd)^2); //Pythagoras theorem in mm\n", +"acdash_m = acdash/1000; //in m\n", +"\n", +"avg_strain_ac = (acdash_m - ac_m)/ac_m; //Normal strain formula\n", +"\n", +"//Part(b)\n", +"\n", +"theta_dash = 2* atan((addash_half)/(bc/2)); //theta found in radians\n", +"gamma_xy = (%pi / 2)- theta_dash; //shear strain formula\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe average normal strain along the diagonal AC is =%10.5f mm/mm',avg_strain_ac);\n", +"printf('\nThe shear strain at E relative to the x,y axes = %10.5f rad',gamma_xy);\n", +"\n", +"//----------------------------------------------------------------END---------------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/3-Mechanical_Properties_of_Materials.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/3-Mechanical_Properties_of_Materials.ipynb new file mode 100644 index 0000000..1408511 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/3-Mechanical_Properties_of_Materials.ipynb @@ -0,0 +1,357 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Mechanical Properties of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: MPM1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.1 : ')\n", +"\n", +"//Given:\n", +"offset = 0.2; //%\n", +"a_x = 0.0016; //mm/mm\n", +"a_y = 345; //Mpa\n", +"\n", +"//Refer to the given graph.\n", +"\n", +"//Calculations:\n", +"\n", +"//Modulus of Elasticity\n", +"E = a_y/(a_x*10^3); //E is the slope in GPa.\n", +"\n", +"//Yield Strength:\n", +"sigma_ys = 469; //Graphically, for a strain of 0.002mm/mm\n", +"\n", +"//Ultimate Stress:\n", +"sigma_u = 745.2; //Mpa B is the peak of stress strain graph.\n", +"\n", +"//Fracture Stress:\n", +"ep_f = 0.23; //mm/mm\n", +"sigma_f = 621; //Mpa from the graph.\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe Modulus of Elasticity is = %10.1f GPa',E);\n", +"printf('\nThe Yield Strength from the graph = %0.2f MPa',sigma_ys);\n", +"printf('\nThe Ultimate Stress from the graph is =%10.1f MPa',sigma_u);\n", +"printf('\nThe Fracture Stress from the graph is =%10.1f MPa',sigma_f);\n", +"\n", +"//-------------------------------------------------------------------------END----------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: MPM2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.2 : ')\n", +"\n", +"//Given:\n", +"stress_b = 600; //MPa\n", +"strain_b = 0.023; //mm/mm\n", +"stress_a = 450; //Mpa\n", +"strain_a = 0.006; //mm/mm\n", +"\n", +"//Calculations:\n", +"\n", +"//Permanent Strain:\n", +"E = stress_a/strain_a;\n", +"strain_cd = stress_b/E; //The recovered elastic strain\n", +"perm_strain = strain_b - strain_cd; //mm/mm\n", +"\n", +"//Modulus of Resilience:\n", +"ur_initial = (0.5*stress_a*strain_a);//MJ/m^3\n", +"ur_final = (0.5*stress_b*strain_cd); //MJ/m^3\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe Permanent Strain is =%10.5f mm/mm',perm_strain);\n", +"printf('\nThe Initial Modulus of Resilience is = %0.2f MJ/mm^3',ur_initial);\n", +"printf('\nThe Final Modulus of Resilience is = %0.2f MJ/mm^3',ur_final);\n", +"\n", +"\n", +"//------------------------------------------------------------------------------END-------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: MPM3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.3 : ')\n", +"\n", +"//Given:\n", +"p = 10000; //N\n", +"E_al = 70*(10^3); //MPa\n", +"l_ab = 600; //mm\n", +"d_ab = 20; //mm\n", +"l_bc = 400; //mm\n", +"d_bc = 15; //mm\n", +"\n", +"//Calculations:\n", +"\n", +"a_ab = (%pi/4)*(d_ab^2);// Area of AB\n", +"a_bc = (%pi/4)*(d_bc^2);\n", +"stress_ab = p/a_ab;// Stress = load/area\n", +"stress_bc = p/a_bc;\n", +"\n", +"e_ab = stress_ab/E_al; //Hookes's Law. Elastic strain.\n", +"e_bc = 0.045; //mm/mm . From the graph for stress_bc\n", +"\n", +"elongation = (l_ab*e_ab)+ (l_bc*e_bc);\n", +"strain_rec = stress_bc/E_al; //Strain Recovery\n", +"\n", +"e_og = e_bc-strain_rec;// mm/mm\n", +"rod_elong = e_og*l_bc;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe elongation of the rod when load is applied =%10.1f mm',elongation);\n", +"printf('\nThe permanent elongation of the rod when load is removed = %0.1f mm',rod_elong);\n", +"\n", +"//-------------------------------------------------------------------------END----------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: MPM4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.4 : ')\n", +"\n", +"//Given:\n", +"P = 80; //kN\n", +"l_z = 1.5; //m\n", +"l_y = 0.05;//m\n", +"l_x = 0.1; //m\n", +"\n", +"//Calculations:\n", +"A= l_x*l_y;\n", +"normal_stress_z = (P*(10^3))/A; //Pa\n", +"\n", +"Est = 200; //GPa - from the tables.\n", +"strain_z = (normal_stress_z)/(Est*(10^9)); // Strain = stress/modulus of elasticity\n", +"\n", +"axial_elong = strain_z*l_z; //elongation in the y direction\n", +"\n", +"nu_st = 0.32; //Poisson's Ratio - from the tables.\n", +"strain_x = -(nu_st)*(strain_z); //strain in the x direction.\n", +"strain_y = strain_x;\n", +"\n", +"//Elongations:\n", +"delta_x = strain_x*l_x;\n", +"delta_y = strain_y*l_y;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe change in the length (z direction) = %10.8f m',axial_elong);\n", +"printf('\nThe change in the cross section (x direction)= %10.8f m',delta_x);\n", +"printf('\nThe change in the cross section (y direction)= %10.8f m',delta_y);\n", +"\n", +"printf('\n\nIn the standard form:')\n", +"printf('\nThe change in the length (z direction) = %10.2f x10^6m',(axial_elong*10^6));\n", +"printf('\nThe change in the cross section (x direction)= %10.2f x10^6m',(delta_x*10^6));\n", +"printf('\nThe change in the cross section (y direction)= %10.2f x10^6m',(delta_y*10^6));\n", +"\n", +"//----------------------------------------------------------------------------END------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: MPM5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.5 : ')\n", +"\n", +"//Given:\n", +"//Refer to the graph of shear stress-strain of titanium alloy.\n", +"x_A = 0.008; //rad - x co-ordinate of A\n", +"y_A = 360; //MPa - y co-ordinate of A\n", +"height = 50;//mm\n", +"l = 75; //mm\n", +"b = 100; //mm\n", +"\n", +"\n", +"//Calculations:\n", +"\n", +"//Shear Modulus:\n", +"G = y_A/x_A;\n", +"\n", +"//Proportional Limit:\n", +"tou_pl = 360; //Mpa Point A\n", +"\n", +"//Ultimate Stresss:\n", +"tou_u = 504; //MPa - Max shear stress at B\n", +"\n", +"//Maximum Elastic Displacement:\n", +"tanA= x_A;// tan theta is approximated as theta.\n", +"d = tanA*height;\n", +"\n", +"//Shear Force:\n", +"A = l*b;\n", +"V = tou_pl*A;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe Shear Modulus = %10.2f MPa',G);\n", +"printf('\nThe Proportional Limit = %10.2f Mpa',tou_pl);\n", +"printf('\nThe Ultimate Shear Stress = %10.2f MPa ',tou_u);\n", +"printf('\nThe Maximum Elastic Displacement = %10.2f mm',d);\n", +"printf('\nThe Shear Force = %10.2f kN ',(V/1000));\n", +"\n", +"//------------------------------------------------------------------END---------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: MPM6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 3.6 : ')\n", +"\n", +"//Given:\n", +"d_o = 0.025; //m\n", +"l_o =0.25; //m\n", +"F =165; //kN\n", +"delta = 1.2; //mm\n", +"G_al = 26; //GPa\n", +"sigma_y = 440; //MPa\n", +"\n", +"//Calculations:\n", +"\n", +"//Modulus of Elasticity:\n", +"A = (%pi/4)*(d_o^2);\n", +"avg_normal_stress = (F*10^3)/A;\n", +"avg_normal_strain = delta/l_o;\n", +"E_al = avg_normal_stress/ avg_normal_strain;\n", +"\n", +"E_al = E_al/10^6;\n", +"\n", +"//Contraction of Diameter:\n", +"nu = (E_al/(2*G_al))-1;\n", +"strain_lat = nu*(avg_normal_strain) ;\n", +"d_contraction = strain_lat* d_o ;\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe Modulus of Elasticity = %10.1f GPa',E_al);\n", +"printf('\nThe contraction in diameter due to the force = %10.4f mm',d_contraction);\n", +"\n", +"//------------------------------------------------------------------------------END----------------------------------------------------------------------------------------" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/4-Axial_Load_.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/4-Axial_Load_.ipynb new file mode 100644 index 0000000..0c429e7 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/4-Axial_Load_.ipynb @@ -0,0 +1,981 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Axial Load " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: AL10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.10 : ')\n", +"\n", +"//Given:\n", +"T1 = 30; //degree celcius\n", +"T2 = 60;//degress celcius\n", +"l_ab = 1;//m\n", +"area = 10*10*10^-6; //m^2\n", +"alpha = 12*10^-6;// per degree celcius\n", +"E = 200*10^6; //kPa\n", +"\n", +"//Equilibrium:\n", +"//F_a = F_b = F\n", +"\n", +"del_T = T2-T1;\n", +"F = alpha*del_T*area*E; //Thermal Stress Formula\n", +"\n", +"avg_normal_comp_stress = (F*10^-3)/area; // sigma = F/A\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe force at A and B = %1.1f kN',F);\n", +"printf('\nThe average normal compressive stress = %1.1f MPa',avg_normal_comp_stress);\n", +"\n", +"\n", +"//-------------------------------------------------------------------END--------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: AL11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.11 : ')\n", +"\n", +"//Given:\n", +"area_sleeve = 600*10^-6; //m^2\n", +"area_bolt = 400*10^-6; //m^2\n", +"T1 = 15; //degree celcius\n", +"T2 = 80; //degree celcius\n", +"alpha_bolt = 12*10^-6; //per degree celcius\n", +"alpha_sleeve = 23*10^-6; //per degree celcius\n", +"l = 0.15; //m\n", +"E_bolt = 200*10^9; //N/m^2 \n", +"E_sleeve = 73.1*10^9; //N/m^2 \n", +"\n", +"//Equilibrium:\n", +"//F_s = F_b\n", +"\n", +"//Compatibility:\n", +"del_T = T2 - T1; // temperature difference\n", +"delb_T = alpha_bolt*del_T*l; \n", +"delb_F = l/(area_bolt*E_bolt);\n", +"dels_T = alpha_sleeve*del_T*l; \n", +"dels_F = l/(area_sleeve*E_sleeve);\n", +"\n", +"//delb_T + F_b*delb_F = dels_T + F_s*dels_F\n", +"\n", +"F_b = (dels_T-delb_T)/(delb_F+dels_F);\n", +"F_b = F_b/1000; //in kN\n", +"F_s= F_b;\n", +"\n", +"sigma_b = F_b/(area_bolt*10^3); //Average Normal Stress\n", +"sigma_s = F_s/(area_sleeve*10^3); //Average Normal Stress\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe force experienced by sleeve and bolt = %1.2f kN',F_s);\n", +"printf('\nThe average normal stress on bolt = %1.1f MPa',sigma_b);\n", +"printf('\nThe average normal stress on sleeve = %1.1f MPa',sigma_s);\n", +"\n", +"\n", +"//-----------------------------------------------------------END-----------------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: AL12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.12 : ')\n", +"\n", +"//Given:\n", +"h = 0.250; //m\n", +"T1 = 20; //degree celcius\n", +"udl = 150; //kN/m\n", +"T2 = 80; //degree celcius\n", +"len = 0.3; //m\n", +"dia_steel = 0.04;//m\n", +"r_steel = 0.02;\n", +"dia_aluminium = 0.06; //m\n", +"r_al = dia_aluminium/2;\n", +"area_st = %pi*(r_steel^2);\n", +"area_al = %pi*(r_al^2);\n", +"F = 90*10^3;//N\n", +"alpha_st = 12*10^-6; //per degree celcius\n", +"alpha_al = 23*10^-6; //per degree celcius\n", +"E_st = 200*10^9; // N/m^2\n", +"E_al = 73.1*10^9; // N/m^2\n", +"\n", +"//Equilibrium:\n", +"//From the free body diagram: Eqn1 : 2F_st + F_al-\n", +"\n", +"\n", +"// -delst_T + F_st*delst_F = -delal_T + F_al*delal_F\n", +"\n", +"//Eqn2 : 165.9*10^3 =1.216F_al - F_st F = 0\n", +"\n", +"//Compatibility:\n", +"delst_T = alpha_st*(T1+T2)*h;\n", +"delst_F = h/(area_st*E_st);\n", +"delal_T = alpha_al*(T1+T2)*h;\n", +"delst_F = h/(area_al*E_al);\n", +"\n", +"coeffMat = [2 1; -1 1.216]\n", +"b= [90*10^3 ; 165.9*10^3]\n", +"F = coeffMat\b;\n", +"F_st = F(1)/1000;\n", +"F_al =F(2)/1000;\n", +"F_al =ceil(F_al);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe force on the steel post = %1.1f kN',F_st);\n", +"printf('\nThe force on the aluminium post = %1.1f kN',F_al);\n", +"\n", +"//-----------------------------------------------------------------------------END----------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: AL13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.13 : ')\n", +"\n", +"//Given:\n", +"sigma_allow = 115; //MPa\n", +"\n", +"//Determinng the stress concentration factor:\n", +"\n", +"r_n =10/20;\n", +"w_h = 40/20;\n", +"k = 1.4; //from graph\n", +"sigma_avg = sigma_allow/k;\n", +"P =sigma_avg*20*10;\n", +"P = P/1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe largest axial force that the bar can carry = %1.2f kN',P);\n", +"\n", +"//------------------------------------------------------------------------------END---------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: AL14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.14 : ')\n", +"\n", +"//Given:\n", +"P = 80*10^3; //N\n", +"yield_stress = 700; //MPa;\n", +"E = 200*10^9; //N/mm^2\n", +"l1 = 0.3; //m\n", +"l2 = 0.8; //m\n", +"\n", +"//Maximum Normal Stress:\n", +"r_h = 6/20;\n", +"w_h = 40/20;\n", +"K = 1.6;\n", +"\n", +"area2 = 0.02*0.01; //m^2 note its not 0.001.\n", +"max_stress = (K*P)/area2;\n", +"max_stress = (max_stress/10^6); // converting to MPa\n", +"\n", +"//Displacement:\n", +"area1 = 0.04*0.01;\n", +"del_ad_1 = (P*l1)/(area1*E);\n", +"del_ad_2 = (P*l2)/(area2*E);\n", +"del_ad = (2*del_ad_1)+ del_ad_2;\n", +"del_ad = del_ad*1000; //converting m to mm\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe maximum normal stress = %1.1f MPa',max_stress);\n", +"printf('\nThe displacement of one end with respect to the other = %1.2f mm',del_ad);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: AL15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.15 : ')\n", +"\n", +"//Given\n", +"weight = 15; //kN\n", +"l_ab = 5; //m\n", +"l_ac= 5.0075; //m\n", +"area = 30; //mm^2\n", +"\n", +"//calculations:\n", +"strain_ab = (l_ac-l_ab)/l_ab; \n", +"max_strain = 0.0017; \n", +"\n", +"stress_ab = (350*strain_ab)/max_strain;\n", +"F_ab = stress_ab*area; // F= stress*area\n", +"E_st = 350/max_strain; //Modulus ofelasticity\n", +"\n", +"del1 = l_ab/(area*10^-6*E_st*10^3); //del = PL/AE\n", +"del2 = l_ac/(area*10^-6*E_st*10^3); //del = PL/AE\n", +"\n", +"//Eqn1 = T_ab + T_ac = weight\n", +"//Eqn2 = del1*T_ab - del2*T_ac = (l_ac-l_ab)\n", +"\n", +"//Solving using matrices:\n", +"A = [1 1;del1 -del2];\n", +"b = [weight; (l_ac-l_ab)];\n", +"T = A\b;\n", +"\n", +"T_ab = T(1);\n", +"T_ac = T(2);\n", +"\n", +"stress_in_ab = (T_ab*10^3)/area;\n", +"\n", +"if(stress_in_ab>350)\n", +" T_ab = (350*area)/1000;\n", +"end\n", +"\n", +"T_ac = 15-T_ab;\n", +"stress = (T_ac*10^3)/area;\n", +"strain_ac = (stress*max_strain)/350;\n", +"\n", +"elong_ac = strain_ac*l_ac; //m\n", +"elong_ab = (l_ac-l_ab)+elong_ac; //m\n", +"\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe force experienced by wire AB = %1.1f kN',T_ab);\n", +"printf('\nThe force experienced by wire AC = %1.1f kN',T_ac);\n", +"printf('\nThe elongation in wire AB = %1.5f m',elong_ab);\n", +"printf('\nThe elongation in wire AC = %1.5f m',elong_ac);\n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.16: AL16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.16 : ')\n", +"\n", +"//Given:\n", +"yield = 250; //MPa\n", +"r = 4; //mm\n", +"width = 40; //mm\n", +"thick = 2; //mm\n", +"\n", +"//a)\n", +"r_h = r/(width - (2*r));\n", +"w_h = width/(width - (2*r));\n", +"K = 1.75;\n", +"area = (thick*(width - (2*r))*10^-6);\n", +"P_y = (yield*10^6*area)/K;\n", +"P_y = P_y/1000;\n", +"\n", +"//b)\n", +"P_p = (yield*10^6*area);\n", +"P_p = P_p/1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum load P that does not cause the steel to yield = %1.2f kN',P_y);\n", +"printf('\nThe maximum load that the bar can support = %1.2f kN',P_p);\n", +"\n", +"//-------------------------------------------------------------------------END----------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.17: AL17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.17 : ')\n", +"\n", +"//Given:\n", +"r = 5/1000; //m\n", +"yield = 420; //MPa\n", +"E = 70; //GPa\n", +"P = 60; //kN\n", +"l_ac = 100/1000; //m\n", +"l_cb = 300/1000; //m\n", +"F_a = 45; //kN by elastic analysis\n", +"F_b = 15; //kN by elastic analysis\n", +"\n", +"//Calculations:\n", +"area = %pi*(r^2)\n", +"sigma_ac = F_a/(area*1000);\n", +"sigma_ac1 = sigma_ac;\n", +"sigma_cb = F_b/(area*1000);\n", +"sigma_cb1 = sigma_cb;\n", +"\n", +"if(sigma_ac>yield)\n", +" F_a_y = yield*10^3*area;\n", +" F_b = P - F_a_y;\n", +" \n", +" sigma_ac = yield;\n", +" sigma_cb = F_b/(area*1000);\n", +"end\n", +"\n", +"//Residual Stress:\n", +"defl_c = (F_b*l_cb)/(area*E*10^6);\n", +"strain_cb = defl_c/l_cb;\n", +"strain_ac = -defl_c/l_ac;\n", +"\n", +"sigma_ac_r = -sigma_ac+ sigma_ac1;\n", +"sigma_cb_r = sigma_cb - sigma_cb1;\n", +"\n", +" sigma = sigma_cb_r;\n", +" \n", +"//Permanent Displacement:\n", +"res_strain_cb = (sigma*10^6)/(E*10^9);\n", +"perm_defl_c = res_strain_cb*l_cb*1000;\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe residual stress in AC = %1.1f MPa',sigma_ac_r);\n", +"printf('\nThe residual stress in CB = %1.1f MPa',sigma_cb_r);\n", +"printf('\nThe permanent displacement of the collar at C = %1.3f mm',perm_defl_c);\n", +"\n", +"//----------------------------------------------------------------------END-----------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: AL1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.1 : ')\n", +"\n", +"//Given:\n", +"a_ab = 600; //mm^2\n", +"a_bd = 1200; //mm^2\n", +"a_bc = a_bd;\n", +"p = 75; //kN\n", +"l_ab = 1; //m\n", +"l_bc = 0.75; //m\n", +"l_cd = 0.5; //m\n", +"\n", +"//Calculations:\n", +"\n", +"//Internal Forces: By method of Sections\n", +"P_bc = 35; //kN\n", +"P_cd = 45;//kN\n", +"\n", +"//Displacement:\n", +"E_st = 210*(10^3); //From the tables\n", +"\n", +"P = [p P_bc -P_cd];\n", +"A =[a_ab a_bc a_bd];\n", +"L= [l_ab l_bc l_cd];\n", +"E = []\n", +"n = length(P)\n", +"\n", +"delta_sum =0;\n", +"\n", +"for i = 1:n;\n", +" delta_sum = delta_sum + (P(i)*L(i)*(10^6))/(A(i)*E_st);\n", +"end\n", +"\n", +"delta_bc = (P_bc*l_bc*10^6)/(a_bc*E_st);\n", +"\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe vertical displacement of end A = +%1.2f mm',delta_sum);\n", +"printf('\nThe displacement of B relative to C is = +%1.3f mm',delta_bc);\n", +"\n", +"//------------------------------------------------------------------------END----------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: AL2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.2 : ')\n", +"\n", +"//Given:\n", +"a_ab = 400; //mm^2\n", +"d_rod = 10; //mm\n", +"r_rod = d_rod/(2*1000); //radius in m\n", +"P = 80; //kN\n", +"E_st = 200*(10^9); //Pa\n", +"E_al = 70*(10^9); //Pa\n", +"l_ab = 400; //mm\n", +"l_bc = 600; //mm\n", +"\n", +"//Calculations:\n", +"\n", +"//Internal forces: tension = compression = 80kN.\n", +"\n", +"//Displacement:\n", +"\n", +"//delta =PL/AE\n", +"numerator1 = P*(10^3)*(l_bc/1000); \n", +"denominator1 = (%pi*r_rod^2*E_st);\n", +"delta_cb = numerator1/denominator1; //to the right\n", +"\n", +"numerator2 = -P*(10^3)*(l_ab/1000); \n", +"denominator2 = (a_ab* 10^-6 *E_al);\n", +"delta_a = -numerator2/denominator2; //to the right\n", +"\n", +"delta_c = delta_a+delta_cb;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"\n", +"printf('\n\nThe displacement of C with respect to B = +%1.6f m',delta_cb);\n", +"printf('\nThe displacement of B with respect to A = +%1.6f m',delta_a);\n", +"printf('\nThe displacement of C relative to A = +%1.5f m',delta_c);\n", +"\n", +"//------------------------------------------------------------------END---------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: AL3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.3 : ')\n", +"\n", +"//Given:\n", +"d_ac = 20; //mm\n", +"r_ac = d_ac/(2*1000); //radius in m\n", +"d_bd =40; //mm\n", +"r_bd = d_bd/(2*1000); //radius in m\n", +"P = 90; //kN\n", +"E_st = 200*(10^9); //Pa\n", +"E_al = 70*(10^9); //Pa\n", +"l_af = 200; //mm\n", +"l_fb = 400; //mm\n", +"l_bd = 300; //mm\n", +"l_ac = l_bd;\n", +"\n", +"//Calculations:\n", +"\n", +"//Internal Force:\n", +"P_ac = 60; //kN\n", +"P_bd = 30; //kN\n", +"\n", +"//Displacement:\n", +"\n", +"//Post AC: delta = PL/AE\n", +"num1 = -(P_ac*10^3*(l_ac/1000));\n", +"denom1 = %pi* r_ac^2*E_st;\n", +"delta_a = -num1/denom1; //downwards\n", +"delta_a = delta_a*1000; //in m\n", +"\n", +"//Post BD: delta = PL/AE\n", +"num2 = -(P_bd*10^3*(l_bd/1000));\n", +"denom2 = %pi* r_bd^2*E_al;\n", +"delta_b = -num2/denom2; //downwards\n", +"delta_b = delta_b*1000; //in m\n", +"\n", +"\n", +"delta_f = delta_b + (0.184)*(l_fb/(l_af+l_fb)); //By similar triangles from the figure.\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe displacement of Post AC = +%1.3f mm downwards',delta_a);\n", +"printf('\nThe displacement of Post BD = +%1.3f mm downwards',delta_b);\n", +"printf('\nnThe displacement of point F = +%1.3f mm downwards',delta_f);\n", +"\n", +"//------------------------------------------------------------------------------END-----------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: AL5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.5 : ')\n", +"\n", +"//Given:\n", +"d_ab = 5; //mm\n", +"A = (%pi/4)*(d_ab/1000)^2;\n", +"gap = 1; //mm\n", +"P = 20; //kN\n", +"E_st = 200; //GPa\n", +"l_ac = 0.4; //m\n", +"l_cb = 0.8; //m\n", +"l_ab = l_ac+l_cb;\n", +"\n", +"//Calculations:\n", +"\n", +"//Equilibrium:\n", +"// Eqn1: -Fa - Fb +P*10^3 = 0; \n", +"\n", +"//Compatibility:\n", +"delta_ba = gap/1000; //in m\n", +"\n", +"delta = delta_ba*(A*E_st*10^9); //delta_ba* Lac/AE \n", +"\n", +"\n", +"//Eqn2: (L/AE)*Fa -(Lb/AE)*Fb = delta_ba\n", +"\n", +"//Solving Equations 1 and 2 by matrices:\n", +"coeff_F = [1 1; l_ac -l_cb];\n", +"b =[P*10^3 ; delta];\n", +"F = coeff_F\b;\n", +"\n", +"F_a = F(1)/1000;\n", +"F_b = F(2)/1000;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe reaction force at A = %1.1f kN',F_a);\n", +"printf('\nThe reaction force at B = %1.2f kN',F_b);\n", +"\n", +"//--------------------------------------------------------------------------------END----------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: AL6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.6 : ')\n", +"\n", +"//Given:\n", +"P = 45; //kN\n", +"E_al = 70*10^3;\n", +"E_br = 105*10^3;\n", +"h = 0.5; //m\n", +"ri = 25/1000; //m\n", +"ro = 50/1000; //m\n", +"A = (%pi*(ro^2 -ri^2));\n", +"Ai = %pi*ri^2;\n", +"\n", +"//Calculations:\n", +"\n", +"//Equilibrium: Eqn1:F_al +F_br = P\n", +"\n", +"//Compatibility:\n", +"coeff_F_br = (A*E_al)/(Ai*E_br); // delta_al = delta_brass\n", +"\n", +"//Eqn2 : F_al- (coeff_F_br*F_br) = 0\n", +"\n", +"//Solving equations 1 and 2 using matrices:\n", +"\n", +"coeff_F = [1 1; 1 -coeff_F_br];\n", +"b = [P; 0];\n", +"F = coeff_F\b;\n", +"\n", +"F_al =F(1);\n", +"F_br =F(2);\n", +"\n", +"avg_stress_al = F_al/A; \n", +"avg_stress_br = F_br/Ai; \n", +"\n", +"avg_stress_al = avg_stress_al/1000;\n", +"avg_stress_br = avg_stress_br/1000;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe axial force experienced by Al = %1.1f kN',F_al);\n", +"printf('\nThe axial force experienced by Brass = %1.2f kN',F_br);\n", +"printf('\nThe average normal stress in Al = %1.2f MPa',avg_stress_al);\n", +"printf('\nThe average normal stress in Al Brass = %1.2f MPa',avg_stress_br);\n", +"\n", +"//---------------------------------------------------------------------END-------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: AL7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.7 : ')\n", +"\n", +"//Given:\n", +"P = 15; //kN\n", +"a_ab = 25; //mm^2\n", +"a_ef =a_ab;\n", +"a_cd = 15; //mm^2\n", +"l_ef = 0.5; //m\n", +"l_ce = 0.4; //m\n", +"l_ac = 0.4; //m\n", +"\n", +"//Calculations:\n", +"\n", +"//Equilibrium:\n", +"//In the y direction ; F_a +F_c +F_e = P\n", +"//of moments: -F_a(l_ac)+ P(l_ac/2) +F_e(l_ce) = 0\n", +"\n", +"//Compatibility equation for displacemnts:\n", +"coeff_Fc = (1/a_cd); //coefficient of Fc\n", +"coeff_Fa = (0.5/a_ab); //coefficient of Fc\n", +"coeff_Fe = (0.5/a_ef); //coefficient of Fc\n", +"\n", +"//Using matrices to solve the 3 Equations:\n", +"A = [1 1 1; -l_ac 0 l_ce; coeff_Fa -coeff_Fc coeff_Fe];\n", +"b = [P ; -P*(l_ac/2); 0];\n", +"F = A\b;\n", +"\n", +"\n", +"F_a = F(1);\n", +"F_b = F(2);\n", +"F_c = F(3);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe force in rod AB = %1.2f kN',F_a);\n", +"printf('\nThe force in rod CD = %1.2f kN',F_b);\n", +"printf('\nThe force in rod EF = %1.2f kN',F_c);\n", +"\n", +"//--------------------------------------------------------------------END--------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: AL8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.8 : ')\n", +"\n", +"//Given:\n", +"r_o = 10; //mm\n", +"r_i = 5; //mm\n", +"l = 60; //mm\n", +"a_t = (%pi)*(r_o^2 - r_i^2); //Area of thread\n", +"a_b = (%pi*(r_i^2));// Area of bolt\n", +"one_turn =20/20;\n", +"E_am = 45; //GPa\n", +"E_al = 75; //GPa\n", +"\n", +"//calculations:\n", +"\n", +"//Equilibrium:\n", +"// In Y direction: F_b - F_t = 0\n", +"\n", +"//Compatibility:\n", +"half_turn = one_turn/2;\n", +"coeff_Ft = l/(a_t*E_am*10^3); // delta = PL/AE\n", +"coeff_Fb = l/(a_b*E_al*10^3);\n", +"\n", +"//Solving the two simultaneous equations for F_b and F_t:\n", +"A = [1 -1; coeff_Fb coeff_Ft];\n", +"b = [0 ; half_turn];\n", +"F = A\b;\n", +"\n", +"F_b =F(1);\n", +"F_t = F(2);\n", +"\n", +"stress_b = F_b/a_b;\n", +"stress_t = F_t/a_t;\n", +"\n", +"F_b = F_b/1000; //in kN\n", +"F_t = F_t/1000; //in kN\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe force experienced by threads = %1.2f kN',F_t);\n", +"printf('\nThe force experienced by the bolt = %1.2f kN',F_b);\n", +"printf('\nThe stress in the screw = %1.1f MPa',stress_t);\n", +"printf('\nThe stress in the bolt = %1.1f MPa',stress_b);\n", +"\n", +"//------------------------------------------------------------------------END-----------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: AL9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 4.9 : ')\n", +"\n", +"//Given:\n", +"l_ab = 800 + 400;//mm\n", +"P = 20; //kN\n", +"d = 5/1000; //m\n", +"area = (%pi/4)*d^2; //Cross sectional area\n", +"l_bbdash = 1/1000;//m\n", +"E = 200; //GPa\n", +"\n", +"//Calculations:\n", +"\n", +"//Compatibility\n", +"delta_p = (P*10^3*0.4)/(area*E*10^9); //delta = PL/AE\n", +"delta_b = delta_p-l_bbdash;\n", +"F_b = (delta_b*area*E*10^9)/(l_ab/1000);\n", +"F_b = F_b/1000;\n", +"\n", +"//Equilibrium:\n", +"F_a = P - F_b;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe reaction at A = %1.1f kN',F_a);\n", +"printf('\nThe reaction at B = %1.1f kN',F_b);\n", +"\n", +"//------------------------------------------------------------END--------------------------------------------------------------------" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/5-Torsion.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/5-Torsion.ipynb new file mode 100644 index 0000000..8ddf9e8 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/5-Torsion.ipynb @@ -0,0 +1,958 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Torsion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: T11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.11 : ')\n", +"\n", +"//Given:\n", +"d = 20/1000; //m\n", +"r = d/2;\n", +"l_bc = 0.2;\n", +"l_cd = 1.5;\n", +"l_da = 0.3;\n", +"T_c = 800; //Nm\n", +"T_d = -500; //Nm\n", +"\n", +"//Equilibrium:\n", +"//Eqn 1 : 300 = T_a + T_b\n", +"\n", +"//Compatibility:\n", +"//Eqn 2:\n", +"coeff_Tb = -l_bc;\n", +"coeff_Ta = l_cd + l_da;\n", +"\n", +"//Solving Equations simultaneously using matrices:\n", +"C = [1 1; coeff_Tb coeff_Ta];\n", +"b = [300 ; -750];\n", +"T = C\b;\n", +"\n", +"T_b = T(1);\n", +"T_a = T(2);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe reaction at A = %1.0f Nm',T_a);\n", +"printf('\nThe reaction at B = %1.0f Nm',T_b);\n", +"\n", +"//---------------------------------------------------------------------------------END--------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.12: T12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.12 : ')\n", +"\n", +"//Given:\n", +" T = 250; //Nm\n", +" G_st = 80; //GPa\n", +" G_br = 36; //GPa\n", +" ri = 10; //mm\n", +" ro = 20; //mm\n", +" l_ab = 1.2; //m\n", +" \n", +" //Equilibrium:\n", +" // -Tst-Tbr+250Nm = 0\n", +" coeff1_st = -1;\n", +" coeff1_br = -1;\n", +" b1 = -250;\n", +" \n", +" //Compatibility:\n", +" //phi = TL/JG\n", +" \n", +" J1 = (%pi/2)*(ro^4 - ri^4);\n", +" J2 = (%pi/2)*(ri^4);\n", +" coeff2_st = 1/(J1*G_st*10^3);\n", +" coeff2_br = -1/(J2*G_br*10^3);\n", +"b2 = 0;\n", +"\n", +"//Solving the above two equations simultaneously using matrices:\n", +"A = [coeff1_st coeff1_br;coeff2_st coeff2_br ];\n", +"b = [b1 ; b2];\n", +"T = A\b;\n", +"\n", +"T_st = T(1);\n", +"T_br = T(2);\n", +"\n", +"shear_br_max = (T_br*10^3*ri)/(J2); //tou = (Tr)/J\n", +"shear_st_min = (T_st*10^3*ri)/(J1); //tou = (Tr)/J\n", +"shear_st_max = (T_st*10^3*ro)/(J1); //tou = (Tr)/J\n", +"\n", +"shear_strain = shear_br_max / G_br;\n", +"shear_strain = shear_strain;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe Torque acting on Steel = %1.2f Nm',T_st);\n", +"printf('\nThe Torque acting on Brass = %1.2f Nm',T_br);\n", +"printf('\nThe maximum shear stress experienced by Steel = %1.2f MPa',shear_st_max);\n", +"printf('\nThe minimum shear stress experienced by Steel = %1.2f MPa',shear_st_min);\n", +"printf('\nThe maximum shear stress experienced by Brass = %1.2f MPa',shear_br_max);\n", +"printf('\nThe shear strain at the interface = %1.5f *10^-3 rad',shear_strain);\n", +"\n", +"\n", +"//--------------------------------------------------------END-------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: T13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.13 : ')\n", +"\n", +"//Given:\n", +" l = 1.2; //m\n", +" a = 40; //mm\n", +" tou_allow = 56; //MPa\n", +" phi_allow = 0.02; //rad\n", +" G = 26; //GPa\n", +" alpha = (60*%pi)/180; //degrees\n", +" \n", +" //Calculations:\n", +" T_shear1 = (tou_allow*a^3)/(20*1000); // allowable shear stress = (20T)/(a^3)\n", +" T_twist1 = (phi_allow*a^4*G*10^3)/(46*l*10^6); //angle of twist =(46TL)/(a^4*G)\n", +" \n", +" T1 = min(T_shear1, T_twist1);\n", +" \n", +"//Circular Cross Section:\n", +"c_ = (a*a*sin(alpha))/(%pi*2);\n", +"c = sqrt(c_);\n", +"\n", +"J = (%pi/2)*(c^4);\n", +"T_shear2 = (tou_allow*J)/(c*1000);\n", +"T_twist2 = (phi_allow*J*G*10^3)/(l*10^6);\n", +"\n", +" T2 = min(T_shear2, T_twist2);\n", +"\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe largest torque that can be applied at the end of the triangular shaft = %1.2f Nm',T1);\n", +"printf('\nThe largest torque that can be applied at the end of the circular shaft = %1.2f Nm',T2);\n", +"\n", +"\n", +"//------------------------------------------------------------------------------END------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15: T15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.15 : ')\n", +"\n", +"//Given:\n", +"l_cd = 0.5; //m\n", +"l_de = 1.5; //m\n", +"h =60/1000; //m\n", +"w = 40/1000; //m\n", +"t_h = 3/1000; //m\n", +"t_w = 5/1000; //m\n", +"T_c = 60; //Nm\n", +"T_d = 25; //Nm\n", +"G = 38*10^9; //N/m^2\n", +"T1 = T_c - T_d;\n", +"\n", +"//Average Shear Stress:\n", +"area = (w-t_w)*(h-t_h);\n", +"\n", +"shear_a = T1/(2*t_w*area*10^6);\n", +"shear_b = T1/(2*t_h*area*10^6);\n", +"\n", +"//Angle of Twist:\n", +"\n", +"ds_t = 2*(((w-t_w)/t_h)+((h-t_h)/t_w));\n", +"T = [T_c T1];\n", +"l = [l_cd l_de];\n", +"phi = 0;\n", +"\n", +"for i = 1:2\n", +" phi = phi+ (T(i)*l(i)*ds_t)/(4*area^2*G);\n", +" \n", +"end\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe average shear stress of the tube at A = %1.2f MPa',shear_a);\n", +"printf('\nThe average shear stress of the tube at B = %1.2f MPa',shear_b);\n", +"printf('\nThe angle of twist of end C = %1.6f rad',phi);\n", +"\n", +"//----------------------------------------------------------------------------END-------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.16: T16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.16 : ')\n", +"\n", +"//Given:\n", +"T = 85; //Nm\n", +"G = 26; //GPa\n", +"t = 10; //mm thickness\n", +"a = 60; //mm side\n", +"l = 1.5; //m\n", +"\n", +"//Average Shear Stress:\n", +"area_m = (a-t)*(a-t);\n", +"avg_shear = (T*10^3)/(2*t*area_m); //tou_avg = T/(2tarea_m);\n", +"\n", +"\n", +"//Angle of Twist:\n", +"ds_t = (4*(a-t))/t;\n", +"phi = (T*10^3*l*10^3*ds_t)/(4*(area_m^2)*G*10^3);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe average shear stress in the tube at A = %1.1f N/mm^2',avg_shear);\n", +"printf('\nThe angle of twist due to loading = %1.5f rad',phi);\n", +"\n", +"//------------------------------------------------------------------END------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: T17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.17 : ')\n", +"\n", +"//Given:\n", +"tou_allow = 90; //MPa\n", +"phi_allow = 2*10^-3; //rad\n", +"a = 200; //mm side\n", +"angle = (60*%pi)/180;\n", +"h = a*sin(angle);\n", +"l = 3; //m\n", +"t = 5/1000; //m\n", +"G = 75*10^9; //N/mm^2\n", +"\n", +"//Calculations:\n", +"area_m = 0.5*a*h*10^-6;//m^2 a = (1/2)bh\n", +"ds_t = (3*a)/(t*1000);\n", +"\n", +"T_shear = (tou_allow*10^6*2*t*area_m); //tou_avg = T/(2tarea_m);\n", +"\n", +"T_twist = (phi_allow*4*area_m^2*G)/(l*ds_t);\n", +"\n", +" T = min(T_shear, T_twist);\n", +" \n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe maximum torque that the thin tube can be subjected to = %1.1f Nm',T);\n", +"\n", +"//----------------------------------------------------------------END------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: T18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.18 : ')\n", +"\n", +"//Given:\n", +"fillet_r = 6; //mm\n", +"D = 40/1000; //m\n", +"d = 20/1000; //m\n", +"T = 30; //Nm\n", +"D_d = D/d; \n", +"r_d = fillet_r/d; \n", +"k = 1.3;\n", +"\n", +"//Maximum Shear Stress:\n", +"c = D/2;\n", +"J = (%pi/2)*(c^4)\n", +"max_shear = (k*T*c)/(J*10^6); // tou = K(Tc/J)\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum shear stress in the shaft due to the applied torques = %1.2f MPa',max_shear);\n", +"\n", +"//----------------------------------------------------------------END------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.19: T19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.19 : ')\n", +"\n", +"//Given:\n", +"ro = 50/1000; //m\n", +"ri = 30/1000; //m\n", +"c = ro;\n", +"shear = 20*10^6; //N/m^2\n", +"\n", +"//Maximum Elastic Torque:\n", +"J = (%pi/2)*((ro^4)-(ri^4));\n", +"T_y = (shear*J)/c; // tou = Tc/J\n", +"T_y = T_y/1000; //in kN\n", +"\n", +"//Plastic Torque:\n", +"x0 = 0.03;\n", +"x1 = 0.05;\n", +"I = integrate('rho^2','rho',x0,x1)\n", +"Tp = (2*%pi*I*shear);\n", +"Tp= Tp/1000;\n", +"\n", +"//Outer Shear Strain:\n", +"strain = (0.286*10^-3*ro)/(ri);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe maximum torque that can be applied to the shaft without causing the material to yield = %1.2f kNm',T_y);\n", +"printf('\nThe plastic torque that can be applied to the shaft = %1.2f kNm',Tp);\n", +"printf('\nThe minimum shear strain at the outer radius of the shaft = %1.7f rad',strain);\n", +"\n", +"\n", +"//----------------------------------------------------------------END------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: T1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.1 : ')\n", +"\n", +"//Given:\n", +"r = 50; //mm\n", +"J = (%pi/2)*(r^4); //polar moment of inertia\n", +"tou_max = 56; //MPa\n", +"T = (tou_max*J)/(r*10^6); //toumax = Tc/J\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe resultant internal torque = %1.0f kNm',T);\n", +"\n", +"//-----------------------------------------------------------------END-------------------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.20: T20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.19 : ')\n", +"\n", +"//Given:\n", +"r = 20/1000; //m\n", +"l = 1.5; //m\n", +"phi = 0.6; //rad\n", +"shear_y = 75*10^6; //N/m^2\n", +"\n", +"//Calculations:\n", +"max_shear_strain = (phi*r)/(l); //phi = (strain*L)/r\n", +"strain_y = 0.0016;\n", +"\n", +"r_y = (r*strain_y)/(max_shear_strain); //by ratios\n", +"\n", +"//T= (%pi*shear_y)*(4c^3 - r_y^3)/6;\n", +"c = r;\n", +"\n", +"T = (%pi*shear_y)*(4*c^3 - r_y^3)/6;\n", +"T = T/1000;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe torque needed to twist the shaft by 0.6 rad = %1.2f kNm',T);\n", +"\n", +"//----------------------------------------------------------------END------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.21: T21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.21 : ')\n", +"\n", +"//Given:\n", +"l = 1.5; //m\n", +"G = 42*10^3; //GPa\n", +"co = 50; //mm\n", +"ci = 25;//mm\n", +"shear_y = 84; //N/mm^2\n", +"strain_y = 0.002; //rad\n", +"\n", +"//Plastic Torque:\n", +"T_p = ((2*%pi)*(co^3 - ci^3)*shear_y)/3;\n", +"phi_p = (strain_y*l*10^3)/ci;\n", +"\n", +"J = (%pi/2)*(co^4 - ci^4);\n", +"shear_r = (T_p*co)/J;\n", +"shear_i = (shear_r*ci)/(co);// shear = Tc/J\n", +"\n", +"G = shear_y/strain_y; \n", +"\n", +"phi_dash = (T_p*l*10^3)/(J*G); //phi = TpL/JG;\n", +"\n", +"phi = phi_p - phi_dash;\n", +"T_p = T_p/10^6;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe plastic torque Tp = %1.2f x 10^6 Nmm',T_p);\n", +"printf('\nThe permanent twist of the tube if Tp is removed = %1.5f rad',phi);\n", +"\n", +"\n", +"//----------------------------------------------------------------END------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: T3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.3 : ')\n", +"\n", +"//Given:\n", +"T1 = 4250; //kNmm\n", +"T2 = -3000; //kNm\n", +"T3 = T1+T2; //kNm\n", +"r = 75; //mm\n", +"\n", +"//Section Property:\n", +"J = (%pi/2)*(r^4); //polar moment of inertia\n", +"\n", +"//Shear Stress:\n", +"c_a = 75; //mm\n", +"tou_a = (T3*c_a*1000)/J; //tou = Tc/J\n", +"\n", +"c_b = 15; //mm\n", +"tou_b = (T3*c_b*1000)/J; //tou = Tc/J\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe shear stress developed at A = %1.2f MPa',tou_a);\n", +"printf('\nThe shear stress developed at B = %1.3f MPa',tou_b);\n", +"\n", +"//--------------------------------------------------------------------------------------END-------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: T4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.4 : ')\n", +"\n", +"//Given:\n", +"di = 80; //mm\n", +"ri = 40/1000; //m\n", +"d0 = 100; //mm\n", +"ro = d0/2000; //m\n", +"F = 80; //N\n", +"l1 = 0.2; //m\n", +"l2 = 0.3; //m\n", +"\n", +"//Internal Torque:\n", +"T = F*(l1+l2);\n", +"\n", +"//Section Property:\n", +"J = (%pi/2)*((ro^4)-(ri^4));\n", +"\n", +"//Shear Stress:\n", +"c_o = 0.05;//m\n", +"tou_o = (T*c_o)/(J*10^6);\n", +"\n", +"c_i = 0.04; //m\n", +"tou_i = (T*c_i)/(J*10^6);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe shear stress in the inner wall = %1.3f MPa',tou_i);\n", +"printf('\nThe shear stress in the outer wall = %1.3f MPa',tou_o);\n", +"\n", +"\n", +"//---------------------------------------------------------------------END-------------------------------------------------------------------------------------------\n", +"\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: T5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.5 : ')\n", +"\n", +"//Given:\n", +"P = 3750; //W\n", +"N = 175; //rpm\n", +"allow_shear = 100; //MPa\n", +"\n", +"//Calculations:\n", +"ang_vel = (2*%pi*N)/60; // rad/s\n", +"T = P/ang_vel; //P = T*angular velocity\n", +"\n", +"c = ((2*T*1000)/(%pi*allow_shear))^(1/3);\n", +"d = round(2*c);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe required diameter of the shaft = %1.0f mm',d);\n", +"\n", +"//------------------------------------------------------------------END------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: T6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.6 : ')\n", +"\n", +"//Given:\n", +"di = 30; //mm\n", +"ri= (di/2000); //m\n", +"d0 = 42; //mm\n", +"ro = (d0/2000); //m\n", +"P = 90; //kW\n", +"max_shear = 50; //MPa\n", +"\n", +"//Calculations:\n", +"c = ro; //m\n", +"J = (%pi/2)*((ro^4)-(ri^4)); //Polar moment of inertia of hollow shaft\n", +"T = (max_shear*J)/c; //tou max = Tc/J\n", +"\n", +"//P = 2(%pi)fT\n", +"f = (P)/(2*%pi*T*10^3);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe required frequency of rotation of the shaft = %1.1f Hz',f);\n", +"\n", +"//---------------------------------------------------------------------------END------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: T7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.7 : ')\n", +"\n", +"//Given:\n", +"E = 80*10^3; //MPa\n", +"d = 14/1000; //m\n", +"r = d/2; //m\n", +"R = 100; //mm\n", +"l_ac = 0.4; //m\n", +"l_cd = 0.3; //m\n", +"l_de = 0.5; //m\n", +"T_c = 280;//Nm\n", +"T_a = 150; //Nm\n", +"T_d = 40; //Nm\n", +"T_ac = T_a; //Nm\n", +"T_cd = T_ac - T_c; \n", +"T_de = T_cd - T_d;\n", +"\n", +"//Angle of Twist:\n", +"J = (%pi/2)*(r^4);\n", +"\n", +"T = [T_ac T_cd T_de];\n", +"l = [l_ac l_cd l_de];\n", +"\n", +"sumTwist = 0;\n", +"\n", +"for i= 1:3\n", +" sumTwist = sumTwist+ ((T(i)*l(i))/(J*E*10^6));\n", +"end\n", +"\n", +"displacement = - sumTwist*R;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe angle of twist of the shaft = %1.3f rad',sumTwist);\n", +"printf('\nThe displacement of tooth P on gear A = %1.1f mm',displacement);\n", +"\n", +"//---------------------------------------------------------------------END------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: T8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.8 : ')\n", +"\n", +"//Given:\n", +"T = 45; //N\n", +"G = 80; //GPa\n", +"d = 20/1000; //m\n", +"r = d/2; //m\n", +"l_dc = 1.5; //m\n", +"l_ab = 2; //m\n", +"r1 = 75/1000; //m\n", +"r2 = 150/1000; //m\n", +"\n", +"//Internal Torque:\n", +"F = T/r2;\n", +"T_d_x = F*r1;\n", +"\n", +"//Angle of twist:\n", +"J = (%pi/2)*(r^4);\n", +"phi_c = (T*l_dc)/(2*J*G*10^9);\n", +"phi_b = (phi_c*r1)/r2;\n", +"\n", +"phi_ab = (T*l_ab)/(J*G*10^9);\n", +"\n", +"phi_a = phi_b + phi_ab;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe angle of twist of end A of shaft AB = + %1.4f rad',phi_a);\n", +"\n", +"//----------------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: T9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 5.9 : ')\n", +"\n", +"//Given:\n", +"d = 50; //mm\n", +"r = d/2;\n", +"c = d/2;\n", +"l_buried = 600; //mm\n", +"G = 40*10^3; //MPa\n", +"F = 100; //N\n", +"l_handle= 150; //mm\n", +"l_ab = 900; //mm\n", +"\n", +"//Internal Torque:\n", +"T_ab = F*2*l_handle;\n", +"t = T_ab/l_buried;\n", +"\n", +"//Maximum Shear Stress:\n", +"J = (%pi/2)*(r^4);\n", +"tou_max = (T_ab*c)/(J);\n", +"\n", +"//Angle of Twist:\n", +"\n", +"x0=0;\n", +"x1=l_buried;\n", +"X=integrate('x','x',x0,x1);\n", +"\n", +"phi_a = ((T_ab*l_ab)+(50*X))/(J*G); \n", +"\n", +"//Display:\n", +"\n", +"\n", +"\n", +"printf('\n\nThe maximum shear stress in the post = %1.2f N/mm^2',tou_max);\n", +"printf('\nThe angle of twist at the top of the post = %1.5f rad',phi_a);\n", +"\n", +"//---------------------------------------------------------------------------END----------------------------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/6-Bending.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/6-Bending.ipynb new file mode 100644 index 0000000..78011e0 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/6-Bending.ipynb @@ -0,0 +1,1099 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Bending" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: B11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.11 : ')\n", +"\n", +"//Given:\n", +"l = 4.5; //m\n", +"R1 = 1.5; //kN\n", +"R2 = 3; //kN\n", +"uvl = 2; //kN/m\n", +"\n", +"//Shear diagram:\n", +"x = sqrt((2*R1*l)/(uvl));\n", +"M = (R1*x) - (0.5*uvl*x^3)/(3*l);\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nV becomes zero at x = %1.1fm',x);\n", +" printf('\nThe magnitude of the maximum moment = %1.1f kNm',M);\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: B13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.13 : ')\n", +"\n", +"//Given:\n", +"l_ab = 4; //m\n", +"l_cd = 4; //m\n", +"l_bc = 6; //m\n", +"Rb = 8; //kN\n", +"uvl = 2; //kN/m\n", +"\n", +"//Moment diagram:\n", +"p = [-1/18 0 -3.6 17.6]\n", +"x = roots(p)\n", +"y = x(3);\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nV becomes zero at x = %1.2f m',y);\n", +"\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: B14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.14 : ')\n", +"\n", +"//Given:\n", +"b = 60; //mm\n", +"h = 120; //mm\n", +"sigma_max = 20; //N/mm^2\n", +"c = b;\n", +"\n", +"//Part (a):\n", +"I = (1/12)*b*h^3;\n", +"M1 = (sigma_max*I)/(c); //sigma_max = Mc/I Flexure Formula\n", +"M1 = M1*10^-6; //in kN/m\n", +"\n", +"//Part (b):\n", +"y0=60;\n", +"y1=-60\n", +"\n", +"M2 = integrate('-(20*y^2)','y',y0,y1);\n", +"M2 = M2*10^-6;\n", +"\n", +"F = (0.5*sigma_max*b*b);\n", +"c = 2*(60 -(0.5*b)); //distance between centroids of both the volumes.\n", +"M = F*c/1000;\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe internal moment M calculated using : ');\n", +" printf('\na)The flexure formula = %1.2f kNm',M1);\n", +" printf('\nb)The resultant of the stress distribution using the basic principles = %1.2f kNm',M2);\n", +"\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: B15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.15 : ')\n", +"\n", +"//Given:\n", +"udl = 5; //kN/m\n", +"l1 = 3;//m\n", +"l2 = 6; //m\n", +"t = 20/1000; //mm\n", +"yb = 0.15;//m\n", +"\n", +"//Section Property:\n", +"I_bar1 = (1/12)*(0.25)*(0.02^3);\n", +"Ad2 = (0.25)*(0.02)*(yb+(t/2))^2;\n", +"I_bar2 = (1/12)*(0.02)*(0.3^3);\n", +"I = 2*(I_bar1 + Ad2) + I_bar2;\n", +"\n", +"//Bending stress:\n", +"c = 0.15 + t;\n", +"M= 22.5; //kNm\n", +"\n", +"sigma_max = (M*c)/(I*1000);\n", +"\n", +"sigma_B = (M*yb)/(I*1000);\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe absolute maximum bending stress is = %1.1f MPa',sigma_max);\n", +"\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: B16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.16 : ')\n", +"\n", +"//Given:\n", +"t1 = 15/1000; //m\n", +"t2 = 20/1000; //m\n", +"l = 250/1000; //m\n", +"b = 200/1000; //m\n", +"P = 2.4; //kN\n", +"l_a = 2; //m\n", +"l_b = 1; //m\n", +"\n", +"//Internal Moment:\n", +"y1 = b/2;\n", +"y2 = t2/2;\n", +"A = (2*t1*b)+(t2*l);\n", +"y_bar = ((2*y1*t1*b)+(y2*t2*l))/A;\n", +"\n", +"M = (P*l_a)+(1*y_bar);\n", +"\n", +"//Section Property:\n", +"I1 = (1/12)*(l*t2^3) + (l*t2*(y_bar - y2)^2);\n", +"I2 = (1/12)*(t1*b^3) + (t1*b*(y1 - y_bar)^2);\n", +"I =I1+ 2*I2;\n", +"\n", +"//Maximum Bending Stress:\n", +"c = b - y_bar;\n", +"sigma_max = (M*c)/(I*1000);\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe maximum bending stress at section a-a = %1.1f MPa',sigma_max);\n", +"\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.17: B17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.17 : ')\n", +"\n", +"//Given:\n", +"b = 60/1000; //m\n", +"h = 30/1000; //m\n", +"M = 40; //Nm\n", +"c1= h/2;\n", +"rib_t = 5/1000; //m\n", +"rib_w = 10/1000;//m\n", +"\n", +"//Without Ribs:\n", +"I1 = (1/12)*(b*h^3);\n", +"sigma_max1 = (M*c1)/(I1*10^6);\n", +"\n", +"//With Ribs:\n", +"y1 = c1;\n", +"y2 = h+(rib_t/2);\n", +"A1 = h*b;\n", +"A2 = rib_t*rib_w;\n", +"y_bar = ((y1*A1)+2*(y2*A2))/(A1 + 2*A2);\n", +"\n", +"c2 = h+rib_t - y_bar;\n", +"I2 = I1 + (b*h*(y_bar - y1)^2);\n", +"I3 = (1/12)*rib_w*rib_t^3 + (rib_w*rib_t*(y2 - y_bar)^2);\n", +"I = I2 + 2*I3;\n", +"\n", +"sigma_max2 = (M*c2)/(I*10^6);\n", +"\n", +"if(sigma_max2>sigma_max1)\n", +" \n", +" printf('\n\nThe maximum normal stress in the member without ribs = %1.2f MPa',sigma_max1);\n", +" printf('\nThe maximum normal stress in the member with ribs = %1.2f MPa',sigma_max2);\n", +" printf('\nThe ribs should be omitted.');\n", +" \n", +" end\n", +"\n", +" \n", +"//-----------------------------------------------------------------END--------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.18: B18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.18 : ')\n", +"\n", +"//Given:\n", +"M = 12; //kNm\n", +"l_bc = 0.2; //m\n", +"l_be = 0.4; //m\n", +"\n", +"//Internal Moment Components:\n", +"My = (-4/5)*M;\n", +"Mz = (3/5)*M;\n", +"\n", +"Iy = (1/12)*(l_be*l_bc^3);\n", +"Iz = (1/12)*(l_bc*l_be^3); \n", +"\n", +"//Bending Stress:\n", +"sigma_B = (-Mz*1000*(l_be/2))/Iz + (My*1000*(-l_bc/2))/Iy;\n", +"sigma_B = sigma_B/10^6;\n", +"sigma_C = (-Mz*1000*(l_be/2))/Iz + (My*1000*(l_bc/2))/Iy;\n", +"sigma_C = sigma_C/10^6;\n", +"sigma_D = (-Mz*1000*(-l_be/2))/Iz + (My*1000*(l_bc/2))/Iy;\n", +"sigma_D = sigma_D/10^6;\n", +"sigma_E = (-Mz*1000*(-l_be/2))/Iz + (My*1000*(-l_bc/2))/Iy;\n", +"sigma_E = sigma_E/10^6;\n", +"\n", +"//Orientation of Nuetral Axis:\n", +"z = (0.45)/(sigma_E + sigma_B);\n", +"\n", +"//theta = -atan(4/3);\n", +"tanA = (Iz/Iy)*(-4/3);\n", +"alpha = atan(tanA);\n", +"alpha = alpha*(180/%pi);\n", +"\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe normal stress at B = %1.2f MPa',sigma_B);\n", +" printf('\nThe normal stress at C = %1.2f MPa',sigma_C);\n", +" printf('\nThe normal stress at D = %1.2f MPa',sigma_D);\n", +" printf('\nThe normal stress at E = %1.2f MPa',sigma_E);\n", +" printf('\nThe orientation of the nuetral axis = %1.1f degrees',alpha);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.19: B19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.19 : ')\n", +"\n", +"//Given:\n", +"theta = 30*(%pi/180);\n", +"M = 15; //kNm\n", +"My = M*cos(theta); \n", +"Mz = M*sin(theta); \n", +"b = 0.1; //m\n", +"t1 = 0.04;//m\n", +"t2 = 0.03;//m\n", +"\n", +"\n", +"//Section Properties:\n", +"y1 = b/2;\n", +"y2 = b + t2/2;\n", +"A1 = (b*t1);\n", +"A2 = (b*2*t2);\n", +"z_bar = (y1*A1 + y2*A2)/(A1+A2);\n", +"\n", +"Iz = (1/12)*(b*t1^3) + (1/12)*(t2*(2*b)^3);\n", +"Iy = (1/12)*(t1*b^3) + b*t1*(z_bar - y1)^2 + (1/12)*(2*b*t2^3) + 2*b*t2*(y2 - z_bar)^2;\n", +"\n", +"//Maximum Bending Stress:\n", +"l_b = b+t2 - z_bar;\n", +"sigma_B = (-Mz*1000*(-b))/Iz + (My*1000*(l_b))/Iy;\n", +"sigma_B = sigma_B/10^6;\n", +"sigma_C = (-Mz*1000*(t1/2))/Iz + (My*1000*(-z_bar))/Iy;\n", +"sigma_C = sigma_C/10^6;\n", +"\n", +"sigma = max(abs(sigma_B),abs(sigma_C));\n", +"\n", +"//Orientation of the nuetral axis:\n", +"theta1 = 60*(%pi/180);\n", +"alpha = atan((Iz/Iy)*tan(theta1));\n", +"alpha = alpha*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe maximum normal stress in the beam = %1.2f MPa',sigma);\n", +" printf('\n The orientation of the nuetral axis = %1.1f degrees',alpha);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.20: B20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.20 : ')\n", +"\n", +"//Given:\n", +"M =20; //kN\n", +"Iy = 0.96*10^-3; //m^4\n", +"Iz = 7.54*10^-3; //m^4\n", +"theta = 57.1*(%pi/180);\n", +"\n", +"\n", +"//Internal moment Components:\n", +"My = M*sin(theta); \n", +"Mz = M*cos(theta); \n", +"\n", +"//Bending Stress:\n", +"y_p = -0.2; //y Coordinate of P\n", +"z_p = 0.35; //z Coordinate of P\n", +"\n", +"theta1 = (%pi/2)-(theta);\n", +"yp = -z_p*sin(theta1)+ y_p*cos(theta1);\n", +"zp = z_p*cos(theta1) + y_p*sin(theta1);\n", +"\n", +"//Eq 6-17\n", +"\n", +"sigma_p = ((Mz*-yp)/Iz) + ((My*zp)/Iy) ;\n", +"sigma_p = sigma_p/10^3;\n", +"\n", +"//Orientation of the Nuetral Axis:\n", +"alpha = atan((Iz/Iy)*tan(theta));\n", +"alpha = alpha*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe maximum normal stress at point P = %1.2f MPa',sigma_p);\n", +" printf('\nThe orientation of the nuetral axis = %1.1f degrees',alpha);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.21: B21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.21 : ')\n", +"\n", +"//Given:\n", +"M = 2; //kNm\n", +"Ew = 12; //GPa\n", +"Est = 200; //GPa\n", +"bw = 150/1000; //m\n", +"t = 20/1000; //m\n", +"rib = 9/1000;//m\n", +"\n", +"//Section Properties:\n", +"n = (Ew/Est);\n", +"bst = n*bw;\n", +"\n", +"y1 = t/2;\n", +"A1 = t*bw;\n", +"y2 = bw/2 + t;\n", +"A2 = rib*bw;\n", +"\n", +"y_bar = (y1*A1 +y2*A2)/(A1+A2);\n", +"\n", +"I1 = (1/12)*(bw)*(t^3) + A1*(y_bar - y1)^2;\n", +"I2 = (1/12)*(rib)*(bw^3) + A2*(y2-y_bar)^2;\n", +"Ina = I1+I2;\n", +"\n", +"//Normal Stress:\n", +"sigma_B = (M*(bw+t-y_bar))/(Ina*1000);\n", +"sigma_C = (M*(y_bar))/(Ina*1000);\n", +"\n", +"//Normal Stress in the wood:\n", +"sigmaB = n*sigma_B;\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe normal stress at point B = %1.1f MPa',sigma_B);\n", +" printf('\nThe normal stress at point C = %1.2f MPa',sigma_C);\n", +" printf('\nThe normal stress at point B in the wood = %1.2f MPa',sigmaB);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.22: B22.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.22 : ')\n", +"\n", +"//Given:\n", +"sigma_allow_st = 168; //MPa\n", +"sigma_allow_w = 21; //MPa\n", +"Est = 200; //GPa\n", +"Ew = 12; //GPa\n", +"Iz = 7.93*10^6; //mm^4\n", +"A1 = 5493.75; //mm^2\n", +"t = 5; //mm\n", +"h = 100; //mm\n", +"\n", +"//Without Board:\n", +"c = h+t;\n", +"M1 = (sigma_allow_st*Iz)/(c*10^6);\n", +"\n", +"//With Board:\n", +"bw = 300;//mm\n", +"n = (Ew/Est); \n", +"bst = n*bw;\n", +"\n", +"//For the transformed section:\n", +"y1 = 0;\n", +"y2 = 55;\n", +"A2 = bst*h;\n", +"\n", +"y_bar = (y1*A1 + y2*A2)/(A1+A2);\n", +"\n", +"I1 = Iz + A1*y_bar^2;\n", +"I2 = (1/12)*(bst*h^3) + (A2*(y2-y_bar)^2);\n", +"I = I1+I2;\n", +"\n", +"c = c+y_bar;\n", +"M2 = (sigma_allow_st*I)/(c*10^6);\n", +"\n", +"cw = c - y_bar;\n", +"Mw = (sigma_allow_w*I)/(n*cw*10^6);\n", +"\n", +"M = min(Mw,M2);\n", +"\n", +"//Display:\n", +"\n", +" printf('\n\nThe maximum bending moment without re-inforcement = %1.3f kNm',M1);\n", +" printf('\nThe maximum bending moment with re-inforcement = %1.2f kNm',M);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.23: B23.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.23 : ')\n", +"\n", +"//Given:\n", +"M = 60; //kNm\n", +"Est = 200; //GPa\n", +"Econc = 25; //GPa\n", +"d = 25;//mm\n", +"r = d/2;\n", +"w = 300;//mm\n", +"ht =400; //mm\n", +"\n", +"//Section Properties:\n", +"n = Est/Econc;\n", +"Ast = 2*%pi*r^2;\n", +"A = n*Ast;\n", +"\n", +"p = [1 52.37 -20949.33]\n", +"h = roots(p)\n", +"h = h(2);\n", +"\n", +"I = (1/12)*(w*h^3) +w*h*(h/2)^2 + A*(ht - h)^2;\n", +"\n", +"//Normal Stress:\n", +"sigma_conc_max = (M*1000*h*1000)/(I);\n", +"sigma_conc = (M*1000*(ht-h)*1000)/(I);\n", +"sigma_st = n*sigma_conc;\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe normal stress in each steel reinforcing rod = %1.2f MPa',sigma_st);\n", +" printf('\nThe maximum normal stress in the concrete = %1.2f MPa',sigma_conc_max);\n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.24: B24.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.24 : ')\n", +"\n", +"//Given:\n", +"sigma = 140; //Mpa\n", +"ri = 90; //mm\n", +"ro = 110; //mm\n", +"a = 20; //mm\n", +"\n", +"//Section Properties:\n", +" \n", +"y = integrate('a*(1/r)','r',ri,ro)\n", +"R = (a*a)/y;\n", +"\n", +"r_avg = (ri+ro)/2;\n", +"M1 = (-sigma*a*a*ro*(r_avg - R))/(R-ro);\n", +"M1 = M1*10^-6;\n", +"\n", +"M2 = (sigma*a*a*ri*(r_avg - R))/(R-ri);\n", +"M2 = M2*10^-6;\n", +"\n", +"M = min(M1,M2);\n", +"\n", +"sigma1 = (M*(R - ro))/(a*a*ro*(r_avg - R));\n", +"\n", +"//For a straight Bar:\n", +"I = (1/12)*(a*a^3);\n", +"c = 10; //mm\n", +"M_strt= (sigma*I)/c;\n", +"M_strt = M_strt*10^-6;\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe maximum bending moment that can be applied to the bar = %1.3f kNm',M);\n", +" printf('\nThe maximum bending moment that can be applied to a straight bar = %1.3f kNm',M_strt);\n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.25: B25.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.25 : ')\n", +"\n", +"//Given:\n", +"ri = 200/1000; //m\n", +"r1 = 250/1000; //m\n", +"ro = 280/1000; //m\n", +"M = 4; //kNm\n", +"a = 0.05; //m\n", +"h = 0.03; //m\n", +"\n", +"//Section Properties:\n", +"A1 = a^2 ;\n", +"A2 = (0.5*a*h);\n", +"A = A1+A2;\n", +"r_avg1 = (r1+ri)/2;\n", +"r_avg2 = r1+(h/3);\n", +"r_bar =((r_avg1*A1)+(r_avg2*A2))/A;\n", +"\n", +"int_dA_r1 = a*log(r1/ri);\n", +"int_dA_r2 = (a*ro*log(ro/r1))/(ro-r1) - a;\n", +"R = (A)/(int_dA_r1+ int_dA_r2);\n", +"k= r_bar - R;\n", +"\n", +"//Normal Stress:\n", +"sigma_B = (-M*(R-ri))/(A*ri*k*1000);\n", +"sigma_A = (-M*(R-ro))/(A*ro*k*1000);\n", +"\n", +"sigma = max(abs(sigma_B),abs(sigma_A))\n", +"\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe maximum normal stress in the bar = %1.0f MPa',sigma);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.26: B26.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.26 : ')\n", +"\n", +"//Given:\n", +"M = 5; //kNm\n", +"sigma_y = 500; //MPa\n", +"r = 16; //mm\n", +"h = 80; //mm\n", +"w = 120; //mm\n", +"r_h = r/h;\n", +"w_h = w/h;\n", +"k = 1.45; \n", +"c = h/(2000);\n", +"t = 20/1000; //m\n", +"\n", +"//Calculations:\n", +"I = (1/12)*(t)*(h/1000)^3\n", +"sigma_max = (k*M*c)/(I*1000);\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe maximum normal stress in the steel = %1.0f MPa',sigma_max);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.27: B27.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.27 : ')\n", +"\n", +"//Given:\n", +"sigma_y = 250; //MPa\n", +"t = 12.5; //mm\n", +"w = 200; //mm\n", +"h = 225; //mm\n", +"\n", +"//Maximum Elastic Moment:\n", +"yy = (h+t)/2;\n", +"I1 = (1/12)*(w*t^3) + (w*t*yy^2);\n", +"I = (1/12)*(t*h^3) + 2*(I1);\n", +"c = 125; //mm\n", +"\n", +"My = (sigma_y*I)/(c); //Flexure Formula\n", +"\n", +"//Plastic Moment:\n", +"C1= sigma_y*t*(h/2);\n", +"C2= sigma_y*t*(w);\n", +"Mp = (2*56.25*C1) + (2*yy*C2);\n", +"\n", +"//Shape Factor:\n", +"k = Mp/My;\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe shape factor for the beam = %1.2f ',k);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.28: B28.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.28 : ')\n", +"\n", +"//Given:\n", +"sigma_y = 250; //MPa\n", +"t = 15/1000; //m\n", +"w = 100/1000; //m\n", +"h = 120/1000; //m\n", +"c = 10/1000; //m\n", +"\n", +"//Calculations:\n", +"d = ((sigma_y*t*w)+(sigma_y*t*h))/(sigma_y*t*2);\n", +"\n", +"T = sigma_y*t*d*10^3;\n", +"C1 = sigma_y*t*c*10^3;\n", +"C2 = sigma_y*t*w*10^3;\n", +"\n", +"Mp = (T*d/2)+(C1*c/2)+(C2*(c+t/2));\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe plastic moment that can be resisted by the beam = %1.1f kNm',Mp);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.29: B29.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.29 : ')\n", +"\n", +"//Given:\n", +"ep1 = 0.01;\n", +"ep2 = 0.05;\n", +"sig1 = 1050;//N/mm^2\n", +"sig2 = 1330;//N/mm^2\n", +"sig3 = 280; //N/mm^2\n", +"y = 0.3; //cm\n", +"h = 3; //cm\n", +"w = 2; //cm\n", +"\n", +"//Calculations:\n", +"yy = (h/2)-y\n", +"T1 = (1/2)*(sig3*yy*w);\n", +"y1 = y +(2/3)*(yy);\n", +"T2 = yy*sig1*w;\n", +"y2 = y+(0.5*yy);\n", +"T3 = (0.5*y*sig1*w);\n", +"y3 = (2/3)*(y);\n", +"\n", +"M = 2*(T1*y1 + T2*y2 + T3*y3);\n", +"M = M/1000;\n", +"\n", +"//Display:\n", +"\n", +" \n", +" printf('\n\nThe bending moment applied that will cause a strain of 0.05mm/mm = %1.2f kNm',M);\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.30: B30.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.30 : ')\n", +"\n", +"//Given:\n", +"sigma_y = 250; //MPa\n", +"t = 12.5; //mm\n", +"w = 200; //mm\n", +"h = 225; //mm\n", +"c = (h/2)+t;\n", +"I = 82.44*10^6;//mm^4\n", +"Mp = 188; //kN\n", +"\n", +"//Calculations:\n", +"sigma_allow = (Mp*10^6*c)/(I);\n", +"y = (sigma_y*c)/(sigma_allow);\n", +"\n", +"//Display:\n", +" \n", +" printf('\n\nThe point of zero normal stress = %1.2f mm',y);\n", +" printf('\nThe Residual Stress distribution is shown in the text book.');\n", +" \n", +" //------------------------------------------------------------------------END---------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: B5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 6.5 : ')\n", +"\n", +"//Shear and Moment Diagrams:\n", +"p = [-1/9 -2 30]\n", +"x = roots(p)\n", +"y = (x(2));\n", +"\n", +" \n", +" M = (30*y) - (y^2) - (y^3)/27;\n", +"\n", +"\n", +"\n", +"//Display:\n", +" \n", +"printf('\n\nThe magnitude of the maximum moment is = %1.0f kNm', M);\n", +"printf('\nRefer to the shear and moment diagrams in the book.');\n", +"\n", +"\n", +"//---------------------------------------------------------------------------END-----------------------------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/7-Transverse_Shear.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/7-Transverse_Shear.ipynb new file mode 100644 index 0000000..15fabe9 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/7-Transverse_Shear.ipynb @@ -0,0 +1,432 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Transverse Shear" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: TS1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.1 : ')\n", +"\n", +"//Given:\n", +"V = 3; //kN\n", +"h = 125; //mm\n", +"b = 100; //mm\n", +"y_top = 50; //mm\n", +"x_right = 37.5; //mm\n", +"\n", +"//Part (a):\n", +"\n", +"//Section Properties:\n", +"I = (b*h^3)/12;\n", +"y_dash_1 = ((h-y_top)-(h/2));\n", +"A = y_top*b;\n", +"Q = (y_dash_1+(y_top/2))*A;\n", +"\n", +"//Shear Stress:\n", +"tou_p = (V*Q)/(I*b); //tou = VQ/It\n", +"tou_p = tou_p*10^3;\n", +"\n", +"//Part (b):\n", +"\n", +"//Section Properties:\n", +"y_dash_2 = (y_dash_1+(y_top));\n", +"a_dash= b*y_dash_2;\n", +"Q_dash =(y_dash_2*a_dash)/2;\n", +"\n", +"//Shear Stress:\n", +"tou_max = (V*Q_dash)/(I*b);\n", +"tou_max = tou_max*10^3;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe shear stress in the beam at point P = %1.3f MPa',tou_p);\n", +"printf('\nThe maximum shear stress in the beam = %1.3f MPa',tou_max);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: TS2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.2 : ')\n", +"\n", +"//Given:\n", +"V = 80; //kN\n", +"thick_1 = 20/1000; //m\n", +"thick_2 = 15/1000; //m\n", +"l = 300/1000; //m\n", +"y = 100/1000; //m\n", +"h = 2*y;\n", +"y_dash = y +thick_1/2;\n", +"\n", +"//Part(a):\n", +"\n", +"I1 = (thick_2*(h^3))/12;\n", +"I2 = (l*(thick_1^3))/12;\n", +"I3 = (l*thick_1*(y_dash)^2);\n", +"I = I1+2*(I2+I3); //Moment of inertia\n", +"\n", +"Q_b = y_dash*l*thick_1;\n", +"//At B'\n", +"tou_b_dash = (V*Q_b)/(I*l*1000);\n", +"//At B\n", +"tou_b = (V*Q_b)/(I*thick_2*1000);\n", +"\n", +"//At C:\n", +"Q_c = (y_dash*l*thick_1)+(y*thick_2*y/2);\n", +"tou_c = (V*Q_c)/(I*thick_2*1000);\n", +"\n", +"//Part(b)\n", +"\n", +"\n", +"y0 = -0.1;\n", +"y1 = 0.1;\n", +"\n", +"function Q =f(y),Q = ((0.735 - (7.5*y*y))*10^-3),\n", +"endfunction\n", +"Int =intg(y0,y1,f)\n", +"\n", +"V_w = (V*Int*thick_2)/(I*thick_2);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe shear stress at B dash = %1.2f MPa',tou_b_dash);\n", +"printf('\nThe shear stress at B = %1.1f MPa',tou_b);\n", +"printf('\nThe shear stress at C = %1.1f MPa',tou_c);\n", +"printf('\nThe shear force resisted by the web = %1.1f kN',V_w);\n", +"\n", +"//------------------------------------------------------------------------END----------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: TS3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.3 : ')\n", +"\n", +"//Given:\n", +"udl = 6.5; //kN\n", +"l_bc = 8; //m\n", +"l = 150/1000;//m\n", +"t = 30/1000;//m\n", +"\n", +"//Internal Shear:\n", +"w = udl*l_bc/2;\n", +"l_wc = l_bc/4;\n", +"l_bw = l_bc - l_wc;\n", +"V = (w*l_bw)/l_bc;\n", +"R_b = w - V;\n", +"\n", +"//Section Properties:\n", +"y1= l/2;\n", +"A = (l*t);\n", +"y2= l+(t/2);\n", +"y_dash = (y1*A + y2*A)/(2*A);\n", +"I1 = (t*l^3)/12;\n", +"I2 = (A*(y_dash-y1)^2);\n", +"I3 = (l*t^3)/12;\n", +"I4 = (A*(y2 - y_dash)^2);\n", +"I = I1+I2+I3+I4;\n", +"\n", +"Q = ((l+t)-(t/2)-y_dash)*A;\n", +"\n", +"//Shear Stress:\n", +"tou_max = (V*Q)/(I*t*1000);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum shear stress in the glue necessary to hold the boards together = %1.2f MPa',tou_max);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: TS4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.4 : ')\n", +"\n", +"//Given:\n", +"\n", +"V = 850; //kN\n", +"l1 =250/1000; //m\n", +"l2 = 300/1000; //m\n", +"l3 = 125/1000;//m\n", +"t = 10/1000; //m\n", +"h = 200/1000; //m\n", +"\n", +"A1 = l1*t;\n", +"A2 = l2*t;\n", +"A3 = l3*t;\n", +"\n", +"y1 = l2+(t/2);\n", +"y2 = l2/2;\n", +"y3 = h+(t/2);\n", +"\n", +"y_dash = (2*y2*A2 + A1*y1 + A3*y3)/(2*A2 + A1 + A3);\n", +"\n", +"I1 = ((l1*t^3)/12) +(A1 * (l2+(t/2)-y_dash)^2);\n", +"I2 = ((t*l2^3)/12) +(A2 * (y_dash - (l2/2))^2);\n", +"I3 = ((l3*t^3)/12) +(A1 * (h+(t/2)-y_dash)^2);\n", +"I = 2*I2 + I1 + I3;\n", +"\n", +"Q_b = (l2+(t/2) - y_dash)*A1; //Q = y'A'\n", +"Q_c = (h+(t/2) - y_dash)*A3; //Q = y'A'\n", +"\n", +"//Shear Flow:\n", +"\n", +"q_b = (V*Q_b)/I;\n", +"q_c = (V*Q_c)/I;\n", +"\n", +"q_b = q_b/(2*1000);\n", +"q_c = q_c/(2*1000);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe shear flow at B, resisted by the glue is = %1.2f MN/m',q_b);\n", +"printf('\nThe shear flow at C, resisted by the glue is = %1.4f MN/m',q_c);\n", +"\n", +"\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: TS5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.5 : ')\n", +"\n", +"//Given:\n", +"V = 80; //N\n", +"t = 1.5; //cm\n", +"a = 7.5; //cm\n", +"b = a-2*t; //cm\n", +"F_nail= 30; //N\n", +"\n", +"//Section Properties:\n", +"I = (a*a^3 - b*b^3 )/12;\n", +"Q_b = (((a-2*t)/2)+(t/2))*a*t; //Q = y'A'\n", +"Q_c = (((a-2*t)/2)+(t/2))*(a-2*t)*t; //Q = y'A'\n", +"\n", +"//Shear Flow:\n", +"q_b = (V*Q_b)/I;\n", +"q_c = (V*Q_c)/I;\n", +"\n", +"s_b = F_nail/(q_b/2);\n", +"s_c = F_nail/(q_c/2);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe maximum spacing of nails required at B is = %1.0f cm',s_b);\n", +"printf('\nThe maximum spacing of nails required at C is = %1.1f cm',s_c);\n", +"\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: TS6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.6 : ')\n", +"\n", +"//Given:\n", +"F = 40; //N\n", +"s = 9; //cm\n", +"h = 5; //cm\n", +"t = 0.5; //cm\n", +"w = 3; //cm\n", +"w_3 = w/3; //cm\n", +"\n", +"//Calculations:\n", +"\n", +"I = (w*h^3)/12 - (2*w_3*(h - 2*t)^3)/12;\n", +"\n", +"//Case 1:\n", +"\n", +"Q1 = ((h-t)/2)*(w*t);\n", +"V1 =((F/s)*I)/Q1 ; //q = VQ/I\n", +"\n", +"//Case2:\n", +"\n", +"Q2 = ((h-t)/2)*(w_3*t);\n", +"V2 =((F/s)*I)/Q2 ; //q = VQ/I\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe largest vertical shear that can be supported in Case 1 = %1.1f N',V1);\n", +"printf('\nThe largest vertical shear that can be supported in Case 2 = %1.1f N',V2);\n", +"\n", +"//-------------------------------------------------------------------------END---------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: TS7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 7.7 : ')\n", +"\n", +"//Given:\n", +"V = 10; //kN\n", +"b1 = 6; //cm\n", +"h1 = 8; //cm\n", +"t = 1; //cm\n", +"b2 = b1-2*t;\n", +"h2 = h1-2*t; //cm\n", +"b3 = 4; //cm\n", +"\n", +"//Calculations:\n", +"I = ((b1*h1^3)/12) - ((b2*h2^3)/12);\n", +"\n", +"q_b = 0;\n", +"\n", +"Q_c = ((b1/2)+(t/2))*(b3+(t))*t; \n", +"q_c = (V*Q_c*100)/(I); //Q = VQ/I\n", +"\n", +"Q_d = (2*h1/4*t*b3) + ((b1/2)+(t/2))*b3*t;\n", +"q_d = (V*Q_d*100)/(I); //Q = VQ/I\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nVariation of shear flow at B = %1.1f N/mm',q_b);\n", +"printf('\nVariation of shear flow at C = %1.1f N/mm',q_c);\n", +"printf('\nVariation of shear flow at D = %1.1f N/mm',q_d);\n", +"\n", +"//-------------------------------------------------------------------------END---------------------------------------------------------------------------------------\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/8-Combined_Loadings.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/8-Combined_Loadings.ipynb new file mode 100644 index 0000000..4585328 --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/8-Combined_Loadings.ipynb @@ -0,0 +1,378 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Combined Loadings" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: CL1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.1 : ')\n", +"\n", +"//Given:\n", +"di = 1.2*1000; //m\n", +"ri = di/2;\n", +"t = 12; //mm\n", +"sigma = 140; //MPa\n", +"\n", +"//Cylindrical Pressure Vessel:\n", +"\n", +"p1 = (t*sigma)/ri; //sigma = pr/t\n", +"\n", +"//Spherical Vessel:\n", +"\n", +"p2 = (2*t*sigma)/(ri); //sigma = pr/2t\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum internal pressure the cylindrical pressure vessel can sustain = %1.1f N/mm^2',p1);\n", +"printf('\nThe maximum internal pressure a spherical pressure vessel can sustain = %1.1f N/mm^2',p2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: CL2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.2 : ')\n", +"\n", +"//Given:\n", +"P = 15000; //N\n", +"a = 40; //mm\n", +"b = 100; //mm\n", +"\n", +"//Stress Components:\n", +"\n", +"//Normal Force:\n", +"A = a*b;\n", +"sigma = P/A;\n", +"\n", +"//Bending Moment:\n", +"I = (a*b^3)/12; //I = (1/12)*bh^3\n", +"M = P*(b/2);(b/2);\n", +"c = b/2;\n", +"sigma_max =(M*c)/I;\n", +"\n", +"//Superposition:\n", +"x = ((sigma_max-sigma)*b)/((sigma_max+sigma)+(sigma_max-sigma));\n", +"sigma_b = (sigma_max-sigma);\n", +"sigma_c = (sigma_max + sigma);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe state of stress at B = %1.1f MPa (tensile)',sigma_b);\n", +"printf('\nThe state of stress at C = %1.1f MPa (compressive)',sigma_c);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: CL3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.3 : ')\n", +"\n", +"//Given:\n", +"ri = 600/1000; //m\n", +"t = 12/1000; //m\n", +"ro = ri+t;\n", +"sp_wt_water = 10; //kN/m^3\n", +"sp_wt_steel = 78; //kN/m^3\n", +"l_a = 1; //m depth of point A from the top\n", +"\n", +"//Internal Loadings:\n", +"v = (%pi*l_a)*(ro^2 - ri^2);\n", +"W_st = sp_wt_steel*v;\n", +"\n", +"p = sp_wt_water*l_a; //Pascal's Law\n", +"\n", +"//Stress Components:\n", +"\n", +"//Circumferential Stress:\n", +"sigma1 = (p*ri)/t;\n", +"\n", +"//Longitudinal Stress:\n", +"A_st = (%pi)*(ro^2 - ri^2);\n", +"sigma2 = W_st/A_st;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe state of stress at A (Circumferential) = %1.1f kPa',sigma1);\n", +"printf('\nThe state of stress at A (Longitudinal) = %1.1f kPa',sigma2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: CL4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.4 : ')\n", +"\n", +"//Given:\n", +"y_c = 125/1000; //m\n", +"x_c = 1.5; //m\n", +"y_b = 1.5; //m\n", +"x_b = 6; //m\n", +"udl = 50; //kN/m\n", +"l_udl = 2.5; //m\n", +"l = 250/1000; //m\n", +"width = 50/1000; //m \n", +"\n", +"\n", +"//Internal Loadings:\n", +"N = 16.45; //kN\n", +"V = 21.93; //kN\n", +"M = 32.89; //kNm\n", +"\n", +"//Stress Components:\n", +"\n", +"//Normal Force:\n", +"A = l*width;\n", +"sigma1 = N/(A*1000);\n", +"\n", +"//Shear Force:\n", +"tou_c = 0;\n", +"\n", +"//Bending Moment:\n", +"c = y_c;\n", +"I = (1/12)*(width*l^3);\n", +"sigma2 = (M*c)/(I*1000);\n", +"\n", +"//Superposition:\n", +"sigmaC = sigma1+sigma2;\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe stress due to normal force at C = %1.2f MPa',sigma1);\n", +"printf('\nThe stress due to shear force at C = %1.2f MPa',tou_c);\n", +"printf('\nThe stress due to bending moment at C = %1.2f MPa',sigma2);\n", +"printf('\nThe resultant stress at C = %1.1f MPa',sigmaC);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: CL5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.5 : ')\n", +"\n", +"//Given:\n", +"r = 0.75*10; //mm\n", +"f_x =500;//N\n", +"f_y =800;//N\n", +"l1 = 8*10; //mm\n", +"l2 = 10*10; //mm\n", +"l3 = 14*10; //mm\n", +"\n", +"//Stress Components:\n", +"\n", +"//Normal Force:\n", +"A1 = (%pi*r^2);\n", +"sigma1 = f_x/A1; //stress = P/A\n", +"\n", +"//Shear Force:\n", +"y_bar = (4*r)/(3*%pi);\n", +"A2 = A1/2;\n", +"Q = y_bar*A2; //Q = yA\n", +"V = f_y;\n", +"I = (1/4)*(%pi*r^4);\n", +"t = 2*r;\n", +"tou_a = (V*Q)/(I*t); //Shear = VQ/It\n", +"\n", +"//Bending Moment:\n", +"M_y = f_x*l3;\n", +"c = r;\n", +"sigma_A = (M_y*c)/I; \n", +"\n", +"//Torsional Moment:\n", +"T = f_y*l3;\n", +"J = (0.5*%pi*r^4); \n", +"tou_A = (T*c)/J;\n", +"\n", +"//Resultant:\n", +"res_normal= sigma1+sigma_A;\n", +"res_shear = tou_a+tou_A;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe stress due to normal force at A = %1.2f MPa',sigma1);\n", +"printf('\nThe stress due to shear force at A = %1.2f MPa',tou_a);\n", +"printf('\nThe stress due to bending moment at A = %1.2f MPa',sigma_A);\n", +"printf('\nThe stress due to torsional moment at A = %1.2f MPa',tou_A);\n", +"printf('\nThe resultant normal stress component at A = %1.2f MPa',res_normal);\n", +"printf('\nThe resultant shear stress component at A = %1.2f MPa',res_shear);\n", +"\n", +"//------------------------------------------------------------------------END------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: CL6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 8.6 : ')\n", +"\n", +"//Given:\n", +"P = 40; //kN\n", +"l_ab = 0.4; //m\n", +"l_bc = 0.8; //m\n", +"\n", +"//Stress Components:\n", +"\n", +"//Normal Force:\n", +"A = l_ab*l_bc;\n", +"sigma = P/A;\n", +"\n", +"//Bendng Moments:\n", +"M_x = P*l_ab/2;\n", +"cy = l_ab/2;\n", +"Ix = (1/12)*(l_bc*l_ab^3); //I = (1/12)*(bh^3)\n", +"sigma_max_1 = (M_x*cy)/Ix; //sigma = My/I\n", +"\n", +"M_y = P*l_bc/2;\n", +"cx = l_bc/2;\n", +"Iy = (1/12)*(l_ab*l_bc^3); //I = (1/12)*(bh^3)\n", +"sigma_max_2 = (M_y*cx)/Iy; //sigma = My/I\n", +"\n", +"//Superposition:\n", +"stress_A = -sigma + sigma_max_1 + sigma_max_2;\n", +"stress_B = -sigma - sigma_max_1 + sigma_max_2;\n", +"stress_C = -sigma - sigma_max_1 - sigma_max_2;\n", +"stress_D = -sigma + sigma_max_1 - sigma_max_2;\n", +"\n", +"e = abs((stress_B*l_ab)/(stress_A-stress_B));\n", +"h = abs((stress_B*l_bc)/(stress_A-stress_B));\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe normal stress at corner A = %1.0f kPa',stress_A);\n", +"printf('\nThe normal stress at corner B = %1.0f kPa',stress_B);\n", +"printf('\nThe normal stress at corner C = %1.0f kPa',stress_C);\n", +"printf('\nThe normal stress at corner D = %1.0f kPa',stress_D);\n", +"printf('\nThe line of zero stress along AB = %1.4f m',e);\n", +"printf('\nThe line of zero stress along AD = %1.3f m',h);\n", +"\n", +"//------------------------------------------------------------------------END------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Mechanics_of_Materials_by_R_C_Hibbeler/9-Stress_Transformation.ipynb b/Mechanics_of_Materials_by_R_C_Hibbeler/9-Stress_Transformation.ipynb new file mode 100644 index 0000000..397a60d --- /dev/null +++ b/Mechanics_of_Materials_by_R_C_Hibbeler/9-Stress_Transformation.ipynb @@ -0,0 +1,566 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Stress Transformation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: ST10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.10 : ')\n", +"\n", +"//Given:\n", +"sigma_x = -20; //MPa\n", +"sigma_y = 90; //MPa\n", +"tou_xy = 60; //MPa\n", +"\n", +"//Construction of the circle:\n", +"sigma_avg = (sigma_x+sigma_y)/2;\n", +"R = sqrt(((sigma_x-sigma_avg))^2 + (tou_xy)^2);\n", +"\n", +"//Maximum In plane Shear Stress:\n", +"tou_max = R;\n", +"\n", +"theta_s1 = atan(-(sigma_x - sigma_avg)/(tou_xy));\n", +"theta_s1 = theta_s1/2*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum in-plane shear stresses are = %1.1f MPa',tou_max);\n", +"printf('\n = %1.1f MPa',sigma_avg);\n", +"printf('\nThe orientation of the element is = %1.1f degrees',theta_s1);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: ST11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.11 : ')\n", +"\n", +"//Given:\n", +"sigma_x = -8; //MPa\n", +"sigma_y = 12; //MPa\n", +"tou_xy = -6; //Mpa\n", +"\n", +"//Construction of the circle:\n", +"sigma_avg = (sigma_x+sigma_y)/2;\n", +"\n", +"R = sqrt( 10^2 + tou_xy^2);\n", +"\n", +"//Stresses on 30 degree element:\n", +"phi = atan(6/10);\n", +"psi = (%pi/3) - phi;\n", +"\n", +"//On face BD:\n", +"sigma_x1 = 2 - (R*cos(psi));\n", +"tou_xy1 = (R*sin(psi));\n", +"\n", +"//On face DE:\n", +"sigma_x2 = 2 + (R*cos(psi));\n", +"tou_xy2 = -(R*sin(psi));\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe normal stress on plane BD inclined at 30 degrees is = %1.2f MPa',sigma_x1);\n", +"printf('\nThe normal stress on plane DE inclined at 60 degrees is = %1.1f MPa',sigma_x2);\n", +"printf('\nThe shear stress is = %1.2f MPa',tou_xy1);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.12: ST12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.12 : ')\n", +"\n", +"//Given:\n", +"P = 900; //N\n", +"T = 2.5; //Nm\n", +"d = 40/1000; //m\n", +"r = d/2;\n", +"c = r;\n", +"\n", +"//Stress Components:\n", +"J = (%pi/2)*(r^4);\n", +"tou = (T*c)/(J*1000);\n", +"\n", +"A = (%pi*r^2);\n", +"sigma = P/(A*1000);\n", +"\n", +"//Principal Stresses:\n", +"sigma_avg = (0 + sigma)/2;\n", +"\n", +"R = sqrt( sigma_avg^2 + tou^2);\n", +"sigma1 = sigma_avg + R;\n", +"sigma2 = sigma_avg - R;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe prinicpal stresses at point P are:');\n", +"printf('\n %1.1f kPa',sigma1);\n", +"printf('\n %1.1f kPa',sigma2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.13: ST13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.13 : ')\n", +"\n", +"//Given:\n", +"w = 120; //kN/m\n", +"I = 67.4*(10^-6);\n", +"V= 84; //kN\n", +"M = 30.6; //kNm\n", +"t = 10/1000; //m\n", +"\n", +"//Stress Components:\n", +"y = 0.200/2;\n", +"sigma = -(M*10^3*y)/(I*10^6);\n", +"\n", +"Q = (0.100 + 0.015/2)*(0.175)*(0.015);\n", +"tou = (V*Q*10^3)/(I*t*10^6);\n", +"\n", +"//Principal Stresses:\n", +"\n", +"k = sigma/2;\n", +"R = sqrt( (-sigma+k)^2 + tou^2);\n", +"sigma1 = R + k;\n", +"sigma2 = k -R ;\n", +"\n", +"theta_p2 = atan(-tou/(sigma-k));\n", +"theta_p2 =theta_p2/2*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +"\n", +"printf('\n\nThe prinicpal stresses at point P are:');\n", +"printf('\n %1.1f MPa',sigma1);\n", +"printf('\n %1.1f MPa',sigma2);\n", +"printf('\nThe angle of rotation of the plane %1.1f degrees',theta_p2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.14: ST14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.14 : ')\n", +"\n", +"//Given:\n", +"tou = 40; //kPa\n", +"sigma = -20; //kPa\n", +"\n", +"//Principal Stresses:\n", +"sigma_avg = sigma/2;\n", +"R = sqrt( (-sigma + sigma_avg)^2 + tou^2);\n", +"sigma_max = sigma_avg + R ;\n", +"sigma_min = sigma_avg - R ;\n", +"\n", +"theta = atan(tou/(-sigma+sigma_avg));\n", +"theta = theta/2;\n", +"\n", +"//Absolute Maximum Shear Stress:\n", +"tou_max = (sigma_max - sigma_min)/2;\n", +"sigma_avg = (sigma_max + sigma_min)/2;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe prinicpal stresses at the point are:');\n", +"printf('\n %1.1f kPa',sigma_max);\n", +"printf('\n %1.1f kPa',sigma_min);\n", +"printf('\nThe absolute maximum shear stress at the point %1.1f kPa',tou_max);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.15: ST15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.15 : ')\n", +"\n", +"//Given:\n", +"sigma_max = 32; //MPa\n", +"sigma_min = 0; //MPa\n", +"sigma_int = 16; //MPa\n", +"\n", +"tou_max = (sigma_max - sigma_min)/2 ; //MPa\n", +"sigma_avg = (sigma_max + sigma_min)/2 ; //MPa\n", +"\n", +"tou_in_plane = (sigma_max - sigma_int)/2;\n", +"sigma_avg2 = sigma_avg + (tou_in_plane);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum absolute shear stress = %1.2f MPa',tou_max);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: ST1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.1 : ')\n", +"\n", +"//Given:\n", +"tou = 25; //MPa\n", +"sigma1 = 50; //MPa\n", +"sigma2 = 80; //MPa\n", +"phi = 30*(%pi/180);\n", +"\n", +"// Calculations:\n", +"sigma_x1 = (sigma1*cos(phi)*cos(phi))- (tou*cos(phi)*sin(phi)) - (sigma2*sin(phi)*sin(phi))- (tou*sin(phi)*cos(phi));\n", +"tou1 = (sigma1*cos(phi)*sin(phi))+ (tou*cos(phi)*cos(phi)) + (sigma2*sin(phi)*cos(phi))- (tou*sin(phi)*sin(phi));\n", +"sigma_x2 = (tou*cos(phi)*sin(phi))- (sigma2*cos(phi)*cos(phi)) + (tou*sin(phi)*cos(phi))+ (sigma1*sin(phi)*sin(phi));\n", +"tou2 = (tou*cos(phi)*cos(phi))+ (sigma2*cos(phi)*sin(phi)) - (tou*sin(phi)*sin(phi))+ (sigma1*sin(phi)*cos(phi));\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe normal stress component in the x diection is = %1.2f MPa',sigma_x1);\n", +"printf('\n The shear stress component in the x diection is = %1.1f MPa',tou1);\n", +"printf('\n The normal stress component in the y diection is = %1.1f MPa',sigma_x2);\n", +"printf('\n The shear stress component in the y diection is = %1.1f MPa',tou2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: ST2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"\n", +"disp('Scilab Code Ex 9.2 : ')\n", +"\n", +"//Given:\n", +"phi = -30*(%pi/180);\n", +"theta = 60*(%pi/180);\n", +"sigma_x = -80; //MPa\n", +"sigma_y = 50; //MPa\n", +"tou_xy = -25; //MPa\n", +"\n", +"//Plane CD:\n", +"sigma_x1 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*cos(2*phi))/2 + (tou_xy*sin(2*phi)); //Eqn 9.1\n", +"tou_xy1 = ((-(sigma_x - sigma_y)*sin(2*phi))/2) + (tou_xy*cos(2*phi)); //Eqn 9.2\n", +"\n", +"//Plane BC:\n", +"sigma_x2 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*cos(2*theta))/2 + (tou_xy*sin(2*theta)); //Eqn 9.1\n", +"tou_xy2 = (-(sigma_x - sigma_y)*sin(2*theta))/2 + tou_xy*cos(2*theta); //Eqn 9.2\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe normal stress of plane CD inclined at 30 degrees = %1.1f MPa',sigma_x1);\n", +"printf('\nThe shear stress of plane CD inclined at 30 degrees = %1.1f MPa',tou_xy1);\n", +"printf('\nThe normal stress of plane BC inclined at 60 degrees = %1.2f MPa',sigma_x2);\n", +"printf('\nThe shear stress of plane BC inclined at 60 degrees = %1.1f MPa',tou_xy2);\n", +"\n", +"//-------------------------------------------------------------------------END---------------------------------------------------------------------------------------" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: ST5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.5 : ')\n", +"\n", +"//Given:\n", +"sigma_x = -20; //MPa\n", +"sigma_y = 90; //MPa\n", +"tou_xy = 60; //MPa\n", +"\n", +"//Orientation of Element:\n", +"theta_p2 = atan((2*tou_xy)/(sigma_x - sigma_y));\n", +"theta_p2 = theta_p2/2;\n", +"theta_p1 = (180+2*theta_p2)/2;\n", +"\n", +"//Principal Stresses:\n", +"\n", +"sigma1 = ((sigma_x+sigma_y)/2)+(sqrt(((sigma_x - sigma_y)/2)^2 + tou_xy^2));\n", +"sigma2 = ((sigma_x+sigma_y)/2)- sqrt(((sigma_x-sigma_y)/2)^2 + tou_xy^2);\n", +"sigma_x2 = ((sigma_x+sigma_y)/2)+ (((sigma_x-sigma_y)/2)*cos(2*theta_p2)) + (tou_xy*sin(2*theta_p2));\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe first principal stress is = %1.0f MPa',sigma1);\n", +"printf('\nThe second principal stress is = %1.1f MPa',sigma2);\n", +"printf('\nThe normal stress acting on the 23.7 degrees plane = %1.1f MPa',sigma_x2);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: ST6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.6 : ')\n", +"\n", +"//Given:\n", +"sigma_x = -20; //MPa\n", +"sigma_y = 90; //MPa\n", +"tou_xy =60; //Mpa\n", +"\n", +"//Orientation of Element:\n", +"theta_s2 = atan(-(sigma_x - sigma_y)/(2*tou_xy));\n", +"theta_s2 = theta_s2/2;\n", +"theta_s1 = %pi + 2*theta_s2;\n", +"theta_s1 = theta_s1/2;\n", +"\n", +"//Maximum in plane Shear Stress:\n", +"tou_max = (sqrt(((sigma_x - sigma_y)/2)^2 + tou_xy^2));\n", +"tou_xy1 = -(sigma_x - sigma_y)*(sin(2*theta_s2))/2 + (tou_xy*cos(2*theta_s2));\n", +"\n", +"//Average Normal Stress:\n", +"sigma_avg = (sigma_x+sigma_y)/2;\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe maximum in-plane shear stress is = %1.1f MPa',tou_xy1);\n", +"printf('\nThe average normal stress is = %1.0f MPa',sigma_avg);\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: ST9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear all; clc;\n", +"\n", +"disp('Scilab Code Ex 9.9 : ')\n", +"\n", +"//Given:\n", +"sigma_x = -12; //MPa\n", +"sigma_y = 0;\n", +"tou_xy = -6; //MPa\n", +"\n", +"//Construction of the circle:\n", +"sigma_avg = (sigma_x+sigma_y)/2;\n", +"R = sqrt((-sigma_x+sigma_avg)^2 + (tou_xy)^2);\n", +"\n", +"//Principal Stresses:\n", +"sigma2 = -R+sigma_avg;//From the Mohr's circle\n", +"sigma1 = R+sigma_avg;\n", +"\n", +"theta_p2 = atan((-tou_xy)/(-sigma_x+sigma_avg));\n", +"theta_p2 = theta_p2/2*(180/%pi);\n", +"\n", +"//Display:\n", +"\n", +"printf('\n\nThe first principal stress is = %1.2f MPa',sigma1);\n", +"printf('\nThe second principal stress is = %1.1f MPa',sigma2);\n", +"printf('\nThe direction of the principal plane is = %1.1f degrees',theta_p2);\n", +"\n", +"\n", +"//----------------------------------------------------------------------END--------------------------------------------------------------------------------\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |