summaryrefslogtreecommitdiff
path: root/Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb')
-rw-r--r--Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb467
1 files changed, 467 insertions, 0 deletions
diff --git a/Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb b/Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb
new file mode 100644
index 0000000..737b769
--- /dev/null
+++ b/Linear_Control_Systems_by_B_S_Manke/1-INTRODUCTION.ipynb
@@ -0,0 +1,467 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: INTRODUCTION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_10: final_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:final_value\n",
+"// example 1.6.10\n",
+"//page 13\n",
+"syms t s;\n",
+"F=4/(s^2+2*s)\n",
+"x=s*F\n",
+"x=simple(x)\n",
+"z=limit(x,s,0);//final value theorem\n",
+"z=dbl(z);\n",
+"disp(z,'f(0+)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_iii: inverse_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:inverse_laplace_transform\n",
+"// example 1.6.1.(iii)\n",
+"//page 8\n",
+"// F(s)=1/(s^2+4s+8)\n",
+"s =%s ;\n",
+"syms t ;\n",
+"disp(1/(s^2+4*s+8),'F(s)=')\n",
+"f=ilaplace(1/(s^2+4*s+8),s,t)\n",
+"disp (f,' f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_ii: inverse_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:inverse_laplace_transform\n",
+"// example 1.6.1.(ii)\n",
+"//page 7\n",
+"// F(s)=s+6/(s(s^2+4s+3))\n",
+"s =%s ;\n",
+"syms t ;\n",
+"[A]= pfss((s+6)/(s*(s^2+4*s+3))) // partial fraction of F(s)\n",
+"A(1)=2/s;\n",
+"F1 = ilaplace (A(1),s,t)\n",
+"F2 = ilaplace (A(2),s,t)\n",
+"F3 = ilaplace (A(3),s,t)\n",
+"F=F1+F2+F3;\n",
+"disp (F,' f (t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_i: inverse_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:inverse_laplace_transform\n",
+"// example 1.6.1.(i)\n",
+"//page 7\n",
+"// F(s)=1/(s*(s+1))\n",
+"s =%s ;\n",
+"syms t ;\n",
+"[A]=pfss(1/((s)*(s+1))) // partial fraction of F(s)\n",
+"F1 = ilaplace (A(1),s,t)\n",
+"F2 = ilaplace (A(2),s,t)\n",
+"F=F1+F2;\n",
+"disp (F,' f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_iv: inverse_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:inverse_laplace_transform\n",
+"// example 1.6.1.(iv)\n",
+"//page 8\n",
+"// F(s)=s+2/(s^2+4s+6)\n",
+"s =%s ;\n",
+"syms t ;\n",
+"disp((s+2)/(s^2+4*s+6),'F(s)=')\n",
+"F=ilaplace((s+2)/(s^2+4*s+6),s,t)\n",
+"disp (F,' f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_v: inverse_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:inverse_laplace_transform\n",
+"// example 1.6.1.(v)\n",
+"//page 8\n",
+"// F(s)=5/(s(s^2+4s+5))\n",
+"s =%s ;\n",
+"syms t ;\n",
+"[A]= pfss (5/(s*(s^2+4*s+5))) // partial fraction of F(s)\n",
+"F1= ilaplace (A(1),s,t)\n",
+"F2= ilaplace (A(2),s,t)\n",
+"F=F1+F2;\n",
+"disp (F,'f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1_vi: program_laplace_transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:program_laplace_transform\n",
+"//example 1.6.1.(v)\n",
+"//page 9\n",
+"//this problem is solved in two parts because in this problem pfss function donot work.So, First we find partial fraction using method as we do in maths and then secondly we find inverse laplace transform as usual.\n",
+"// partial fraction \n",
+"s=%s\n",
+"syms t;\n",
+"num=(s^2+2*s+3);\n",
+"den=(s+2)^3;\n",
+"g=syslin('c',num/den);\n",
+"rd=roots(den);\n",
+"[n d k]=factors(g)\n",
+"a(3)=horner(g*d(1)^3,rd(1))\n",
+"a(2)=horner(derivat(g*d(1)^3),rd(1))\n",
+"a(1)=horner(derivat(derivat(g*d(1)^3)),rd(1))\n",
+"//inverse laplace\n",
+"// partial fraction will be: a(1)/(s+1)+a(2)/((s+2)^2)+a(3)/((s+2)^3)\n",
+"F1 = ilaplace (1/d(1),s,t)\n",
+"F2 = ilaplace (-2/(d(1)^2),s,t)\n",
+"F3 = ilaplace (2*1.5/(d(1)^3),s,t)\n",
+"F=F1+F2+F3\n",
+"disp (F,' f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_2: solution_of_differential_equation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:solution_of_differential equation\n",
+"// example 1.6.2\n",
+"//page 9\n",
+"//after taking laplace transform and applying given condition, we get :\n",
+"//X(s)=2s+5/(s(s+4))\n",
+"s=%s;\n",
+"syms t\n",
+"[A]=pfss((2*s+5)/(s*(s+4)))\n",
+"A(1)=1.25/s\n",
+"F1 =ilaplace(A(1),s,t)\n",
+"F2 = ilaplace(A(2),s,t)\n",
+"f=F1+F2;\n",
+"disp (f,'f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_3: solution_of_differential_equation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:solution_of_differential_equation\n",
+"// example 1.6.3\n",
+"//page 10\n",
+"//after taking laplace transform and applying given condition, we get :\n",
+"//X(s)=1/(s^2+2s+2)\n",
+"s=%s;\n",
+"syms t\n",
+"f = ilaplace(1/(s^2+2*s+2),s,t);\n",
+"disp (f,'f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_4: solution_of_differential_equation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:solution_of_differential_equation\n",
+"// example 1.6.4\n",
+"//page 10\n",
+"//after taking laplace transform and applying given condition, we get :\n",
+"//Y(s)=(6*s+6)/((s-1)*(s+2)*(s+3))\n",
+"s=%s;\n",
+"syms t\n",
+"[A]=pfss((6*s+6)/((s-1)*(s+2)*(s+3)))\n",
+"F1 = ilaplace(A(1),s,t)\n",
+"F2 = ilaplace(A(2),s,t)\n",
+"F3 = ilaplace(A(3),s,t)\n",
+"F=F1+F2+F3;\n",
+"disp (F,'f(t)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_5: initial_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:initial_value\n",
+"// example 1.6.5\n",
+"//page 11\n",
+"//I(s)=(C*s/(RCs+1))*E(s)\n",
+"//given: E(s)=100/s,R=2 megaohm ,C=1 uF\n",
+"// so, I(s)=(((1*10^-6)*s)/(2*s+1))*(100/s)\n",
+"syms t\n",
+"p=poly([0 10^-6],'s','coeff');\n",
+"q=poly([1 2],'s','coeff');\n",
+"r=poly([0 1],'s','coeff');\n",
+"F1=p/q;\n",
+"F2=1/r;\n",
+"F=F1*F2\n",
+"f=ilaplace(F,s,t);\n",
+"z=limit(f,t,0);//initial value theorem\n",
+"z=dbl(z);\n",
+"disp(z,'i(0+)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_7: final_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:final_value\n",
+"// example 1.6.7\n",
+"//page 12\n",
+"//X(s)=100/(s*(s^2+2*s+50))\n",
+"p=poly([100],'s','coeff');\n",
+"q=poly([0 50 2 1],'s','coeff');\n",
+"F=p/q;\n",
+"syms s\n",
+"x=s*F;\n",
+"y=limit(x,s,0);//final value theorem\n",
+"y=dbl(y)\n",
+"disp(y,'x(inf)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_8: steady_state_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:steady_state_value\n",
+"// example 1.6.7\n",
+"//page 12\n",
+"//X(s)=s/(s^2*(s^2+6*s+25))\n",
+"p=poly([0 1],'s','coeff');\n",
+"q=poly([0 0 25 6 1],'s','coeff');\n",
+"F=p/q;\n",
+"syms s\n",
+"x=s*F;\n",
+"y=limit(x,s,0);//final value theorem\n",
+"y=dbl(y)\n",
+"disp(y,'x(inf)=')//result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_9: initial_values.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:initial_values\n",
+"// example 1.6.7\n",
+"//page 13\n",
+"//F(s)=(4*s+1)/(s^3+2*s)\n",
+"s=%s;\n",
+"syms t;\n",
+"F=(4*s+1)/(s^3+2*s)\n",
+"f = ilaplace (F,s,t);\n",
+"y=limit(f,t,0);//initial value theorem\n",
+"y=dbl(y);\n",
+"disp(y,'f(0+)=')\n",
+"// since F'(s)=sF(s)-f(0+) where L(f'(t))=F'(s)=F1\n",
+"F1=(4*s+1)/(s^2+2)\n",
+"f1= ilaplace(F1,s,t);\n",
+"y1=limit(f1,t,0);//initial value theorem\n",
+"y1=dbl(y1);\n",
+"disp(y1,'f_prime(0+)=')\n",
+"// since F''(s)=(s^2)*F(s)-s*f(0+)-f'(0+) where L(f''(t))=F''(s)=F2\n",
+"F2=(s-8)/(s^2+2)\n",
+"f2= ilaplace(F2,s,t);\n",
+"y2=limit(f2,t,0);//initial value theorem\n",
+"y2=dbl(y2);\n",
+"disp(y2,'f_doubleprime(0+)=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}