summaryrefslogtreecommitdiff
path: root/Mechanical_Metallurgy_by_G_E_Dieter
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Mechanical_Metallurgy_by_G_E_Dieter
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Mechanical_Metallurgy_by_G_E_Dieter')
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/1-Introduction.ipynb63
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/11-Fracture_Mechanics.ipynb123
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/12-Fatigue_of_Metals.ipynb258
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/13-Creep_and_Stress_Rupture.ipynb133
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/14-Brittle_Fracture_and_Impact_Testing.ipynb68
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/15-Fundamentals_of_Metalworking.ipynb202
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/16-Forging.ipynb81
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/17-Rolling_of_Metals.ipynb181
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/18-Extrusion.ipynb73
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/19-Drawing_of_Rods_Wires_and_Tubes.ipynb109
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/2-Stress_and_Strain_Relationships_for_Elastic_Behavior.ipynb179
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/20-Sheet_Metal_Forming_.ipynb89
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/21-Machining_of_Metals.ipynb177
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/3-Elements_of_the_Theory_of_Plasticity.ipynb161
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/4-Plastic_Deformation_of_Single_Crystals.ipynb62
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/5-Dislocation_Theory.ipynb65
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/6-Strengthening_Mechanisms.ipynb184
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/7-Fracture.ipynb94
-rw-r--r--Mechanical_Metallurgy_by_G_E_Dieter/8-The_Tension_Test.ipynb175
19 files changed, 2477 insertions, 0 deletions
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/1-Introduction.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/1-Introduction.ipynb
new file mode 100644
index 0000000..a96deb5
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/1-Introduction.ipynb
@@ -0,0 +1,63 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Introduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Shear_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 1.1\n",
+"//Shear Stress\n",
+"//Page No. 16\n",
+"clc;clear;close;\n",
+"\n",
+"y_b=2; //in J/m^2\n",
+"G=75; //in Gpa\n",
+"G=G*10^9; //conversion to Pa\n",
+"L=0.01; //in mm\n",
+"L=L*10^-3; //conversion to m\n",
+"nu=0.3; //no unit\n",
+"T=sqrt((3*%pi*y_b*G)/(8*(1-nu)*L));\n",
+"T=T/10^6;\n",
+"printf('Shear Stress Required to nucleate a grain boundary crack in high temperature deformation = %g MPa',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/11-Fracture_Mechanics.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/11-Fracture_Mechanics.ipynb
new file mode 100644
index 0000000..f13ca22
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/11-Fracture_Mechanics.ipynb
@@ -0,0 +1,123 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Fracture Mechanics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Fracture_Toughness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 11.1\n",
+"//Fracture Toughness\n",
+"//Page No. 354\n",
+"clc;clear;close;\n",
+"\n",
+"a=5; //in mm\n",
+"a=a*10^-3; //conversion to m\n",
+"t=1.27; //in cm\n",
+"t=t*10^-2; //conversion to m\n",
+"K_Ic=24; //in MPa*m^(1/2)\n",
+"sigma=K_Ic/(sqrt(%pi*a)*sqrt(sec(%pi*a/(2*t))));\n",
+"printf('Since Fracture Toughness of the material is = %g MPa\n and the applied stress is 172 MPa thus the flaw will propagate as a brittle fracture',sigma);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Fracture_Toughness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 11.2\n",
+"//Fracture Toughness\n",
+"//Page No. 354\n",
+"clc;clear;close;\n",
+"\n",
+"K_Ic=57; //in MPam^(1/2)\n",
+"sigma0=900; //in MPa\n",
+"sigma=360; //in MPa\n",
+"Q=2.35; //no unit\n",
+"a_c=K_Ic^2*Q/(1.21*%pi*sigma^2);\n",
+"a_c=a_c*1000; //cpnversion to mm\n",
+"printf('\nCritical Crack depth = %g mm\nwhich is greater than the thickness of the vessel wall, 12mm',a_c);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Plasticity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 11.3\n",
+"//Plasticity\n",
+"//Page No. 361\n",
+"clc;clear;close;\n",
+"\n",
+"a=10; //in mm\n",
+"a=a*10^-3; //conversion to m\n",
+"sigma=400; //in MPa\n",
+"sigma0=1500; //in MPa\n",
+"rp=sigma^2*a/(2*%pi*sigma0^2);\n",
+"rp=rp*1000; //conversion to mm\n",
+"K=sigma*sqrt(%pi*a);\n",
+"K_eff=sigma*sqrt(%pi*a)*sqrt(a+%pi*rp);\n",
+"printf('\nPlastic zone size = %g mm\nStress Intensity Factor = %g MPa m^(1/2)\n\n\nNote: Calculation Errors in book',rp,K_eff);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/12-Fatigue_of_Metals.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/12-Fatigue_of_Metals.ipynb
new file mode 100644
index 0000000..5bdacef
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/12-Fatigue_of_Metals.ipynb
@@ -0,0 +1,258 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Fatigue of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Mean_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.1\n",
+"//Mean Stress\n",
+"//Page No. 387\n",
+"clc;clear;close;\n",
+"\n",
+"sigma_u=158; // in ksi\n",
+"sigma0=147; // in ksi\n",
+"sigma_e=75; // in ksi\n",
+"l_max=75; // in ksi\n",
+"l_min=-25; // in ksi\n",
+"sf=2.5; //no unit\n",
+"sigma_m=(l_max+l_min)/2;\n",
+"sigma_a=(l_max-l_min)/2;\n",
+"sigma_e=sigma_e/sf;\n",
+"A=sigma_a/sigma_e+sigma_m/sigma_u;\n",
+"D=sqrt(4*A/%pi);\n",
+"printf('\nBar Diameter = %g in',D);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Low_Cycle_Fatigue.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.2\n",
+"//Low Cycle Fatigue\n",
+"//Page No. 391\n",
+"clc;clear;close;\n",
+"\n",
+"sigma_b=75; //in MPa\n",
+"e_b=0.000645; //no unit\n",
+"e_f=0.3; //no unit\n",
+"E=22*10^4; //in MPa\n",
+"c=-0.6; //no unit\n",
+"d_e_e=2*sigma_b/E;\n",
+"d_e_p=2*e_b-d_e_e;\n",
+"N=(d_e_p/(2*e_f))^(1/c)/2;\n",
+"printf('\nd_e_e = %g\nd_e_p = %g\nNumber of Cycles = %g cycles',d_e_e,d_e_p,N);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Fatigue_Crack_Proportio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.3\n",
+"//Fatigue Crack Proportion\n",
+"//Page No. 401\n",
+"clc;clear;close;\n",
+"\n",
+"ai=0.5; //in mm\n",
+"ai=ai*10^-3; //conversion to m\n",
+"sigma_max=180; //in MPa\n",
+"Kc=100; //MPam^(1/2)\n",
+"alpha=1.12; //no unit\n",
+"p=3; //no unit\n",
+"A=6.9*10^-12; //in MPam^(1/2)\n",
+"af=(Kc/(sigma_max*alpha))^2/%pi;\n",
+"Nf=(af^(1-(p/2))-ai^(1-(p/2)))/((1-p/2)*A*sigma_max^3*%pi^(p/2)*alpha^p);\n",
+"printf('Fatigue Cycles = %g cycles',Nf);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: Stress_Concentration_of_Fatigue.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.4\n",
+"//Stress Concentration of Fatigue\n",
+"//Page No. 404\n",
+"clc;clear;close;\n",
+"\n",
+"rho=0.0004; //no unit \n",
+"S_u=190; //in ksi\n",
+"S_u=S_u*1000; //conversion to psi\n",
+"M=200; //in inches-lb\n",
+"Pm=5000; //in lb\n",
+"D=0.5; //in inches\n",
+"dh=0.05; //in inches\n",
+"r=dh/2;\n",
+"Kt=2.2; //no unit\n",
+"Kf=1+(Kt-1)/(1+sqrt(rho/r));\n",
+"q=(Kf-1)/(Kt-1);\n",
+"A=%pi/4*D^2;\n",
+"sigma_m=Pm/A;\n",
+"I=%pi/64*D^4;\n",
+"sigma_a=Kf*((M*D)/(2*I));\n",
+"sigma_max=sigma_a+sigma_m;\n",
+"sigma_min=sigma_a-sigma_m;\n",
+"sigma_e=S_u/2;\n",
+"sigma_a1=sigma_e/Kf*(1-sigma_m/S_u);\n",
+"printf('\nMean Stress = %g psi\nFluctuating Bending Stress = %g psi\nEffective Maximum Stress = %g psi\nEffective Minimum Stress = %g psi\nsigma_a = %g psi\n\n\nNote: Calculation Errors in the book',sigma_m,sigma_a,sigma_max,sigma_min,sigma_a1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: Infinite_Life_Design.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.5\n",
+"//Infinite Life Design\n",
+"//Page No. 422\n",
+"clc;clear;close;\n",
+"\n",
+"Kt=1.68; //no unit\n",
+"q=0.9; //no unit\n",
+"sigma_ed=42000; //in psi\n",
+"Cs=0.9; //no unit\n",
+"Cf=0.75; //no unit\n",
+"Cz=0.81; //no unit\n",
+"Kf=q*(Kt-1)+1;\n",
+"sigma_e=sigma_ed*Cs*Cf*Cz;\n",
+"sigma_en=sigma_e/Kf;\n",
+"printf('\nFatigue Limit = %g psi',sigma_en);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: Local_Strain_method.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 12.6\n",
+"//Local Strain method\n",
+"//Page No. 424\n",
+"clc;clear;close;\n",
+"\n",
+"funcprot(0);\n",
+"K=189; //in ksi\n",
+"n=0.12; //no unit\n",
+"ef=1.06; //no unit\n",
+"sigma_f=190; //in ksi\n",
+"b=-0.08; //no unit\n",
+"c=-0.66; //no unit\n",
+"E=30*10^6; //in psi\n",
+"E=E/1000; //conversion to ksi\\n",
+"s=200; //in ksi\n",
+"sigma_m=167; //in ksi\n",
+"sigma_a=17; //in ksi\n",
+"se=s^2/E;\n",
+"deff('y=f(ds)','y=(ds^2)/(2*E)+(ds^((1+n)/n))/(2*K)^(1/n)-se/2');\n",
+"[ds,v,info]=fsolve(0,f);\n",
+"de=se/ds;\n",
+"deff('y=f1(N2)','y=N2^-b*(sigma_f/E)+ef*N2^-c-de/2');\n",
+"[N2,v,info]=fsolve(0,f1);\n",
+"N2=1/N2;\n",
+"N_1=N2/2;\n",
+"de_e2=sigma_a/E;\n",
+"deff('y=f2(N2)','y=N2^-b*((sigma_f-sigma_m)/E)+ef*N2^-c-de_e2');\n",
+"[N2,v,info]=fsolve(0,f2);\n",
+"N2=1/N2;\n",
+"N_2=N2/2;\n",
+"C_pd=2*60*60*8;\n",
+"f=N_2/C_pd;\n",
+"printf('\nNumber of cycles = %g cycles\nFatigue damage per cycle = %g\nNumber of cycles with correction of mean stress= %g cycles\nFatigue damage per cycle with correction of mean stress= %g damage per year\nShaft will fail in %g days',N_1,1/N_1,N_2,1/N_2,f);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/13-Creep_and_Stress_Rupture.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/13-Creep_and_Stress_Rupture.ipynb
new file mode 100644
index 0000000..49fcadd
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/13-Creep_and_Stress_Rupture.ipynb
@@ -0,0 +1,133 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Creep and Stress Rupture"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Engineering_Creep.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 13.1\n",
+"//Engineering Creep\n",
+"//Page No. 461\n",
+"clc;clear;close;\n",
+"\n",
+"sf=3; //no unit\n",
+"per=1/1000; //in %\n",
+"T(1)=1100; //in Fahrenheit\n",
+"T(2)=1500; //in Fahrenheit\n",
+"C(1)=30000; //from fig 13-17 in book\n",
+"C(2)=4000; //from fig 13-17 in book\n",
+"W(1)=C(1)/sf;\n",
+"W(2)=C(2)/sf;\n",
+"W1(1)=W(1)*0.00689;\n",
+"W1(2)=W(2)*0.00689;\n",
+"printf('\n-----------------------------------------------------------------------------------\n');\n",
+"printf('Temperature\tCreep Strength, psi\tWorking Stress, psi\tWorking Stress, MPa\n');\n",
+"printf('-----------------------------------------------------------------------------------');\n",
+"printf('\n1100 F\t\t\t%i\t\t\t%i\t\t\t%g\n',C(1),W(1),W1(1));\n",
+"printf('\n1500 F\t\t\t%i\t\t\t%i\t\t\t%g\n',C(2),W(2),W1(2));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Engineering_Creep.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 13.2\n",
+"//Engineering Creep\n",
+"//Page No. 461\n",
+"clc;clear;close;\n",
+"\n",
+"deff('y=C(f)','y=(f-32)*(5/9)');\n",
+"R=1.987; //in cal/mol K\n",
+"T2=1300; //in Fahrenheit\n",
+"T1=1500; //in Fahrenheit\n",
+"T2=C(T2)+273.15;\n",
+"T1=C(T1)+273.15;\n",
+"e2=0.0001; //no unit\n",
+"e1=0.4; //no unit\n",
+"Q=R*log(e1/e2)/(1/T2-1/T1);\n",
+"printf('\nActivation Energy = %g cal/mol',Q)\n",
+"printf('\n\n\nNote: Calculation Errors in book');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Prediction_of_long_time_properties.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 13.3\n",
+"//Prediction of long time properties\n",
+"//Page No. 464\n",
+"clc;clear;close;\n",
+"\n",
+"t=10^5; //in hr\n",
+"C1=20; //in no unit\n",
+"T1=1200; //in Fahrenheit\n",
+"T2=1600; //in Fahrenheit\n",
+"P_1200=(T1+460)*(log10(t)+C1);\n",
+"P_1600=(T2+460)*(log10(t)+C1);\n",
+"printf('\nAt T = 1200 F, P = %g\nAt T = 1600 F, P = %g\nAnd from the master ploy of Astroploy, corresponding stress required are sigma = 78000 psi and sigma = 11000 psi',P_1200,P_1600);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/14-Brittle_Fracture_and_Impact_Testing.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/14-Brittle_Fracture_and_Impact_Testing.ipynb
new file mode 100644
index 0000000..917d92a
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/14-Brittle_Fracture_and_Impact_Testing.ipynb
@@ -0,0 +1,68 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Brittle Fracture and Impact Testing"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Stress_Corrosion_Cracking.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 14.1\n",
+"//Stress Corrosion Cracking\n",
+"//Page No. 494\n",
+"clc;clear;close;\n",
+"\n",
+"cg=10; //in mm\n",
+"cg=cg/1000; //conversion to m\n",
+"gr=10^-8; //m/s\n",
+"l=cg/(gr*3600*24); \n",
+"printf('\nEstimated Life = %g days',l);\n",
+"K_l_SCC=10; //in MN m^(-3/2)\n",
+"a_sigma2=K_l_SCC^2/(1.21*%pi);\n",
+"s=[500,300,100];\n",
+"printf('\n\n\n---------------------------------\nStress, MPa\tCrack Length, mm\n---------------------------------\n');\n",
+"for i=1:3\n",
+" printf('\t%g\t\t%g\n',s(i),a_sigma2*1000/s(i)^2);\n",
+"end\n",
+"printf('---------------------------------');\n",
+"printf('\n\n\n\nNote: Calculation errors in book');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/15-Fundamentals_of_Metalworking.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/15-Fundamentals_of_Metalworking.ipynb
new file mode 100644
index 0000000..f10defc
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/15-Fundamentals_of_Metalworking.ipynb
@@ -0,0 +1,202 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Fundamentals of Metalworking"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: Mechanics_of_Metal_Working.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.1\n",
+"//Mechanics of Metal Working\n",
+"//Page No. 506\n",
+"clc;clear;close;\n",
+"\n",
+"//For Bar which is double in length\n",
+"L2=2; //factor (no units)\n",
+"L1=1; //factor (no units)\n",
+"e=(L2-L1)/L1;\n",
+"e1=log(L2/L1);\n",
+"r=1-L1/L2;\n",
+"printf('\nEnginering Strain = %g\nTrue Strain = %g\nReduction = %g',e,e1,r);\n",
+"\n",
+"//For bar which is halved in length\n",
+"L1=1; //factor (no units)\n",
+"L2=0.5; //factor (no units)\n",
+"e=(L2-L1)/L1;\n",
+"e1=log(L2/L1);\n",
+"r=1-L1/L2;\n",
+"printf('\n\nEnginering Strain = %g\nTrue Strain = %g\nReduction = %g',e,e1,r);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: Mechanics_of_Metal_Working.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.2\n",
+"//Mechanics of Metal Working\n",
+"//Page No. 511\n",
+"clc;clear;close;\n",
+"\n",
+"D0=25; //in mm\n",
+"D1=20; //in mm\n",
+"D2=15; //in mm\n",
+"ep1=log((D0/D1)^2);\n",
+"U1=integrate('200000*e^0.5','e',0,ep1);\n",
+"ep2=log((D1/D2)^2);\n",
+"U2=integrate('200000*e^0.5','e',ep1,ep1+ep2);\n",
+"printf('\nPlastic work done in 1st step = %g lb/in^2\nPlastic work done in 2nd step = %g lb/in^2\n',U1,U2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3: Hodography.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.3\n",
+"//Hodography\n",
+"//Page No. 517\n",
+"clc;clear;close;\n",
+"\n",
+"alpha=60; //in degrees\n",
+"mu=1/sind(alpha);\n",
+"p_2k=mu*5/2;\n",
+"printf('Pressure = %g',p_2k);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: Temperature_in_Metalworking.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.4\n",
+"//Temperature in Metalworking\n",
+"//Page No. 526\n",
+"clc;clear;close;\n",
+"\n",
+"Al_s=200; //in MPa\n",
+"Al_e=1; //no unit\n",
+"Al_p=2.69; //in g/cm^3\n",
+"Al_c=0.215; //in cal/g * deg C\n",
+"Ti_s=400; //in MPa\n",
+"Ti_e=1; //no unit\n",
+"Ti_p=4.5; //in g/cm^3\n",
+"Ti_c=0.124; //in cal/g * deg C\n",
+"J=4.186; //in J/cal\n",
+"b=0.95; //no unit\n",
+"Al_Td=Al_s*Al_e*b/(Al_p*Al_c*J);\n",
+"Ti_Td=Ti_s*Ti_e*b/(Ti_p*Ti_c*J);\n",
+"printf('\nTemperature Rise for aluminium = %g C\nTemperature Rise for titanium = %g C\n',Al_Td,Ti_Td);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: Friction_and_Lubrication.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 15.5\n",
+"//Friction and Lubrication\n",
+"//Page No. 546\n",
+"clc;clear;close;\n",
+"\n",
+"Do=60; //in mm\n",
+"Di=30; //in mm\n",
+"def1=70; //in mm\n",
+"def2=81.4; //in mm\n",
+"h=10; //in mm\n",
+"a=30; //in mm\n",
+"di=sqrt((Do^2-Di^2)*2-def1^2);\n",
+"pr=(Di-di)/Di*100;\n",
+"m=0.27; //no unit\n",
+"p_s=1+2*m*a/(sqrt(3)*h);\n",
+"printf('\nFor OD after deformation being 70 mm, Di = %g mm\nPrecent change in inside diameter = %g percent\nPeak pressure = %g',di,pr,p_s);\n",
+"di=sqrt(def2^2-(Do^2-Di^2)*2);\n",
+"pr=(Di-di)/Di*100;\n",
+"m=0.05; //no unit\n",
+"p_s=1+2*m*a/(sqrt(3)*h);\n",
+"printf('\n\n\n\nFor OD after deformation being 81.4 mm, Di = %g mm\nPrecent change in inside diameter = %g percent\nPeak pressure = %g',di,pr,p_s);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/16-Forging.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/16-Forging.ipynb
new file mode 100644
index 0000000..6ebbdd8
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/16-Forging.ipynb
@@ -0,0 +1,81 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Forging"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Forging_in_Plain_Strain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 16.1\n",
+"//Forging in Plain Strain\n",
+"//Page No. 574\n",
+"clc;clear;close;\n",
+"\n",
+"sigma=1000; //in psi\n",
+"mu=0.25; //no unit\n",
+"a=2; //in inches\n",
+"b=6; //in inches\n",
+"h=0.25; //in inches\n",
+"x=0; //in inches\n",
+"p_max=2*sigma*exp(2*mu*(a-x)/h)/sqrt(3);\n",
+"printf('\nAt the centerline of the slab = %g psi\n',p_max);\n",
+"printf('\nPressure Distributon from the centerline:');\n",
+"printf('\n---------------------------------\n');\n",
+"printf('x\tp (ksi)\t\tt_i (ksi)\n');\n",
+"printf('---------------------------------\n');\n",
+"for x=0:h:a\n",
+" p=2*sigma*exp(2*mu*(a-x)/h)/(1000*sqrt(3)); //in ksi\n",
+" t_i=mu*p;\n",
+" printf('%g\t%g\t\t%g\n',x,p,t_i);\n",
+"end\n",
+"printf('---------------------------------\n');\n",
+"k=sigma/sqrt(3);\n",
+"x=0; //in inches\n",
+"p_max1=2*sigma*((a-x)/h+1)/sqrt(3);\n",
+"printf('\nFor sticking friction:\np_max = %g ksi',p_max1/1000);\n",
+"x1=a-h/(2*mu)*log(1/(2*mu));\n",
+"p=2*sigma*(a/(2*h)+1)/sqrt(3);\n",
+"P=2*p*a*b;\n",
+"P=P*0.000453; //conversion to metric tons\n",
+"printf('\n\nThe Forging load = %g tons',P);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/17-Rolling_of_Metals.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/17-Rolling_of_Metals.ipynb
new file mode 100644
index 0000000..7c771ad
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/17-Rolling_of_Metals.ipynb
@@ -0,0 +1,181 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Rolling of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: Forces_in_rolling.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.1\n",
+"//Forces in rolling\n",
+"//Page No. 596\n",
+"clc;clear;close;\n",
+"\n",
+"mu=0.08; //no unit\n",
+"R=12; //in inches\n",
+"alpha=atand(mu);\n",
+"dh=mu^2*R;\n",
+"printf('\nMaximum possible reduction when mu is 0.08 = %g in\n',dh);\n",
+"mu=0.5; //no unit\n",
+"dh=mu^2*R;\n",
+"printf('Maximum possible reduction when mu is 0.5 = %g in',dh);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.2: Rolling_Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.2\n",
+"//Rolling Load\n",
+"//Page No. 598\n",
+"clc;clear;close;\n",
+"\n",
+"h0=1.5; //in inches\n",
+"mu=0.3; //no unit\n",
+"D=36; //in inches\n",
+"s_en=20; //in ksi\n",
+"s_ex=30; //in ksi\n",
+"h1=h0-0.3*h0;\n",
+"dh=h0-h1;\n",
+"h_=(h1+h0)/2;\n",
+"Lp=sqrt(D/2*dh);\n",
+"Q=mu*Lp/h_;\n",
+"sigma0=(s_en+s_ex)/2;\n",
+"P=sigma0*(exp(Q)-1)*s_ex*Lp/Q;\n",
+"printf('\nRolling Load = %g kips',P);\n",
+"P=sigma0*(Lp/(4*dh)+1)*s_ex*Lp;\n",
+"printf('\nRolling Load if sticking friction occurs = %g kips',P);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.3: Rolling_Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.3\n",
+"//Rolling Load\n",
+"//Page No. 599\n",
+"clc;clear;close;\n",
+"\n",
+"h0=1.5; //in inches\n",
+"mu=0.3; //no unit\n",
+"D=36; //in inches\n",
+"s_en=20; //in ksi\n",
+"s_ex=30; //in ksi\n",
+"C=3.34*10^-4; //in inches^2/ton\n",
+"P_=1357; //in tons\n",
+"h1=h0-0.3*h0;\n",
+"dh=h0-h1;\n",
+"h_=(h1+h0)/2;\n",
+"R=D/2;\n",
+"R1=R*(1+C*P_/(s_ex*(dh)));\n",
+"Lp=sqrt(R1*dh);\n",
+"Q=mu*Lp/h_;\n",
+"sigma0=(s_en+s_ex)/2;\n",
+"P2=sigma0*(exp(Q)-1)*s_ex*Lp/Q;\n",
+"P2=P2*0.45359 ///conversion to tons\n",
+"R2=R*(1+C*P2/(s_ex*(dh)));\n",
+"printf('\nP2 = %g tons\nR2 = %g in',P2,R2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.4: Torque_and_Horsepower.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.4\n",
+"//Torque and Horsepower\n",
+"//Page No. 614\n",
+"clc;clear;close;\n",
+"\n",
+"w=12; //in inches\n",
+"hi=0.8; //in inches\n",
+"hf=0.6; //in inches\n",
+"D=40; //in inches\n",
+"N=100; //in rpm\n",
+"R=D/2;\n",
+"dh=abs(hf-hi);\n",
+"e1=log(hi/hf);\n",
+"r=(hi-hf)/hi;\n",
+"sigma=20*e1^0.2/1.2;\n",
+"Qp=1.5; //no unit\n",
+"P=2*sigma*w*(R*(hi-hf))^(1/2)*Qp/sqrt(3);\n",
+"a=0.5*sqrt(R*dh);\n",
+"a=a/12; //conversion to ft\n",
+"hp=4*%pi*a*P*N*1000/33000;\n",
+"printf('\nRolling Load = %g\nHorsepower = %g',P,hp);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/18-Extrusion.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/18-Extrusion.ipynb
new file mode 100644
index 0000000..7083dae
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/18-Extrusion.ipynb
@@ -0,0 +1,73 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Extrusion"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: Extrusion_Process.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 18.1\n",
+"//Extrusion Process\n",
+"//Page No. 629\n",
+"clc;clear;close;\n",
+"\n",
+"Db=6; //in inches\n",
+"Df=2; //in inches\n",
+"L=15; //in inches\n",
+"v=2; //in inches/s\n",
+"alpha=60; //in degrees\n",
+"mu=0.1; //no unit\n",
+"R=Db^2/Df^2;\n",
+"e=6*v*log(R)/Db\n",
+"sigma=200*e^0.15;\n",
+"B=mu*cotd(alpha);\n",
+"p_d=sigma*((1+B)/B)*(1-R^B);\n",
+"p_d=abs(p_d);\n",
+"t_i=sigma/sqrt(3);\n",
+"p_e=p_d+4*t_i*L/Db;\n",
+"p_e=p_e*145.0377; //conversion to psi\n",
+"A=%pi*Db^2/4;\n",
+"P=p_e*A;\n",
+"P=P*0.000453; //conversion to metric tons\n",
+"printf('\nForce required for the Operation = %g metric tons\n\n\nNote: Slight calculation errors in book',P);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/19-Drawing_of_Rods_Wires_and_Tubes.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/19-Drawing_of_Rods_Wires_and_Tubes.ipynb
new file mode 100644
index 0000000..d2f23f1
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/19-Drawing_of_Rods_Wires_and_Tubes.ipynb
@@ -0,0 +1,109 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 19: Drawing of Rods Wires and Tubes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.1: Analysis_of_Wiredrawing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 19.1\n",
+"//Analysis of Wiredrawing\n",
+"//Page No. 640\n",
+"clc;clear;close;\n",
+"\n",
+"Ab=10; //in mm\n",
+"r=0.2; //in %\n",
+"alpha=12; //in degrees\n",
+"mu=0.09; //no unit\n",
+"n=0.3; //no unit\n",
+"K=1300; //in MPa\n",
+"v=3; //in m/s\n",
+"B=mu*cotd(alpha/2);\n",
+"e1=log(1/(1-r));\n",
+"sigma=K*e1^0.3/(n+1);\n",
+"Aa=Ab*(1-r);\n",
+"sigma_xa=sigma*((1+B)/B)*[1-(Aa/Ab)^B];\n",
+"Aa=%pi*Aa^2/4;\n",
+"Pd=sigma_xa*Aa;\n",
+"Pd=Pd/1000; //conversion to kilo units\n",
+"P=Pd*v;\n",
+"H=P/0.746;\n",
+"printf('\nDrawing Stress = %g MPa\nDrawing Force = %g kN\nPower = %g kW\nHorsepower = %g hp',sigma_xa,Pd,P,H);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2: Analysis_of_Wiredrawing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 19.2\n",
+"//Analysis of Wiredrawing\n",
+"//Page No. 645\n",
+"clc;clear;close;\n",
+"\n",
+"alpha=12; //in degrees\n",
+"r=0.2; //in %\n",
+"mu=0.09; //no unit\n",
+"n=0.3; //no unit\n",
+"K=1300; //in MPa\n",
+"v=3; //in m/s\n",
+"B=mu*cotd(alpha/2);\n",
+"e1=log(1/(1-r));\n",
+"sigma_xa=K*e1^0.3/(n+1);\n",
+"r1=1-((1-(B/(B+1)))^(1/B));\n",
+"e=log(1/(1-r1));\n",
+"sigma0=1300*e^0.3;\n",
+"r2=1-(1-((sigma0/sigma_xa)*(B/(B+1)))^(1/B));\n",
+"printf('\nBy First Approximation, r = %g\nBy Second Approximation, r = %g',r1,r2);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/2-Stress_and_Strain_Relationships_for_Elastic_Behavior.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/2-Stress_and_Strain_Relationships_for_Elastic_Behavior.ipynb
new file mode 100644
index 0000000..24afb5b
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/2-Stress_and_Strain_Relationships_for_Elastic_Behavior.ipynb
@@ -0,0 +1,179 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Stress and Strain Relationships for Elastic Behavior"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: State_of_Stress_in_two_dimensions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.1\n",
+"//State of Stress in two dimensions\n",
+"//Page No. 25\n",
+"clc;clear;close;\n",
+"\n",
+"sigma_x=25; //no unit\n",
+"sigma_y=5; //no unit\n",
+"theta=45; //in degrees\n",
+"sigma_x_=50; //in Mpa\n",
+"T_x_y_=5; //in Mpa\n",
+"A=[(sigma_x+sigma_y)/2+(sigma_x-sigma_y)/2*cosd(2*theta),sind(2*theta);(sigma_y-sigma_x)/2*sind(2*theta),cosd(2*theta)];\n",
+"B=[sigma_x_;T_x_y_];\n",
+"X=inv(A)*B;\n",
+"p=X(1);\n",
+"T_xy=X(2);\n",
+"sigma_x1=sigma_x*p;\n",
+"sigma_y1=sigma_y*p;\n",
+"sigma_y_=sigma_x1+sigma_y1-sigma_x_;\n",
+"printf('\nsigma_x= %g MPa\nsigma_y= %g MPa\nT_xy= %g MPa\nsigma_y`= %g MPa',sigma_x1,sigma_y1,T_xy,sigma_y_);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: State_of_Stress_in_three_dimensions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.2\n",
+"//State of Stress in three dimensions\n",
+"//Page No. 29\n",
+"clc;clear;close;\n",
+"\n",
+"s=poly(0,'s')\n",
+"A=[s-0,-240,0;-240,s-200,0;0,0,s+280]; //in Mpa\n",
+"p=determ(A);\n",
+"X=roots(p);\n",
+"for i=1:3\n",
+" printf('\nsigma%i = %g MPa',i,X(i));\n",
+"end\n",
+"printf('\n\nLogic: The matrix provided in the book is a state of stress of a body which includes a combination of normal and shear stresses acting in a triaxial direction. So the determinant of the matrix results in the cubic equation in ''sigma'' which when solved gives the principal stresses');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Calculation_of_Stresses_from_elastic_strains.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.3\n",
+"//Calculation of Stresses from elastic strains\n",
+"//Page No. 52\n",
+"clc;clear;close;\n",
+"\n",
+"E=200; //in GPa\n",
+"nu=0.33; //no unit\n",
+"e1=0.004; //no unit\n",
+"e2=0.001; //no unit\n",
+"sigma1=E*(e1+nu*e2)/(1-nu^2);\n",
+"sigma2=E*(e2+nu*e1)/(1-nu^2);\n",
+"sigma1=sigma1*1000; //conversion to MPa\n",
+"sigma2=sigma2*1000; //conversion to MPa\n",
+"printf('\nsigma1 = %g MPa\nsigma2 = %g MPa\n',sigma1,sigma2);\n",
+"printf('\nNote: Slight calculation errors in Book')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Elastic_Anisotropy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.4\n",
+"//Elastic Anisotropy\n",
+"//Page No. 60\n",
+"clc;clear;close;\n",
+"\n",
+"S11_Fe=0.8; //in 1/Pa\n",
+"S12_Fe=-0.28; //in 1/Pa\n",
+"S44_Fe=0.86; //in 1/Pa\n",
+"S11_W=0.26; //in 1/Pa\n",
+"S12_W=-0.07; //in 1/Pa\n",
+"S44_W=0.66; //in 1/Pa\n",
+"D_100_l=1;\n",
+"D_100_m=0;\n",
+"D_100_n=0;\n",
+"D_110_l=1/sqrt(2);\n",
+"D_110_m=1/sqrt(2);\n",
+"D_110_n=0;\n",
+"D_111_l=1/sqrt(3);\n",
+"D_111_m=1/sqrt(3);\n",
+"D_111_n=1/sqrt(3);\n",
+"\n",
+"printf('\nFor Iron:\n\n');\n",
+"Fe_E_111=1/(S11_Fe-2*((S11_Fe-S12_Fe)-S44_Fe/2)*(D_111_l^2*D_111_m^2+D_111_n^2*D_111_m^2+D_111_l^2*D_111_n^2));\n",
+"Fe_E_100=1/(S11_Fe-2*((S11_Fe-S12_Fe)-S44_Fe/2)*(D_100_l^2*D_100_m^2+D_100_n^2*D_100_m^2+D_100_l^2*D_100_n^2));\n",
+"printf('E_111 = %g x 10^11 Pa\nE_100 = %g x 10^11 Pa\n',Fe_E_111,Fe_E_100);\n",
+"printf('\n\n\nFor Tungten:\n\n');\n",
+"W_E_111=1/(S11_W-2*((S11_W-S12_W)-S44_W/2)*(D_111_l^2*D_111_m^2+D_111_n^2*D_111_m^2+D_111_l^2*D_111_n^2));\n",
+"W_E_100=1/(S11_W-2*((S11_W-S12_W)-S44_W/2)*(D_100_l^2*D_100_m^2+D_100_n^2*D_100_m^2+D_100_l^2*D_100_n^2));\n",
+"printf('E_111 = %g x 10^11 Pa\nE_100 = %g x 10^11 Pa\n\nTherefore tungsten is elastically isotropic while iron is elasitcally anisotropic',W_E_111,W_E_100);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/20-Sheet_Metal_Forming_.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/20-Sheet_Metal_Forming_.ipynb
new file mode 100644
index 0000000..19ba089
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/20-Sheet_Metal_Forming_.ipynb
@@ -0,0 +1,89 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 20: Sheet Metal Forming "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.1: Deep_Drawing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 20.1\n",
+"//Deep Drawing\n",
+"//Page No. 672\n",
+"clc;clear;close;\n",
+"\n",
+"le=0.3; //factor (no unit)\n",
+"wd=-0.16; //factor (no unit)\n",
+"l_l0=1+le;\n",
+"w_w0=1+wd;\n",
+"R=log(1/w_w0)/log((w_w0)*l_l0);\n",
+"printf('\nLimiting ratio = %g',R);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2: Forming_Limit_Criteria.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 20.2\n",
+"//Forming Limit Criteria\n",
+"//Page No. 675\n",
+"clc;clear;close;\n",
+"\n",
+"d=0.1; //in inches\n",
+"mj_d=0.18; //in inches\n",
+"mn_d=0.08; //in inches\n",
+"e1=(mj_d-d)/d;\n",
+"e2=(mn_d-d)/d;\n",
+"printf('\nMajor Strain = %g percent \nMinor Strain = %g percent',e1*100,e2*100);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/21-Machining_of_Metals.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/21-Machining_of_Metals.ipynb
new file mode 100644
index 0000000..eb94e63
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/21-Machining_of_Metals.ipynb
@@ -0,0 +1,177 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 21: Machining of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.1: Mechanics_of_Machining.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 21.1\n",
+"//Mechanics of Machining\n",
+"//Page No. 685\n",
+"clc;clear;close;\n",
+"\n",
+"a=6; //in degrees\n",
+"sigma_s=60000; //in psi\n",
+"su_s=91000; //in psi\n",
+"sigma_c=10000; //in psi\n",
+"su_c=30000; //in psi\n",
+"deff('y=s(fi)','y=cosd(fi-a)*sind(fi)-sigma_s/su_s*(cosd(45-a/2)*sind(45+a/2))');\n",
+"deff('y=c(fi)','y=cosd(fi-a)*sind(fi)-sigma_c/su_c*(cosd(45-a/2)*sind(45+a/2))');\n",
+"[fi,v,info]=fsolve(0,s);\n",
+"printf('\nShear Plane Angle for 1040 steel= %g deg',fi)\n",
+"[fi,v,info]=fsolve(0,c);\n",
+"printf('\nShear Plane Angle for Copper = %g deg',fi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.2: Mechanics_of_Machining.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 21.2\n",
+"//Mechanics of Machining\n",
+"//Page No. 687\n",
+"clc;clear;close;\n",
+"\n",
+"v=500; //in ft/min\n",
+"alpha=6; //in degrees\n",
+"b=0.4; //in inches\n",
+"t=0.008; //in inches\n",
+"Fv=100; //in lb\n",
+"Fh=250; //in lb\n",
+"L=20; //in in\n",
+"rho=0.283; //in lb/in^2\n",
+"m=13.36; //in gm\n",
+"m=m/454; //conversion to lb\n",
+"\n",
+"tc=m/(rho*b*L);\n",
+"r=t/tc;\n",
+"fi=atand(r*cosd(alpha)/(1-r*sind(alpha)));\n",
+"mu=(Fv+Fh*tand(alpha))/(Fh-Fv*tand(alpha));\n",
+"be=atand(mu);\n",
+"Pr=sqrt(Fv^2+Fh^2);\n",
+"Ft=Pr*sind(be);\n",
+"p_fe=Ft*r/Fh;\n",
+"Fs=Fh*cosd(fi)-Fv*sind(fi);\n",
+"vs=v*cosd(alpha)/cosd(fi-alpha);\n",
+"p_se=Fs*vs/(Fh*v);\n",
+"U=Fh*v/(b*t*v);\n",
+"U=U/33000; //conversion to hp\n",
+"U=U/12; //conversion of ft units to in units\n",
+"printf('\nSlip plane angle = %g deg\nPercentage of total energy that goes into friction = %g percent\nPercentage of total energy that goes into shear = %g percent\nTotal energy per unit volume = %g hp min/in^3',fi,p_fe*100,p_se*100,U);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.3: Tool_Materials_and_Tool_Life.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 21.3\n",
+"//Tool Materials and Tool Life\n",
+"//Page No. 698\n",
+"clc;clear;close;\n",
+"\n",
+"d=0.5; //in %\n",
+"t=(1/d)^(1/0.12);\n",
+"printf('\nFor High Speed steel tool, increase in tool life is given by: t2 = %g t1',t);\n",
+"t=(1/d)^(1/0.3);\n",
+"printf('\nFor Cemented carbide tool, increase in tool life is given by: t2 = %g t1',t);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.4: Grinding_Processes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 21.4\n",
+"//Grinding Processes\n",
+"//Page No. 703\n",
+"clc;clear;close;\n",
+"\n",
+"U=40; //in GPa\n",
+"uw=0.3; //in m/s\n",
+"b=1.2; //in mm\n",
+"v=30; //in m/s\n",
+"d=0.05; //in mm\n",
+"b=b*10^-3; //conversion to m\n",
+"d=d*10^-3; //conversion to m\n",
+"U=U*10^9; //conversion to Pa\n",
+"M=uw*b*d;\n",
+"P=U*M;\n",
+"F=P/v;\n",
+"printf('Tangential force = %g N',F);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/3-Elements_of_the_Theory_of_Plasticity.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/3-Elements_of_the_Theory_of_Plasticity.ipynb
new file mode 100644
index 0000000..5299a4f
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/3-Elements_of_the_Theory_of_Plasticity.ipynb
@@ -0,0 +1,161 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Elements of the Theory of Plasticity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: True_Stress_and_True_Strain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.1\n",
+"//True Stress and True Strain\n",
+"//Page No. 76\n",
+"clc;clear;close;\n",
+"\n",
+"D_i=0.505; //in inches\n",
+"L=2; //in inches\n",
+"P_max=20000; //in lb\n",
+"P_f=16000; //in lb\n",
+"D_f=0.425; //in inches\n",
+"E_St= P_max*4/(%pi*D_i^2);\n",
+"T_fr_St= P_f*4/(%pi*D_f^2);\n",
+"e_f=log(D_i^2/D_f^2);\n",
+"e=exp(e_f)-1;\n",
+"printf('\nEngineering Stress at maximum load = %g psi\nTrue Fracture Stress = %g psi\nTrue Strain at fracture = %g\nEngineering strain at fracture = %g',E_St,T_fr_St,e_f,e);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Yielding_Criteria_for_Ductile_Metals.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.2\n",
+"//Yielding Criteria for Ductile Metals\n",
+"//Page No. 78\n",
+"clc;clear;close;\n",
+"\n",
+"sigma00=500; //in MPa\n",
+"sigma_z=-50; //in MPa\n",
+"sigma_y=100; //in MPa\n",
+"sigma_x=200; //in MPa\n",
+"T_xy=30; //in MPa\n",
+"T_yz=0; //in MPa\n",
+"T_xz=0; //in MPa\n",
+"sigma0=sqrt((sigma_x-sigma_y)^2+(sigma_y-sigma_z)^2+(sigma_z-sigma_x)^2+6*(T_xy^2+T_yz^2+T_xz^2))/sqrt(2);\n",
+"s=sigma00/sigma0;\n",
+"printf('\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\nThus safety factor is = %g',sigma0,s);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Tresca_Criterio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.3\n",
+"//Tresca Criterion\n",
+"//Page No. 81\n",
+"clc;clear;close;\n",
+"\n",
+"sigma00=500; //in MPa\n",
+"sigma_z=-50; //in MPa\n",
+"sigma_y=100; //in MPa\n",
+"sigma_x=200; //in MPa\n",
+"T_xy=30; //in MPa\n",
+"T_yz=0; //in MPa\n",
+"T_xz=0; //in MPa\n",
+"sigma0=sigma_x-sigma_z;\n",
+"s=sigma00/sigma0;\n",
+"printf('\nSince the calculated value of sigma0 = %g MPa, which is less than the yield strength of the aluminium alloy\nThus safety factor is = %g',sigma0,s);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Levy_Mises_Equatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 3.4\n",
+"//Levy-Mises Equation\n",
+"//Page No. 91\n",
+"clc;clear;close;\n",
+"\n",
+"r_t=20; //no unit\n",
+"p=1000; //in psi\n",
+"sigma1=p*r_t;\n",
+"sigma1=sigma1/1000; //conversion to ksi\n",
+"sigma=sqrt(3)*sigma1/2;\n",
+"e=(sigma/25)^(1/0.25);\n",
+"e1=sqrt(3)*e/2;\n",
+"printf('\nPlastic Strain = %g',e1);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/4-Plastic_Deformation_of_Single_Crystals.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/4-Plastic_Deformation_of_Single_Crystals.ipynb
new file mode 100644
index 0000000..04e6279
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/4-Plastic_Deformation_of_Single_Crystals.ipynb
@@ -0,0 +1,62 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Plastic Deformation of Single Crystals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Critical_Resolved_Shear_Stress_for_Slip.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 4.1\n",
+"//Critical Resolved Shear Stress for Slip\n",
+"//Page No. 125\n",
+"clc;clear;close;\n",
+"\n",
+"a=[1,-1,0]; //no unit\n",
+"n=[1,-1,-1]; //no unit\n",
+"s=[0,-1,-1]; //no unit\n",
+"Tr=6; //in MPa\n",
+"cos_fi=sum(a.*n)/(sqrt(a(1)^2+a(2)^2+a(3)^2)*sqrt(n(1)^2+n(2)^2+n(3)^2));\n",
+"cos_lm=sum(a.*s)/(sqrt(a(1)^2+a(2)^2+a(3)^2)*sqrt(s(1)^2+s(2)^2+s(3)^2));\n",
+"sigma=Tr/(cos_fi*cos_lm);\n",
+"printf('Tensile Stress applied = %g MPa',sigma);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/5-Dislocation_Theory.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/5-Dislocation_Theory.ipynb
new file mode 100644
index 0000000..7e199ea
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/5-Dislocation_Theory.ipynb
@@ -0,0 +1,65 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Dislocation Theory"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Forces_Between_Dislocations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 5.1\n",
+"//Forces Between Dislocations\n",
+"//Page No. 166\n",
+"clc;clear;close;\n",
+"\n",
+"G=40; //in GPa\n",
+"G=G*10^9; //conversion to N/m^2\n",
+"b=2.5; //in angstrong\n",
+"b=b*10^-10; //conversion to m\n",
+"r=1200; //in angstrong\n",
+"r=r*10^-10; //conversion to m\n",
+"l=0.04; //in mm\n",
+"l=l*10^-3; //conversion to m\n",
+"F=G*b^2/(2*%pi*r);\n",
+"Ft=F*l;\n",
+"printf('The Total force on the dislocation is = %g N',Ft);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/6-Strengthening_Mechanisms.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/6-Strengthening_Mechanisms.ipynb
new file mode 100644
index 0000000..99a9332
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/6-Strengthening_Mechanisms.ipynb
@@ -0,0 +1,184 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Strengthening Mechanisms"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Grain_Size_Measurement.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.1\n",
+"//Grain Size Measurement\n",
+"//Page No. 193\n",
+"clc;clear;close;\n",
+"\n",
+"sigma_i=150; //in MN/m^2\n",
+"k=0.7; //in MN/m^(3/2)\n",
+"n=6; \n",
+"N_x=2^(n-1);\n",
+"N=N_x/(0.01)^2; //in grains/in^2\n",
+"N=N*10^6/25.4^2; // in grains/m^2\n",
+"D=sqrt(1/N);\n",
+"sigma0=sigma_i+k/D^(1/2);\n",
+"printf('\nYield Stress = %g MPa',sigma0);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Strengthing_Mechanism.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.2\n",
+"//Strengthing Mechanism\n",
+"//Page No. 219\n",
+"clc;clear;close;\n",
+"\n",
+"sigma0=600; //in MPa\n",
+"G=27.6; //in GPa\n",
+"G=G*10^9 //conversion to Pa\n",
+"b=2.5*10^-8; //in cm\n",
+"b=b*10^-2; //conversion to m\n",
+"T0=sigma0/2;\n",
+"T0=T0*10^6; //conversion to Pa\n",
+"lambda=G*b/T0;\n",
+"Cu_max=54; //in %\n",
+"Cu_eq=4; //in %\n",
+"Cu_min=0.5; //in %\n",
+"rho_al=2.7; //in g/cm^3\n",
+"rho_theta=4.43; //in g/cm^3\n",
+"wt_a=(Cu_max-Cu_eq)/(Cu_max-Cu_min);\n",
+"wt_theta=(Cu_eq-Cu_min)/(Cu_max-Cu_min);\n",
+"V_a=wt_a/rho_al;\n",
+"V_theta=wt_theta/rho_theta;\n",
+"f=V_theta/(V_a+V_theta);\n",
+"r=(3*f*lambda)/(4*(1-f));\n",
+"printf('\nParticle Spacing = %g m\nParticle Size = %g m',lambda,r);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Fiber_Strengthing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.3\n",
+"//Fiber Strengthing\n",
+"//Page No. 222\n",
+"clc;clear;close;\n",
+"\n",
+"Ef=380; //in GPa\n",
+"Em=60; //in GPa\n",
+"//Case 1\n",
+"f_f=0.1; //no unit\n",
+"Ec=Ef*f_f+(1-f_f)*Em;\n",
+"printf('\nEc for 10 vol%% = %g GPa\n',Ec);\n",
+"//Case 2\n",
+"f_f=0.6; //no unit\n",
+"Ec=Ef*f_f+(1-f_f)*Em;\n",
+"printf('\nEc for 60 vol%% = %g GPa\n',Ec);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Load_Transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 6.4\n",
+"//Load Transfer\n",
+"//Page No. 225\n",
+"clc;clear;close;\n",
+"\n",
+"sigma_fu=5; //in GPa\n",
+"sigma_fu=sigma_fu*10^9; //Conversion to Pa\n",
+"sigma_m=100; //in MPa\n",
+"sigma_m=sigma_m*10^6; //Conversion to Pa\n",
+"T0=80; //in MPa\n",
+"T0=T0*10^6; //Conversion to Pa\n",
+"f_f=0.5; //no unit\n",
+"d=100; //in um\n",
+"d=d*10^-6; //conversion to m\n",
+"B=0.5; //no unit\n",
+"L=10; //in cm\n",
+"L=L*10^-2; //conversion to m\n",
+"Lc=sigma_fu*d/(2*T0);\n",
+"sigma_cu=sigma_fu*f_f*(1-Lc/(2*L))+sigma_m*(1-f_f);\n",
+"sigma_cu=sigma_cu*10^-9;\n",
+"printf('\nsigma_cu = %g GPa for L=100um\n',sigma_cu);;\n",
+"\n",
+"L=2; //in mm\n",
+"L=L*10^-3; //conversion to m\n",
+"sigma_cu=sigma_fu*f_f*(1-Lc/(2*L))+sigma_m*(1-f_f);\n",
+"sigma_cu=sigma_cu*10^-9;\n",
+"printf('sigma_cu = %g GPa for L=2mm',sigma_cu);;"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/7-Fracture.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/7-Fracture.ipynb
new file mode 100644
index 0000000..8efd4e6
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/7-Fracture.ipynb
@@ -0,0 +1,94 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Fracture"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Cohesive_Strength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 7.1\n",
+"//Cohesive Strength\n",
+"//Page No. 245\n",
+"clc;clear;close;\n",
+"\n",
+"E=95; //in GPa\n",
+"E=E*10^9; //conversion to Pa\n",
+"Ys=1000; //erg/cm^2\n",
+"Ys=Ys*10^-3; //conversion to J/m^2\n",
+"a0=1.6; //in angstrom\n",
+"a0=a0*10^-10; //conversion to m\n",
+"sigma_max=(E*Ys/a0)^(1/2)\n",
+"sigma_max=sigma_max*10^-9;\n",
+"printf('Cohesive strength of a silica fiber = %g GPa',sigma_max);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Fracture_Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 7.2\n",
+"//Fracture Stress\n",
+"//Page No. 246\n",
+"clc;clear;close;\n",
+"\n",
+"E=100; //in GPa\n",
+"E=E*10^9; //conversion to Pa\n",
+"Ys=1; //J/m^2\n",
+"a0=2.5*10^-10; //in m\n",
+"c=10^4*a0;\n",
+"sigma_f=(E*Ys/(4*c))^(1/2);\n",
+"sigma_f=sigma_f*10^-6;\n",
+"printf('Fracture Stress = %g MPa',sigma_f);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanical_Metallurgy_by_G_E_Dieter/8-The_Tension_Test.ipynb b/Mechanical_Metallurgy_by_G_E_Dieter/8-The_Tension_Test.ipynb
new file mode 100644
index 0000000..8e2557c
--- /dev/null
+++ b/Mechanical_Metallurgy_by_G_E_Dieter/8-The_Tension_Test.ipynb
@@ -0,0 +1,175 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: The Tension Test"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Standard_properties_of_the_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.1\n",
+"//Standard properties of the material\n",
+"//Page No. 281\n",
+"clc;clear;close;\n",
+"\n",
+"D=0.505; //in inches\n",
+"Lo=2; //in inches\n",
+"Lf=2.53; //in inches\n",
+"Py=15000; //in lb\n",
+"Pmax=18500; //in lb\n",
+"Pf=16200; //in lb\n",
+"D_f=0.315; //in inches\n",
+"A0=%pi*D^2/4;\n",
+"Af=%pi*D_f^2/4;\n",
+"s_u=Pmax/A0;\n",
+"s0=Py/A0;\n",
+"s_f=Pf/A0;\n",
+"e_f=(Lf-Lo)/Lo;\n",
+"q=(A0-Af)/A0;\n",
+"printf('\nUltimate Tensile Strength = %g psi\n0.2 percent offset yield strength = %g psi\nBreaking Stress = %g psi\nElongation = %g percent\nReduction of Area = %g percent\n\n\nNote: Slight Computational Errors in book',s_u,s0,s_f,e_f*100,q*100);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: True_Strai.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.2\n",
+"//True Strain\n",
+"//Page No. 288\n",
+"clc;clear;close;\n",
+"\n",
+"//case 1\n",
+"Af=100; //in mm^2\n",
+"Lf=60; //in mm\n",
+"A0=150; //in mm^2\n",
+"L0=40; //in mm\n",
+"ef1=log(Lf/L0);\n",
+"ef2=log(A0/Af);\n",
+"printf('\nTrue Strain to fracture using changes in length = %g\nTrue Strain to fracture using changes in area = %g',ef1,ef2);\n",
+"\n",
+"//Case 2\n",
+"Lf=83; //in mm\n",
+"L0=40; //in mm\n",
+"Df=8; //in mm\n",
+"D0=12.8; //in mm\n",
+"ef1=log(Lf/L0);\n",
+"ef2=2*log(D0/Df);\n",
+"printf('\n\n\nFor More ductile metals\nTrue Strain to fracture using changes in length = %g\nTrue Strain to fracture using changes in diameter = %g',ef1,ef2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Ultimate_Tensile_Strength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.3\n",
+"//Ultimate Tensile Strength\n",
+"//Page No. 290\n",
+"clc;clear;close;\n",
+"\n",
+"deff('y=sigma(e)','y=200000*e^0.33');\n",
+"E_u=0.33; //no unit\n",
+"sigma_u=sigma(E_u);\n",
+"s_u=sigma_u/exp(E_u);\n",
+"printf('Ultimate Tensile Strength = %g psi',s_u);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Effect_of_Strain_Rate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 8.4\n",
+"//Effect of Strain Rate\n",
+"//Page No. 298\n",
+"clc;clear;close;\n",
+"\n",
+"C_70=10.2; //in ksi\n",
+"C_825=2.1; //in ksi\n",
+"m_70=0.066; //no unit\n",
+"m_825=0.211; //no unit\n",
+"e1=1; //no unit \n",
+"e2=100; //no unit\n",
+"printf('\nAt 70deg F\n');\n",
+"sigma_a=C_70*e1^m_70;\n",
+"sigma_b=C_70*e2^m_70;\n",
+"\n",
+"printf('sigma_a = %g ksi\nsigma_b = %g ksi\nsigma_b/sigma_a = %g\n',sigma_a,sigma_b,sigma_b/sigma_a);\n",
+"printf('\n\nAt 825deg F\n');\n",
+"sigma_a=C_825*e1^m_825;\n",
+"sigma_b=C_825*e2^m_825;\n",
+"printf('sigma_a = %g ksi\nsigma_b = %g ksi\nsigma_b/sigma_a = %g\n',sigma_a,sigma_b,sigma_b/sigma_a);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}