summaryrefslogtreecommitdiff
path: root/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics')
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/10-Psychrometric_Operations.ipynb277
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/11-Getting_Started_in_Fluid_Mechanics.ipynb127
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/12-The_Momentum_and_Mechanical_Energy_Equations.ipynb286
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/14-Internal_and_External_Flow.ipynb234
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/15-Getting_Started_in_Heat_Transfer.ipynb162
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/16-Heat_Transfer_by_Conduction.ipynb336
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/17-Heat_transfer_by_Convection.ipynb518
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/18-Heat_transfer_by_radiation.ipynb339
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/3-Using_Energy_and_First_Law_of_thermodynamics.ipynb229
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/4-Evaluating_Properties.ipynb328
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/5-Control_Volume_Analysis_Using_Energy.ipynb250
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/6-The_Second_Law_of_Thermodynamics.ipynb121
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/7-Using_Entropy.ipynb308
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/8-Vapor_Power_and_Refrigeration_Sysytem.ipynb282
-rw-r--r--Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/9-Gas_Power_Systems.ipynb266
15 files changed, 4063 insertions, 0 deletions
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/10-Psychrometric_Operations.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/10-Psychrometric_Operations.ipynb
new file mode 100644
index 0000000..9f89cea
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/10-Psychrometric_Operations.ipynb
@@ -0,0 +1,277 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Psychrometric Operations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"phi=0.7;\n",
+"pg=0.3632;//lbf/in^2\n",
+"omega2=0.0052;\n",
+"pv1=phi*pg;\n",
+"omega1=0.622*pv1/(14.7-pv1);\n",
+"disp(omega1,'lb(vapor)/lb(dry air) is');\n",
+"mv1=1/(1/omega1+1);\n",
+"ma=1-mv1;\n",
+"mv2=omega2*ma;\n",
+"mw=mv1-mv2;\n",
+"disp(mw,'mass of water vapor that condenses in lb');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"phi1=0.8;\n",
+"pg1=0.01228;\n",
+"pa1=0.9902*10^5;;\n",
+"R=8314;//gasconstant\n",
+"T=283;\n",
+"pv1=phi1*pg1;\n",
+"va1=R/28.97*T/pa1;\n",
+"madot=150/va1;\n",
+"omega=0.622*(pv1/(1-pv1));\n",
+"Qcvdot=madot*(303.2-283.1)+omega*(2556.3-2519.8);\n",
+"disp(Qcvdot,'heat flow rate in kJ/min');\n",
+"pv2=pv1;\n",
+"phi2=pv2/0.04246;\n",
+"disp(phi2*100,'humidity in %');\n",
+"//alternatively\n",
+"madot=150/0.81;\n",
+"Qcvdot=madot*(45.9-25.7);\n",
+"disp(Qcvdot,'heat flow rate in kJ/min');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pv1=0.02123*10^5;\n",
+"patm=1.013*10^5;\n",
+"ha2=283.1;\n",
+"ha1=303.2;\n",
+"hg1=2556.3;\n",
+"hg2=2519.8;\n",
+"omega2=0.0076;\n",
+"hf2=42.01;\n",
+"T=303;//temperature\n",
+"R=8314;//gas constant\n",
+"M=28.97;//molecular mass\n",
+"pa1=patm-pv1;\n",
+"madot=280*pa1*M/R/T;\n",
+"disp(madot,'mass flow rate in kg/min');\n",
+"omega1=0.622*pv1/pa1;\n",
+"k=omega1-0.0076;\n",
+"disp(k,'mwdot/madot is (kg/kg)');\n",
+"Qcvdot=madot*((ha2-ha1)-omega1*hg1+omega2*hg2+(omega1-omega2)*hf2);\n",
+"disp(Qcvdot,'heat flow rate in kJ/min');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"omega1=0.002;\n",
+"mstdot=52;\n",
+"madot=90;\n",
+"omega2=omega1+mstdot/60/madot;\n",
+"disp(omega2,'humidity ratio is ');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"T1=100;\n",
+"T2=70;\n",
+"cpa=0.24;\n",
+"omega1=0.0045;//humidity\n",
+"hg1=1105;\n",
+"hg2=38.1;\n",
+"hg2=1092;\n",
+"hf=38.1;\n",
+"p2=14.696;//lb/in^2\n",
+"omega2=(cpa*(T1-T2)+omega1*(hg1-hf))/(hg2-hf);\n",
+"mwdot=352.1*60*(omega2-omega1);\n",
+"disp(mwdot,'mass flow rate in lb/h');\n",
+"pv2=omega2*p2/(omega2+0.622);\n",
+"phi2=pv2/0.36332;\n",
+"disp(phi2*100,'relative humidity in %')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"omega1=0.002;\n",
+"omega2=0.0094;\n",
+"ma1dot=180.0;\n",
+"ma2dot=497.0;\n",
+"omega3=(omega1*ma1dot+omega2*ma2dot)/(ma1dot+ma2dot);\n",
+"disp(omega3,'relative humidity');\n",
+"k1=10;//(ha+whv)1\n",
+"k2=47.8;//(ha+whv)2\n",
+"k3=(ma1dot*k1+ma2dot*k2)/(ma1dot+ma2dot)\n",
+"disp(k3,'(ha+whv)3 in kJ/kg');\n",
+"disp(19,'temperature by inspection in degreeC')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 10.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m1dot=4.5e7;\n",
+"hf1=159.21;\n",
+"hf2=125.79;\n",
+"ha4=308.2;\n",
+"ha3=298.2;\n",
+"w4=0.0327;//humidity\n",
+"hg4=2565.3;\n",
+"hg3=2547.2;\n",
+"w3=0.0068;//humidity\n",
+"hf5=83.96;\n",
+"madot=m1dot*(hf1-hf2)/(ha4-ha3+w4*hg4-w3*hg3-(w4-w3)*hf5);\n",
+"m5dot=madot*(w4-w3);\n",
+"disp(m5dot,'mass flow rate in kg/h');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/11-Getting_Started_in_Fluid_Mechanics.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/11-Getting_Started_in_Fluid_Mechanics.ipynb
new file mode 100644
index 0000000..e51fbe0
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/11-Getting_Started_in_Fluid_Mechanics.ipynb
@@ -0,0 +1,127 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Getting Started in Fluid Mechanics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 11.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"gas=42.5;//gamma of gasoline\n",
+"hgas=17.0;//height of gasoline\n",
+"hw=3.0;//height of water\n",
+"wat=62.4;//gamma of water\n",
+"k=gas*hgas/144.0;//p1-p0\n",
+"disp(k,'pressure difference in lbf/in^2');\n",
+"disp(k*144/wat,'pressure difference in feet of water');\n",
+"k1=wat*hw/144.0+k;//p2-p0\n",
+"disp(k1*144,'pressure difference in lbf/ft^2');\n",
+"disp(k1,'pressure difference in lbf/in^2');\n",
+"disp(k1*144/wat,'pressure difference in feet of water');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 11.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"SGoil=0.9;//specific gravity of oil\n",
+"wat=62.4;//gamma of water\n",
+"SGhg=13.6;//specific gravity of mercury\n",
+"h1=36.0/12;\n",
+"h2=6.0/12;\n",
+"h3=9.0/12;\n",
+"pair=-SGoil*wat*(h1+h2)+SGhg*wat*h3;\n",
+"pgage=pair/144.0;\n",
+"disp(pgage,'Gauge pressure in lbf/in^2(psi)');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 11.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"b=2.0;\n",
+"a=4.0;\n",
+"gamm=9.8*10^3;//gamma\n",
+"pi=3.14;\n",
+"Fr=integrate('gamm*sin(pi*60/180)*b*y','y',6,10);\n",
+"yr=gamm*sin(pi*60/180)/Fr*b*integrate('y^2','y',6,10);\n",
+"disp(yr,'location of resultant weight in m');\n",
+"//alternatively\n",
+"yr1=b*a^3/12/b/a/8+8;\n",
+"disp(yr1,'location of resultant weight in m');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/12-The_Momentum_and_Mechanical_Energy_Equations.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/12-The_Momentum_and_Mechanical_Energy_Equations.ipynb
new file mode 100644
index 0000000..9fb7c7d
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/12-The_Momentum_and_Mechanical_Energy_Equations.ipynb
@@ -0,0 +1,286 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: The Momentum and Mechanical Energy Equations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"//for a sample value of theta=45degrees\n",
+"pi=3.14;\n",
+"rho=1.94;\n",
+"A=0.06;//area\n",
+"V=10.0;//velocity\n",
+"theta=pi*45/180;\n",
+"Fax=-rho*A*V^2*(1-cos(theta));\n",
+"disp(Fax,'resultant force in x direction in lbf');\n",
+"Fay=rho*A*V^2*sin(theta);\n",
+"disp(Fay,'resultant force in y direction in lbf');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=1.94;\n",
+"A=0.1;\n",
+"V=50;\n",
+"p1=30;//pressure\n",
+"p2=24;//pressure\n",
+"mdot=rho*A*V;\n",
+"Fay=-2*mdot*V-(p1+p2)*144*A;\n",
+"disp(Fay,'resultant force in y direction in lbf');\n",
+"disp('resultant force in -ve y direction')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"rho=999.0;\n",
+"Q=0.6/1000;\n",
+"A1=pi*0.016^2/4;\n",
+"A2=pi*0.005^2/4;\n",
+"p1=464*1000;\n",
+"p2=0;\n",
+"Ww=0.03;\n",
+"Wn=1;\n",
+"mdot=rho*Q;\n",
+"V1=Q/A1;\n",
+"V2=Q/A2;\n",
+"Fa=mdot*(V1-V2)+Wn+Ww+p1*A1;\n",
+"disp(Fa,'Force in N');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=3.0;//p1/gamma\n",
+"k2=0.5;//p2/gamma\n",
+"z1=0;\n",
+"z2=2;\n",
+"hl=k-k2-z2+z1;\n",
+"disp(hl,'head loss in terms of height of water')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"z1=100;\n",
+"V2=6;\n",
+"g=9.81;\n",
+"gamm=9.8*1000;//density\n",
+"Q=4.72;//flow rate\n",
+"ht=z1-V2^2/2/g;\n",
+"Wtdot=gamm*Q*ht/1000;\n",
+"disp(Wtdot,'power output in kW');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Wpdot=10*550;\n",
+"gamm=62.4;//density\n",
+"Q=2;//flow rate\n",
+"hp=Wpdot/gamm/Q;\n",
+"hl=-30+hp;\n",
+"disp(hl,'head loss in ft');\n",
+"Wdot=gamm*Q*hl/550;\n",
+"disp(Wdot,'power output in hp');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=1.4;\n",
+"p0=1*10^6;\n",
+"p2=7.84*10^5;\n",
+"k=1.4;\n",
+"R=8314;//gas constant\n",
+"T2=336;//temperature\n",
+"M2=(2/(k-1)*((p0/p2)^((k-1)/k)-1))^0.5;\n",
+"disp(M2,'the exit mach no is');\n",
+"V2=M2*sqroot(k*R/28.97*T2);\n",
+"mdot=p2*V2/1000/R/T2*28.97;\n",
+"disp(mdot,'mass flow rate in kg/s');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 12.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k1=0.88;//p2/poy;\n",
+"k2=0.628;//poy/pox\n",
+"pox=100;//pressure\n",
+"R=1545;\n",
+"T2=494;\n",
+"k=1.4;\n",
+"M2=0.24;\n",
+"A=2.4;\n",
+"V2=M2*sqroot(k*R/28.97*T2*32.2);\n",
+"mdot=95.9*A*V2/T2/R*28.97;\n",
+"disp(mdot,'mass flow rate in lb/s');\n",
+"p2=k1*k2*pox;\n",
+"disp(p2,'pressure in lbf/in^2')\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/14-Internal_and_External_Flow.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/14-Internal_and_External_Flow.ipynb
new file mode 100644
index 0000000..5feb2bb
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/14-Internal_and_External_Flow.ipynb
@@ -0,0 +1,234 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Internal and External Flow"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=1.23;//density\n",
+"V=50;//velocity\n",
+"D=0.004;//diameter\n",
+"l=0.1;\n",
+"mu=1.79e-5;\n",
+"Re=rho*V*D/mu;\n",
+"disp(Re,'reynolds no');\n",
+"f=0.028;//friction factor from Moody's chart\n",
+"delP=f*l/D*.5*rho*V^2/1000.0;\n",
+"disp(delP,'pressure diffference in kPa');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=1.94;\n",
+"V=8.7;\n",
+"D=0.0625;\n",
+"g=32.2;\n",
+"V2=19.6;\n",
+"l=60;\n",
+"z2=20;\n",
+"mu=2.34e-5;\n",
+"Kl=2;//constant\n",
+"Re=rho*V*D/mu;\n",
+"disp(Re,'reynolds no');\n",
+"f=0.0215;//friction factor from Moody's chart\n",
+"P1=rho*g*z2+1/2*rho*(V2^2-V^2)+rho*f*l/D*V^2/2;\n",
+"P1=P1/144+rho*V^2/2*(10+4*1.5+Kl)/144;;\n",
+"disp(P1,'entire pressure drop in psi');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=1.67;\n",
+"V=9.31;//velocity\n",
+"D=4;\n",
+"mu=8.0e-5;\n",
+"g=32.2;\n",
+"l=799;\n",
+"Q=117;\n",
+"f=0.0125;//friction factor\n",
+"Re=rho*V*D/mu;\n",
+"disp(Re,'reynolds no');\n",
+"hp=f*l/D*V^2/2/g*5280;\n",
+"disp(hp,'pump head in ft of H20');\n",
+"hp=round(hp/100)*100\n",
+"W=rho*g*Q*hp/550;\n",
+"disp(W,'power required in hp');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=0.00238;\n",
+"U=80.7;//velocity\n",
+"l=8;\n",
+"mu=3.74e-7;\n",
+"Cd=0.0066;\n",
+"d=4;\n",
+"Re=rho*U*l/mu;\n",
+"disp(Re,'reynolds no');\n",
+"f=0.0066;//friction factor from Moody's chart\n",
+"D=1/2*rho*U^2*l*d*f;\n",
+"disp(D,'drag force in lbf');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=0.00238;\n",
+"U=93.5;//velocity\n",
+"Cd1=0.55;//coeff of drag\n",
+"A1=5.2*5.1;\n",
+"D1940=1/2*rho*Cd1*A1*U^2;\n",
+"disp(D1940,'drag force in lbf');\n",
+"A2=5.2*4.3;\n",
+"Cd2=0.3;\n",
+"D2003=1/2*rho*Cd2*A2*U^2;\n",
+"disp(D2003,'drag force in lbf');\n",
+"W1940=D1940*U/550;\n",
+"disp(W1940,'power required to overcome drag force in hp');\n",
+"W2003=D2003*U/550;\n",
+"disp(W2003,'power required to overcome drag force in hp');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 14.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"A=96*7.5;\n",
+"W=210;\n",
+"rho=2.38e-3;\n",
+"U=15;\n",
+"Cl=2*W/rho/U^2/A;\n",
+"disp(Cl,'coeff. of lift ');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/15-Getting_Started_in_Heat_Transfer.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/15-Getting_Started_in_Heat_Transfer.ipynb
new file mode 100644
index 0000000..47d8dab
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/15-Getting_Started_in_Heat_Transfer.ipynb
@@ -0,0 +1,162 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Getting Started in Heat Transfer"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 15.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=1.7;\n",
+"delT=250;\n",
+"L=0.15;\n",
+"H=0.5;\n",
+"W=1.2;\n",
+"qx=k*delT/L;\n",
+"qx=H*W*qx;\n",
+"disp(qx,'heat flux in W');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 15.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Ts=473;\n",
+"sigma=5.67e-8;\n",
+"Tsur=298;\n",
+"h=15.0;\n",
+"pi=3.14;\n",
+"D=0.07;\n",
+"epsilon=0.8;//emmisivity\n",
+"E=epsilon*sigma*Ts^4;\n",
+"G=sigma*Tsur^4;\n",
+"disp(G,'irradiation in W/m^2');\n",
+"q=h*pi*D*(Ts-Tsur)+epsilon*pi*D*sigma*(Ts^4-Tsur^4);\n",
+"disp(q,'heat transfer per unit length in W/m');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 15.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=1.2;\n",
+"epsilon=0.8;//emmisivity\n",
+"h=20;\n",
+"Ts=373;\n",
+"Tsur=298;\n",
+"sigma=5.67e-8;\n",
+"L=.15;//length\n",
+"a=h*(Ts-Tsur)+epsilon*sigma*(Ts^4-Tsur^4);\n",
+"T1=Ts+L/k*a;\n",
+"disp(T1,'inner wall temperature in K');\n",
+"disp(T1-273,'inner wall temperature in K')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 15.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"//solving for Ts\n",
+"Tinfinity=293;\n",
+"Tsurr=303;\n",
+"epsilon=0.5;//emmisivity\n",
+"alpha=0.8;\n",
+"G=2000;\n",
+"h=15;\n",
+"sigma=5.67e-8;\n",
+"deff('y=f(x)','y=alpha*G-h*(x-Tinfinity)-epsilon*sigma*(x^4-Tsurr^4)');\n",
+"[x]=fsolve(307,f);\n",
+"disp(x,'temperature in K');\n",
+"disp(x-273,'temperature in degree C');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/16-Heat_Transfer_by_Conduction.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/16-Heat_Transfer_by_Conduction.ipynb
new file mode 100644
index 0000000..f28520d
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/16-Heat_Transfer_by_Conduction.ipynb
@@ -0,0 +1,336 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Heat Transfer by Conduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.10\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h=100;//W/m^2\n",
+"L=0.025;\n",
+"c=800;\n",
+"rho=2325;//density\n",
+"k=1.0;\n",
+"Tinfinity=175;\n",
+"Ti=25;\n",
+"alpha=5.38e-7;\n",
+"t=60*10;\n",
+"theta=0.615;\n",
+"Bi=h*L/k;\n",
+"disp(Bi,'Biot number is');\n",
+"Fo=alpha*t/L^2;\n",
+"disp(Fo,'Fourier number is');\n",
+"T10=Tinfinity+theta*(Ti-Tinfinity);\n",
+"disp(T10,'midplane temperature after 10 min degreeC');\n",
+"tstar=theta*cos(1.1347);\n",
+"Tl10=Tinfinity+tstar*(Ti-Tinfinity);\n",
+"disp(T10,'msurface temperature after 10 min degreeC');\n",
+"ql=h*(Tl10-Tinfinity);\n",
+"disp(ql,'heat transfer in W/m^2');\n",
+"Q=rho*c*0.509*L*(Ti-Tinfinity);\n",
+"disp(Q,'Energy per unit surface in J/m^2')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Tso=50;//temperature\n",
+"Tinfinity=25;//temperature\n",
+"Tsi=385;//temperature\n",
+"ka=0.15;\n",
+"kb=0.08;\n",
+"ho=25;//W/K/m^2\n",
+"La=(Tsi-Tso)/(1/ka+0.5/kb)/(ho*(Tso-Tinfinity));\n",
+"L=La+0.5*La\n",
+"disp(L*1000,'required thickness of composite in mm');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h=100;\n",
+"Tinfinity=25;\n",
+"Pe=10^4;\n",
+"Tc=Tinfinity+Pe*(1/(1/h)+1/(0.9e-4+0.008/238+1/h))^-1;\n",
+"disp(Tc,'allowable maximum temperature in degreeC')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"r1=0.25;//m\n",
+"r2=0.275;//m\n",
+"T1=300;\n",
+"T2=77;\n",
+"k=0.0017;\n",
+"hfg=2.0e5;\n",
+"pi=3.14;\n",
+"q=(T1-T2)/(1/4/pi/k*(1/r1-1/r2)+1/20/4/pi/r2^2);\n",
+"disp(q,'heat transfer in W');\n",
+"mdot=q/hfg;\n",
+"k=mdot/804*1000*3600*24;\n",
+"disp(k,'mdot/rho in liters/day')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Tinfinity=30;\n",
+"q=1.5e6;\n",
+"La=0.05;\n",
+"h=1000;\n",
+"T2=Tinfinity+q*La/h;\n",
+"disp(T2,'temperature in degreeC');\n",
+"T1=Tinfinity+(0.02/150+1/h)*q*La;\n",
+"To=q*La^2/2/75+T1;\n",
+"disp(To,'inner surface temperature in degreeC');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"h=100;//W/m^2/K\n",
+"P=pi*0.005;\n",
+"k=398;\n",
+"Ac=pi/4*0.005^2;\n",
+"thetab=100-25;\n",
+"qf=(h*P*k*Ac)^0.5*thetab;\n",
+"disp(qf,'heat rate in copper rod in W');\n",
+"L=2.65*(k*Ac/h/P)^0.5*1000;\n",
+"disp(L,'minimum value of the length in mm');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"T1=80;\n",
+"Tinfinity=20;//temperature\n",
+"Rtc1=1e-3;//m2K/W\n",
+"r1=0.002;\n",
+"r2=0.003;\n",
+"H=0.006;\n",
+"k=200;\n",
+"Rtb=638;//K/W\n",
+"Rtf12=24.4;\n",
+"Rtc=Rtc1/2/pi/r1/H;\n",
+"Rtsleeve=log(r2/r1)/2/pi/H/k;\n",
+"Requiv=(1/Rtf12+1/Rtb)^-1;\n",
+"Rtot=Rtc+Rtsleeve+Requiv;\n",
+"qt=(T1-Tinfinity)/Rtot\n",
+"disp(qt,'heat transfer rate in W');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"D=0.125;\n",
+"h=25;//W/m^2\n",
+"k=1.4;\n",
+"c=835;//J/kg\n",
+"Tinfinity=20;//degreeC\n",
+"Ti=225;//degreeC\n",
+"t=360;\n",
+"rho=2225;//density\n",
+"Lc=D/6;\n",
+"Tt=Tinfinity+(Ti-Tinfinity)*exp(-h*t/rho/Lc/c);\n",
+"disp(Tt,'temperature after 6 min in degreeC');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 16.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"rho=2770;\n",
+"L=0.0015;\n",
+"epsilon=0.8;//emmisivity\n",
+"Tavg=360.5;\n",
+"Tsur=448;\n",
+"sigma=5.67e-8;\n",
+"c=875;//J/kg-K\n",
+"tc=rho*L*c/(40+12)*log((25-175)/(150-175));\n",
+"te=tc+5*60;\n",
+"disp(te,'total time spent in s');\n",
+"hrad=epsilon*sigma*(Tavg+Tsur)*(Tavg^2+Tsur^2);\n",
+"disp(hrad,'radiation energy in W/m^2-K');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/17-Heat_transfer_by_Convection.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/17-Heat_transfer_by_Convection.ipynb
new file mode 100644
index 0000000..ae69d1f
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/17-Heat_transfer_by_Convection.ipynb
@@ -0,0 +1,518 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Heat transfer by Convection"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.10\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m=2;//kg/s\n",
+"D=0.04;//m\n",
+"mu=695*10^-6;//Ns/m^2;\n",
+"pi=3.14;\n",
+"Nu=396;//nusselt number\n",
+"Re=4*m/pi/D/mu;\n",
+"disp(Re,'reynolds number');\n",
+"h=Nu*0.628/D;\n",
+"Tmo=95-(95-25)*exp(-pi*D*h/m/4178*4);\n",
+"disp(Tmo,'temperature in degree c');\n",
+"q=m*4176*(Tmo-25);\n",
+"disp(q/1000,'rate of heat transfer in kW');\n",
+"Nu1=0.027*Re^0.8*4.62^0.33;\n",
+"disp(Nu1,'Nusselt number');\n",
+"h1=Nu1*0628/D;\n",
+"disp(h1/1000,'coefficient of heat transfer in W/m-K');\n",
+"clear()\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.11\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=33.8e-3;\n",
+"L=0.71;\n",
+"A=1.02*0.71;//area\n",
+"Ts=505;//temperature\n",
+"Tsur=296//temperature\n",
+"Nu=147;\n",
+"h=Nu*k/L;\n",
+"q=h*A*(Ts-Tsur);\n",
+"disp(q,'heat transfer by convection in W');\n",
+"qrad=A*5.67e-8*(Ts^4-Tsur^4);\n",
+"disp(qrad,'heat transfer by radiation in W');\n",
+"hrad=5.67e-8*(Ts+Tsur)*(Ts^2+Tsur^2);\n",
+"disp(hrad,'linearized radiation coffecient in W/m^2-K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=integrate('x^-0.1','x',0,1);\n",
+"disp(k,'ratio of average convection coefficient');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.12: 12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.12\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Nu=65.8;\n",
+"k=0.028;\n",
+"As=1.2*1.2;//area\n",
+"Ts=350;//temperature\n",
+"Tsurr=300;//temperature\n",
+"sigma=5.67e-8;\n",
+"epsilon=0.25;//emmisivity\n",
+"h=Nu*k/0.3;\n",
+"Pe=h*As*(Ts-Tsurr)+epsilon*sigma*As*(Ts^4-Tsurr^4);\n",
+"disp(Pe,'allowable electrical power in W');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.13: 13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.13\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"D=0.1;\n",
+"Nu=23.3;\n",
+"k=0.0313;\n",
+"Ts=438;//temperature\n",
+"Tsurr=296;//temperature\n",
+"sigma=5.67e-8;\n",
+"epsilon=0.85;//emmisivity\n",
+"h=Nu*k/D;\n",
+"q=h*pi*D*(Ts-Tsurr)+epsilon*sigma*pi*D*(Ts^4-Tsurr^4);\n",
+"disp(q,'heat transfer rate from the pipe in W/m');\n",
+"clear()\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.14: 14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.14\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"k=0.625;\n",
+"D=0.025;\n",
+"Nu=90;\n",
+"ho=40;\n",
+"q=8524;\n",
+"delT=(59.8-30)/log(59.8/30);\n",
+"hi=Nu*k/D;\n",
+"U=1/(1/hi+1/ho);\n",
+"L=q/(U*pi*D*delT);\n",
+"disp(L,'length of exchanger in m');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.15: 15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.15\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"q=7.317e5;\n",
+"c=2350;\n",
+"Thi=160;\n",
+"Thd=100;\n",
+"delT=(75-85)/log(75/85);\n",
+"mh=q/c/(Thi-Thd);\n",
+"disp(mh,'mass flow rate of oil in kg/s');\n",
+"ho=400;\n",
+"k=0.643;\n",
+"D=0.025;//diameter\n",
+"Nu=119;\n",
+"hi=k/D*Nu;\n",
+"U=1/(1/hi+1/ho);\n",
+"L=q/(U*pi*D*delT*10*0.87);\n",
+"disp(L,'length of exchanger in m');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"U=10;//m/s\n",
+"L=0.5;\n",
+"nu=30.84e-6;\n",
+"Pr=0.687;//prandtl number\n",
+"Re=U*L/nu;\n",
+"disp(Re,'reynolds number');\n",
+"Nul=0.664*Re^0.5*Pr^0.33;\n",
+"h=Nul*0.0364/L;\n",
+"q=h*L*(300-27);\n",
+"disp(q,'colling rate in W/m');\n",
+"//if there is turbulence\n",
+"Nul=0.037*Re^0.8*Pr^0.33;\n",
+"h1=Nul*0.0364/L;\n",
+"q1=h1*L*(300-27);\n",
+"disp(q1,'colling rate in W/m in turbulence');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"u=60;//m/s\n",
+"Nu5=546;\n",
+"nu=26.41e-6;\n",
+"L4=0.2;\n",
+"L5=0.25;\n",
+"Pr=0.69;\n",
+"Re4=u*L4/nu;\n",
+"Re5=u*L5/nu;\n",
+"Nu4=0.664*Re4^0.5*Pr^0.33;\n",
+"h14=Nu4*0.0338/L4;\n",
+"Nu4=0.664*Re5^0.5*Pr^0.33;\n",
+"h15=Nu5*0.0338/L5;\n",
+"qconv=(h15*L5-h14*L4)*(230-25);\n",
+"disp(qconv,'heat transfer rate in W');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"Ts=128.4;\n",
+"Tinfinity=26.2;\n",
+"k=0.03;\n",
+"D=0.0127;//m\n",
+"Re=6071;//reynold's no\n",
+"Pr=0.7;\n",
+"qconv=46;\n",
+"A=pi*0.0127*0.094;\n",
+"h=0.85*qconv/A/(Ts-Tinfinity);\n",
+"disp(h,'heat transfer coefficient in W/m^2-K');\n",
+"Nu=0.3+0.62*Re^0.5*Pr^0.33/(1+0.4^0.66*Pr^0.66)^0.25*(1+(Re/282000)^0.625)^0.8;\n",
+"hbar=Nu*k/D;\n",
+"disp(Nu,'Nusselt no is')\n",
+"disp(hbar,'heat transfer coefficient in W/m^2-K');\n",
+"//using Hilpert correlation\n",
+"Nu1=0.193*Re^0.618*Pr^0.333;\n",
+"disp(Nu1,'Nusselt no is');\n",
+"hbar1=Nu1*k/D;\n",
+"disp(hbar1,'heat transfer coefficient in W/m^2-K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Ti=75;\n",
+"k=0.02588;\n",
+"D=0.01;\n",
+"Nu=47.4\n",
+"rho=8933;//density\n",
+"c=387;\n",
+"D=0.01;\n",
+"Tinfinity=23;\n",
+"T=35;\n",
+"h=Nu*k/D;\n",
+"t=rho*c*D/6/h*log((Ti-Tinfinity)/(T-Tinfinity));\n",
+"disp(t,'cooling time required in s');\n",
+"Bi=h*0.005/3/399;\n",
+"disp(Bi,'Biots number')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m=0.1;\n",
+"cp=4179;//J/kg/K\n",
+"q=10^6;//W/m^3\n",
+"Do=0.04;\n",
+"Di=0.02;\n",
+"pi=3.14;\n",
+"L=4*m*cp/(Do^2-Di^2)/pi/q*(60-20);\n",
+"disp(L,'tube length in m');\n",
+"Re=4*m/pi/Di/6.57e-4;\n",
+"disp(Re,'reynolds number');\n",
+"qs=q*(Do^2-Di^2)/4/Di;\n",
+"ho=qs/(70-60);\n",
+"disp(ho,'local heat coefficient in W/m^2-K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m=0.25;//kg/s\n",
+"cp=4178;//J/kg-K\n",
+"Tmo=57;\n",
+"Tmi=15;\n",
+"pi=3.14;\n",
+"D=0.05;//m\n",
+"L=6;//m\n",
+"delT=(-Tmo+Tmi)/log((100-Tmo)/(100-Tmi));\n",
+"h=m*cp/pi/D/L*(Tmo-Tmi)/delT;\n",
+"disp(h,'average convection coefficient in W/m^2-K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 17.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"qs=2000;\n",
+"cp=4181;\n",
+"m=0.01;\n",
+"D=0.06;\n",
+"k=0.67;\n",
+"Nu=4.36;\n",
+"L=m*cp/pi/0.06/qs*(80-20);\n",
+"disp(L,'tube length in m');\n",
+"h=Nu*k/D;\n",
+"Ts=qs/h+80;\n",
+"disp(Ts,'surface temperature in degreeC');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/18-Heat_transfer_by_radiation.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/18-Heat_transfer_by_radiation.ipynb
new file mode 100644
index 0000000..fd9c34a
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/18-Heat_transfer_by_radiation.ipynb
@@ -0,0 +1,339 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Heat transfer by radiation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.10\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"e1=0.8;\n",
+"e2=0.4;\n",
+"T1=1200;\n",
+"T2=500;\n",
+"A=1;\n",
+"Jr=(108323+59043)/2;\n",
+"sigma=5.67e-8;\n",
+"q1=sigma*(T1^4-T2^4)/((1-e1/e1/A)+1/(A*0.5+(2+2)^-1)+(1-e2)/e2/A);\n",
+"disp(q1/1000,'the rate of energy supply in kW/m');\n",
+"\n",
+"Tr=(Jr/sigma)^0.25;\n",
+"disp(Tr,'temperature in radiating surface in K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"G1=600;//G1=Glambda\n",
+"alpha=0.85;\n",
+"G=G1*(2.5-1)*0.5+G1*0.5*(0.5)+G1*(1.0-0.5);\n",
+"disp(G,'total radiation in W/m^2');\n",
+"Gabs=alpha*G;\n",
+"disp(Gabs,'absorbed radiation in W/m^2');\n",
+"J=0.15*G+525;\n",
+"disp(J,'total radiosity');\n",
+"qrad=525-Gabs;\n",
+"disp(qrad,'net radiative flux leaving the surface in W/m^2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"sigma=5.67e-8;\n",
+"lambda1=2200;//mum\n",
+"T=2000;//K\n",
+"C1=3.742e8;//mum^4/m^2\n",
+"C2=1.439e8;\n",
+"lambdamax=1.45;//mum\n",
+"E=sigma*T^4;\n",
+"disp(E,'spectral emmisive power in W/m^2');\n",
+"lambda=lambda1/T;\n",
+"disp(lambda,'wavelength corresponding to upper limit in mum');\n",
+"E=C1/lambdamax^5/(exp(C2/lambdamax/T)-1);\n",
+"disp(E,'emissive power in W/m^2.mum');\n",
+"disp('G=9.07*10^5 in W/m^2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"F1=0.318;//F0---2 mum\n",
+"F2=0.856;//F0---5 mum\n",
+"sigma=5.67e-8;\n",
+"T=1600;//kelvin\n",
+"epsilon=0.4*F1+0.8*(F2-F1);\n",
+"disp(epsilon,'emmisivity');\n",
+"E=epsilon*sigma*T^4;\n",
+"disp(E/1000,'total emmisive power in kW/m^2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"F=0.738;//F0---l1' mum\n",
+"F1=0.014;//F0---l1 mum\n",
+"sigma=5.67e-8;\n",
+"Ts=300;\n",
+"Tf=1200;\n",
+"alpha=0.8*F+0.1*(1-F);\n",
+"disp(alpha,'total absorvity')\n",
+"epsilon=0.8*F1+0.1*(1-F1);\n",
+"disp(epsilon,'emmisivity');\n",
+"qrad=epsilon*sigma*Ts^4-alpha*sigma*Tf^4;\n",
+"disp(qrad/1000,'total emissice power in kW/m^2');\n",
+"disp('epsilon=alpha=0.62 for final condition');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"plambda=0.05;\n",
+"sigma=5.67e-8;\n",
+"T=300;//K\n",
+"epsilon=1-plambda;\n",
+"qrad=epsilon*sigma*T^4-0.226*1353;\n",
+"disp(qrad,'net radiative heat flux leaving in W/m^2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"F12=0.5;\n",
+"A1=4;//area in terms of L\n",
+"A2=2*pi/4;//area in terms of L\n",
+"F21=A1/A2*F12;\n",
+"disp(F21,'reciprocity relation between A1 and A2');\n",
+"//part2\n",
+"F12=1;\n",
+"A1=1/16;//area in terms of D\n",
+"A2=1/2;//area in terms of D\n",
+"F21=A1/A2*F12;\n",
+"disp(F21,'reciprocity relation between A1 and A2');\n",
+"//part3\n",
+"F22=0.5;\n",
+"F23=1-F21-F22;\n",
+"disp(F23,'reciprocity relation');\n",
+"//part4\n",
+"F13=0.17;\n",
+"F12=1-F13;\n",
+"A1=1/4;//area in terms of D\n",
+"A2=1;//area in terms of D\n",
+"F21=A1/A2*F12;\n",
+"disp(F21,'reciprocity relation between A1 and A2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"pi=3.14;\n",
+"sigma=5.67e-8;\n",
+"T1=1623//K\n",
+"T2=1923;//K\n",
+"T3=300;//K\n",
+"F23=0.06;\n",
+"A2=pi*0.075^2/4;\n",
+"A1=pi*0.075*0.15;\n",
+"F21=1-F23;\n",
+"F12=A2/A1*F21;\n",
+"Pe=A1*0.118*sigma*(T1^4-T3^4)+A2*F23*sigma*(T2^4-T3^4);\n",
+"disp(Pe,'Electrical power required in W');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 18.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"sigma=5.67e-8;\n",
+"D1=0.02;\n",
+"D2=0.05;\n",
+"D3=0.035;\n",
+"pi=3.14;\n",
+"T1=77;\n",
+"T2=300;\n",
+"qwo=(sigma*pi*D1*(T1^4-T2^4))/(1/0.02+(1-0.05)/0.05*(D1/D2));\n",
+"disp(qwo,'heat rate per unit length in W/m');\n",
+"Rtot=(1-0.02)/(0.02*pi*D1)+1/pi/D1+2*(1-0.02/(0.02*pi*D3)+1/pi/0.035+(1-0.05)/pi/D2^2);\n",
+"qw=sigma*(T1^4-T2^4)/1817;\n",
+"disp(qw,'heat rate of radiation in W/m');\n",
+"k=(qw-qwo)/qwo*100;\n",
+"disp(k,'percentage change of heat transfer in %');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/3-Using_Energy_and_First_Law_of_thermodynamics.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/3-Using_Energy_and_First_Law_of_thermodynamics.ipynb
new file mode 100644
index 0000000..ee17eb3
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/3-Using_Energy_and_First_Law_of_thermodynamics.ipynb
@@ -0,0 +1,229 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Using Energy and First Law of thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//example 3.1 \n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"V1=0.1;\n",
+"V2=0.2;\n",
+"P1=3.0;//pressure\n",
+"n1=1.5;\n",
+"n2=1.0;\n",
+"n3=0.0;\n",
+"P2=P1*(V1/V2)^n1;\n",
+"W=(P2*V2-P1*V1)/(1-n1);\n",
+"disp(W*100,'work done in kj');\n",
+"W2=P1*V1*log(V2/V1);\n",
+"disp(W2*100,'work done in kj');\n",
+"W3=P1*(V2-V1);\n",
+"disp(W3*100,'work done in kj');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//example 3.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=-4.6;//u2-u1;\n",
+"W=17.6;//work done\n",
+"m=4;//mass\n",
+"Q=W+m*k;\n",
+"disp(Q,'Energy transferred in kJ');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 3.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"patm=14.7;//in lbf/in^2\n",
+"mpiston=100;\n",
+"g=32.2;\n",
+"A=1;//area\n",
+"mair=0.6;\n",
+"delu=18;\n",
+"k=1.6;//V2-V1;\n",
+"P=mpiston*g/A/32.2/144+14.7;\n",
+"W=P*k*144/778;\n",
+"Q=W+mair*delu;\n",
+"disp(Q,'Heat transferred in Btu')\n",
+"W2=patm*k*144/778;\n",
+"disp(W2,'Work done in Btu');\n",
+"delz=k/A;\n",
+"PE=mpiston*g*delz/32.2/778;\n",
+"Q2=W2+PE+mair*delu;\n",
+"disp(Q2,'Heat transferred in Btu')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//example 3.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h=-0.171;\n",
+"A=1;\n",
+"Tb=300;//temperature\n",
+"Tf=293;//temperature\n",
+"W1dot=-60.0;\n",
+"Qdot=h*A*(Tb-Tf);\n",
+"disp(Qdot,'the rate of heat transfer in kW');\n",
+"W2dot=Qdot-W1dot;\n",
+"disp(W2dot,'the rate of energy transfer in kW');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 3.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Wdot=-0.225;\n",
+"A=25.0e-6;\n",
+"h=150;\n",
+"Tf=293;//temperature\n",
+"Tb=-Wdot/h/A+Tf;\n",
+"disp(Tb,'temperature in kelvin (80 C)');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 3.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"clf()\n",
+"t=linspace(0,100,11);\n",
+"tau=18;\n",
+"omega=100;\n",
+"Wdotelec=-2.0;\n",
+"Wdotshaft=tau*omega/1000;\n",
+"Wdot=Wdotelec+Wdotshaft;\n",
+"Q=0.2*2.71^-(0.05*t);\n",
+"delE=4*(1-2.71^-(0.05*t));\n",
+"plot(t,Q);\n",
+"plot(t,delE,'r');\n",
+"xtitle('Q or delE vs t','time','Q(blue)or delE(red)');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/4-Evaluating_Properties.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/4-Evaluating_Properties.ipynb
new file mode 100644
index 0000000..4781d2e
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/4-Evaluating_Properties.ipynb
@@ -0,0 +1,328 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Evaluating Properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.10\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m1=2;\n",
+"m2=8;\n",
+"T1=350;\n",
+"T2=300;\n",
+"P1=0.7;//bar\n",
+"P2=1.2;//bar\n",
+"Tf=315;//K\n",
+"cv=0.745;//heat capacity\n",
+"pf=(m1+m2)*Tf/(m1*T1/P1+m2*T2/P2);\n",
+"disp(pf,'final pressure in bar');\n",
+"Q=m1*cv*(Tf-T1)+m2*cv*(Tf-T2);\n",
+"disp(Q,'heat transfer into the system in kJ');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: 11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.11\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"P2=5.0;\n",
+"P1=1.0;\n",
+"n=1.3;\n",
+"T1=530;\n",
+"R=1.986;\n",
+"u2=131.88;\n",
+"u1=90.33;\n",
+"T2=T1*(P2/P1)^(.3/n);\n",
+"k1=R*(T2-T1)/(1-n)/28.97;//k1=W/m\n",
+"disp(k1,'W/m in Btu/lb');\n",
+"k2=k1+u2-u1;//k2=Q/m\n",
+"disp(k2,'Q/m in Btu/lb');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"V=0.5;//volume\n",
+"P1=1;//pressure\n",
+"P2=0.5;\n",
+"vf1=1.0432/1000;\n",
+"vf2=1.0582/1000;\n",
+"x=0.5;\n",
+"T1=99.63;\n",
+"v1=vf1+0.5*(1.694-vf1);\n",
+"v2=v1;\n",
+"T2=111.4;//from table\n",
+"disp(T2,'temperature in degree celcius');\n",
+"m=V/v1;\n",
+"mg1=x*m;\n",
+"disp(mg1,'mass of vapor in kg');\n",
+"x2=(v1-vf2)/(1.159-vf2);\n",
+"mg2=x2*m;\n",
+"disp(mg2,'mass of vapor in kg');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"m=0.1;\n",
+"v1=2.2661;\n",
+"P2=20;//pressure\n",
+"v2=2.6704;\n",
+"V1=m*v1;\n",
+"disp(V1,'volume in ft^3');\n",
+"V2=m*v2;\n",
+"disp(V2,'volume in ft^3');\n",
+"W=P2*(V2-V1)*144/778;\n",
+"disp(W,'Work done in Btu');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"V=10.0;//ft^3\n",
+"v1=26.8;//ft^3/lb\n",
+"u1=1077.6;//btu/lb\n",
+"u2=1161.6;//Btu/lb;\n",
+"m=V/v1;\n",
+"W=-m*(u2-u1);\n",
+"disp(W,'Work done in Btu');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"P=10;//pressure\n",
+"v2=0.1944;//volume\n",
+"v1=0.3066;//volume\n",
+"uf3=631.68;\n",
+"v3=0.1944;\n",
+"vg3=0.3928;\n",
+"vf3=1.0905/1000;\n",
+"x3=(v3-vf3)/(vg3-vf3);\n",
+"u3=uf3+x3*(2559.5-uf3);\n",
+"k1=P*(v2-v1)*100;//k=W/m\n",
+"k2=u3-2957.3+k1;//k2=Q/m\n",
+"disp(k2,'Q/m in kJ/kg');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Tr1=793.0/647.3;\n",
+"Pr1=22.0/22.09;\n",
+"Rbar=8314.0;\n",
+"M=18.02;\n",
+"T1=793.0;\n",
+"P1=20.0e6;\n",
+"pr2=0.69;\n",
+"v1=0.83*Rbar/M/P1*T1;\n",
+"disp(v1,'Specific weight in m^3/kg');\n",
+"vrdash=v1*22.09e6/Rbar*M/647.3;\n",
+"Tr2=673/647.3;\n",
+"P2=22.09e6*pr2;\n",
+"disp(P2/10^6,'Pressure in Mpa');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"p2=2;//pressure\n",
+"p1=1;//pressure\n",
+"T1=540;//temperature\n",
+"Rbar=1545;\n",
+"M=28.97;\n",
+"P1=14.7*144;\n",
+"T2=p2/p1*T1;\n",
+"disp(T2,'temperature in degreeR');\n",
+"v3=Rbar/M*T2/P1;\n",
+"disp(v3,'specific volume in ft^3/lb');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 4.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Q=-20;\n",
+"m=2;\n",
+"u2=143.98;\n",
+"u1=92.04;\n",
+"W=Q-m*(u2-u1);\n",
+"disp(W,'work done on the system in Btu');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/5-Control_Volume_Analysis_Using_Energy.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/5-Control_Volume_Analysis_Using_Energy.ipynb
new file mode 100644
index 0000000..7f384d2
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/5-Control_Volume_Analysis_Using_Energy.ipynb
@@ -0,0 +1,250 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Control Volume Analysis Using Energy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"v3=1.108e-3;\n",
+"m1dot=40;\n",
+"A2=25.0e-4;\n",
+"v2=1.0078e-3;\n",
+"m3dot=0.06/v3;\n",
+"m2dot=m3dot-m1dot;\n",
+"disp(m2dot,'mass flow rate in kg/s');\n",
+"V2=m2dot*v2/A2;\n",
+"disp(V2,'velocity in m/s');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=3213.6;//kJ/kg\n",
+"V1=10.0;\n",
+"V2=665.0;\n",
+"mdot=2.0;\n",
+"h2=h1+(V1^2/2-V2^2/2)/1000;\n",
+"//using table with given h2 values\n",
+"v2=0.1627;//specific volume\n",
+"V2=665;\n",
+"A2=mdot*v2/V2;\n",
+"disp(A2,'Area in m^2');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=3177.2;\n",
+"x2=0.9;\n",
+"hf2=191.83;\n",
+"mdot=4600.0;\n",
+"Wcvdot=1000.0;\n",
+"V2=50.0;//velocity\n",
+"V1=10.0;//velocity\n",
+"h2=hf2+x2*2392.8;\n",
+"k1=h2-h1;\n",
+"k2=(V2^2/2-V1^2/2)/1000.0;\n",
+"Qcvdot=Wcvdot+mdot*(k1+k2)/3600;\n",
+"disp(Qcvdot,'specific kinetic energy difference in kW');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"A1=0.1;\n",
+"V1=6.0;\n",
+"V2=2.0;\n",
+"delh=290.16-451.8;\n",
+"p1=10^5;\n",
+"Rbar=8314.0;\n",
+"Qcvdot=-180.0/60;\n",
+"M=28.97;//molecular mass\n",
+"T1=290.0;\n",
+"mdot=A1*V1*p1*M/Rbar/T1;\n",
+"Wcvdot=Qcvdot+mdot*(delh+(V1^2/2-V2^2/2)/1000);\n",
+"disp(Wcvdot,'heat transfer per unit time in kW')\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=2465.1;\n",
+"h2=188.45;\n",
+"k=62.7;//h3-h4;\n",
+"k2=(h1-h2)/k;\n",
+"disp(k2,'m3dot/m1dot is');\n",
+"k3=h2-h1;\n",
+"disp(k3,'Qcvdot/m1dot in kJ/kg');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"v1=1.3;\n",
+"cp=1.005;\n",
+"p1=1.01325*10^5;\n",
+"T2=305;\n",
+"T1=293;\n",
+"pi=3.14;\n",
+"Wcvdot=-98.0;\n",
+"A1=1/v1*(-Wcvdot/cp/(T2-T1)/1000)*8314/28.97*T1/p1;\n",
+"D1=sqroot(4*A1/pi)*100;\n",
+"disp(round(D1),'minmum diameter required in cm');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 5.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"hf1=394.1;\n",
+"hg1=1203.9;\n",
+"h2=1168.8;\n",
+"x1=(h2-hf1)/(hg1-hf1);\n",
+"disp(x1*100,'the quality of line in %');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/6-The_Second_Law_of_Thermodynamics.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/6-The_Second_Law_of_Thermodynamics.ipynb
new file mode 100644
index 0000000..6c8e85e
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/6-The_Second_Law_of_Thermodynamics.ipynb
@@ -0,0 +1,121 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: The Second Law of Thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 6.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Input=1000.0;\n",
+"Tc=300.0;\n",
+"Th=500.0;\n",
+"Output=410.0;\n",
+"neta=Output/Input*100;\n",
+"nmax=(1-Tc/Th)*100;\n",
+"disp(neta,'efficiency in %');\n",
+"disp(nmax,'maximum efficiency in %');\n",
+"disp('the system cannot exist');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 6.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Qcdot=8000;\n",
+"Wcycledot=3200.0;\n",
+"Tc=268.0;\n",
+"Th=295.0;\n",
+"Beta=Qcdot/Wcycledot;\n",
+"disp(Beta,'coeff. of performance');\n",
+"Betamax=Tc/(Th-Tc);\n",
+"disp(Betamax,'maximum coeff. of performance');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 6.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Tc=492;\n",
+"Th=530;//temperature\n",
+"Qh=6e5;\n",
+"Wcycle=(1-Tc/Th)*Qh;\n",
+"disp(Wcycle,'Minimum Work input theoritical in Btu/day');\n",
+"MTC=Wcycle/3413*0.08;\n",
+"disp(MTC,'Minimum cost theoritical in $/day');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/7-Using_Entropy.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/7-Using_Entropy.ipynb
new file mode 100644
index 0000000..1243fb1
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/7-Using_Entropy.ipynb
@@ -0,0 +1,308 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Using Entropy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: 10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.10\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=390.88;\n",
+"h2s=285.27;\n",
+"k=74.0;//Wcvdot/mdot\n",
+"ks=h1-h2s;//(Wcvdot/mdot)s\n",
+"nt=k/ks*100;\n",
+"disp(nt,'efficiency in %');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"P=1.014;\n",
+"vg=1.673;\n",
+"vf=1.0435/1000;\n",
+"T=373.15;//temperature\n",
+"sg=7.3549;\n",
+"sf=1.3069;\n",
+"k=P*(vg-vf)*10^5/1000;\n",
+"disp(k,'W/m in kJ/kg');\n",
+"k1=T*(sg-sf);\n",
+"disp(k1,'Q/m in kJ/kg');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: 13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.13\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"T1=293;//kelvin\n",
+"p2=5;//atm\n",
+"p1=1;//atm\n",
+"n=1.3;\n",
+"h2=426.35;\n",
+"h1=293.17;\n",
+"T2=T1*(p2/p1)^((n-1)/n);\n",
+"k=-n*8.314/28.97*(T2-T1)/(n-1);//Wcvdot/mdot\n",
+"disp(k,'Wcvdot/mdot in kJ/kg');\n",
+"k1=k+h2-h1;\n",
+"disp(k1,'Qcvdot/mdot in kJ/kg');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k=-2087.56;//from table t2\n",
+"disp(k,'W/m in kJ/kg');\n",
+"k1=6.048;//from table t2\n",
+"disp(k1,'sigma/m in kJ/kg/K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"Qdot=-1.2;\n",
+"Tb=300.0;\n",
+"Tf=293.0;\n",
+"sigmadot=-Qdot/Tb;\n",
+"disp(sigmadot,'heat transfer rate in kW/K');\n",
+"sigmadot1=-Qdot/Tb;\n",
+"disp(sigmadot1,'heat transfer rate in kW/K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"k1=540.0;//Wcv/m\n",
+"h2=2676.1;\n",
+"h1=3230.9;\n",
+"V2=100;\n",
+"V1=160;\n",
+"s2=7.3549;\n",
+"s1=6.9212;\n",
+"k2=k1+(h2-h1)+(V2^2/2-V1^2/2)/1000;\n",
+"disp(k2,'Qcvdot/mdot in kJ/kg');\n",
+"k3=-k2/350+(s2-s1);\n",
+"disp(k3,'sigmacvdot/mdot in kJ/kg/K');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"T2=635;//temperature\n",
+"T1=530;//temperature\n",
+"T3=460;//temperature\n",
+"P2=1;//pressure\n",
+"P3=1;//pressure\n",
+"P1=5.1;//pressure\n",
+"cp=0.24;\n",
+"R=1.986/28.97;\n",
+"k1=-105;//T1-T2\n",
+"k2=70;//T1-T3\n",
+"a=0.4*k1+0.6*k2;\n",
+"disp(a,'since mass is conserved thus value is ');\n",
+"k=0.4*(cp*log(T2/T1)-R*log(P2/P1))+0.6*(cp*log(T3/T1)-R*log(P3/P1));\n",
+"disp(k,'sigmacvdot/m1dot in Btu/lb/R');\n",
+"disp('thus second law of thermodynamics is also conserved');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: 8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.8\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"p1=1;//pressure\n",
+"pr2=21.18;\n",
+"pr1=1.3860;\n",
+"k=1.39;\n",
+"T2=1160;//temperature\n",
+"T1=540;//temperature\n",
+"p=p1*pr2/pr1;\n",
+"disp(p,'pressure in atm');\n",
+"p2=p1*(T2/T1)^(k/(k-1));\n",
+"disp(p2,'Pressure final in atm');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: 9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 7.9\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=3105.6;\n",
+"h2s=2743.0;\n",
+"nt=0.75;//effeiciency\n",
+"k=nt*(h1-h2s);\n",
+"disp(k,'Wcvdot/mdot in kJ/kg');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/8-Vapor_Power_and_Refrigeration_Sysytem.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/8-Vapor_Power_and_Refrigeration_Sysytem.ipynb
new file mode 100644
index 0000000..8873146
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/8-Vapor_Power_and_Refrigeration_Sysytem.ipynb
@@ -0,0 +1,282 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Vapor Power and Refrigeration Sysytem"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=2758.0;\n",
+"h2=1794.8;\n",
+"h3=173.88;\n",
+"h4=h3+1.0084/1000*(8-0.008)*1000;\n",
+"neta=(h1-h2-h4+h3)/(h1-h4);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"bwr=(h4-h3)/(h1-h2);\n",
+"disp(bwr*100,'back work ratio in %');\n",
+"mdot=100*1000*3600/(h1-h2-h4+h3);\n",
+"disp(mdot,'mass flow rate in kg/h');\n",
+"Qindot=mdot*(h1-h4)/3600/1000;\n",
+"disp(Qindot,'energy inflow rate in MW');\n",
+"Qoutdot=mdot*(h2-h3)/3600/1000;\n",
+"disp(Qoutdot,'energy outflow rate in MW');\n",
+"disp(Qoutdot/Qindot*100,'ratio of energy outflow/inflow in %');\n",
+"mcwdot=mdot*(h2-h3)/(146.68-62.99);\n",
+"disp(mcwdot,'mass flow rate in kg/h');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=2758.0;\n",
+"h2=1939.3;\n",
+"h3=173.88;\n",
+"h4=h3+8.06/0.85;\n",
+"neta=(h1-h2-h4+h3)/(h1-h4);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"mdot=100*1000*3600/(h1-h2-h4+h3);\n",
+"disp(mdot,'mass flow rate in kg/h');\n",
+"Qindot=mdot*(h1-h4)/3600/1000;\n",
+"disp(Qindot,'energy inflow rate in MW');\n",
+"Qoutdot=mdot*(h2-h3)/3600/1000;\n",
+"disp(Qoutdot,'energy outflow rate in MW');\n",
+"mcwdot=mdot*(h2-h3)/(146.68-62.99);\n",
+"disp(mcwdot,'mass flow rate in kg/h');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=3348.4;\n",
+"h2=2741.8;\n",
+"h3=3353.3;\n",
+"h4=2428.5;\n",
+"h6=181.94;\n",
+"h5=173.88;\n",
+"neta=(h1-h2-h4+h3-h6+h5)/(h1-h6+h3-h2);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"mdot=100*1000*3600/(h1-h2-h4+h3-h6+h5);\n",
+"disp(mdot,'mass flow rate in kg/h');\n",
+"Qoutdot=mdot*(h4-h5)/3600/1000;\n",
+"disp(Qoutdot,'energy outflow rate in MW');\n",
+"//part2\n",
+"h2=2832.8;\n",
+"h4=2567.2;\n",
+"neta=(h1-h2-h4+h3-h6+h5)/(h1-h6+h3-h2);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=3348.4;\n",
+"h7=705.3;\n",
+"h6=697.22;\n",
+"h5=174.6;\n",
+"h4=173.88;\n",
+"h2=2832.8;\n",
+"h3=2249.3;\n",
+"k1=h1-h2+0.8034*(h2-h3);//Wt/m1\n",
+"k2=h7-h6+0.8034*(h5-h4);//Wp/m1\n",
+"k3=h1-h7;//Qin/m1\n",
+"neta=(k1-k2)/k3;\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"m1dot=100*1000*3600/(k1-k2);\n",
+"disp(m1dot,'mass flow rate in kg/h');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"mdot=0.08;\n",
+"h2s=264.7;\n",
+"h1=247.23;\n",
+"h4=85.75;\n",
+"Th=299.0;\n",
+"Wcdot=mdot*(h2s-h1);\n",
+"disp(Wcdot,'work input in kW');\n",
+"Qindot=mdot*(h1-h4)*60.0/211;\n",
+"disp(Qindot,'refrigration capacity in ton');\n",
+"Beta=(h1-h4)/(h2s-h1);\n",
+"disp(Beta,'coefficient of performance');\n",
+"Bmax=273/(Th-273);\n",
+"disp(Bmax,'maximum coefficient of performance');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h2s=272.39;\n",
+"h1=241.35;\n",
+"mdot=0.08;\n",
+"h4=99.56;\n",
+"Wcdot=mdot*(h2s-h1);\n",
+"disp(Wcdot,'work input in kW');\n",
+"Qindot=mdot*(h1-h4)*60.0/211;\n",
+"disp(Qindot,'refrigration capacity in ton');\n",
+"Beta=(h1-h4)/(h2s-h1);\n",
+"disp(Beta,'coefficient of performance');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: 7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 8.7\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=241.35;\n",
+"h2s=272.39;\n",
+"nc=0.8;//efficiency\n",
+"h4=91.49;\n",
+"h2=(h2s-h1)/nc+h1;\n",
+"mdot=0.08;\n",
+"Wcdot=mdot*(h2-h1);\n",
+"disp(Wcdot,'work input in kW');\n",
+"Qindot=mdot*(h1-h4)*60.0/211;\n",
+"disp(Qindot,'refrigration capacity in ton');\n",
+"Beta=(h1-h4)/(h2-h1);\n",
+"disp(Beta,'coefficient of performance');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/9-Gas_Power_Systems.ipynb b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/9-Gas_Power_Systems.ipynb
new file mode 100644
index 0000000..0af3925
--- /dev/null
+++ b/Introduction_to_Thermal_Systems_Engineering_Thermodynamics_by_Fluid_Mechanics/9-Gas_Power_Systems.ipynb
@@ -0,0 +1,266 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Gas Power Systems"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: 1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.1\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"T2=1212.0;\n",
+"p1=1.0;\n",
+"T1=540.0;\n",
+"T4=1878.0;\n",
+"T3=3600.0;\n",
+"u4=342.2;\n",
+"u1=92.04;\n",
+"u3=721.44;\n",
+"u2=211.3;\n",
+"m=1.47/1000;\n",
+"V1=0.02;\n",
+"k=8;//V1/V2\n",
+"p2=k*p1*T2/T1;\n",
+"disp(p2,'pressure in atm');\n",
+"p3=p2*T3/T2;\n",
+"disp(p3,'pressure in atm');\n",
+"p4=p1*T4/T1;\n",
+"disp(p4,'pressure in atm');\n",
+"neta=1-(u4-u1)/(u3-u2);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"W=m*(u3-u4-u2+u1);\n",
+"mep=W/V1/(1-1/k)*778/144;\n",
+"disp(mep,'mean effective pressure in lbf/in^2 is equal to 8.03 atm');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: 2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.2\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"T2=898.3;\n",
+"T1=300.0;\n",
+"T4=887.7;\n",
+"vr3=3.97;\n",
+"V1=0.861;\n",
+"R=8314;//gas constant\n",
+"u4=664.3;\n",
+"u1=214.07;\n",
+"h3=1999.1;\n",
+"h2=930.98;\n",
+"p1=0.1;\n",
+"k=18.0;//V1/V2\n",
+"rc=2.0;//V3/V2\n",
+"p2=k*p1*T2/T1;\n",
+"disp(p2,'pressure in atm');\n",
+"T3=rc*T2;\n",
+"disp(T3,'temperature in K');\n",
+"vr4=vr3*k/rc;\n",
+"p4=p1*T4/T1;\n",
+"disp(p4,'pressure in atm');\n",
+"neta=1-(u4-u1)/(h3-h2);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"W=(h3-u4-h2+u1);//Wcycle/m\n",
+"V1=R*T1/29.97/10^5;\n",
+"mep=W/V1/(1-1/k)*1000/10^6;\n",
+"disp(mep,'mean effective pressure in MPa');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: 3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.3\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h4=808.5;\n",
+"h2=579.9;\n",
+"h3=1515.4;\n",
+"h1=300.19;\n",
+"T=300;//temperature\n",
+"R=8314;//gas constant\n",
+"M=28.97;//mass molecular\n",
+"neta=(h3-h4-h2+h1)/(h3-h2);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"bwr=(h2-h1)/(h3-h4);\n",
+"disp(bwr*100,'back work ratio in %');\n",
+"mdot=5*10^5*M/R/T;\n",
+"Wcycledot=mdot*[h3-h4-h2+h1];\n",
+"disp(Wcycledot,'net power developed in kW');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: 4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.4\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h1=300.19;\n",
+"k=349.6;//Wcdot/mdot\n",
+"h2=h1+k;\n",
+"h3=1515.4;\n",
+"mdot=5.807;\n",
+"k2=h3-h2;//Qindot/mdot\n",
+"neta=(565.6-k)/k2;\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"bwr=k/565.5;\n",
+"disp(bwr*100,'back work ratio in %');\n",
+"Wcycledot=mdot*(565.5-k);\n",
+"disp(Wcycledot,'net power developed in kW');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: 5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.5\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"h3=1515.4;//kJ/kg\n",
+"h4=808.5;//kJ/kg\n",
+"nreg=0.8;\n",
+"h2=579.9;//kJ/kg\n",
+"h1=300.19;//kJ/kg\n",
+"hx=nreg*(h4-h2)+h2;\n",
+"neta=(h3-h4-h2+h1)/(h3-hx);\n",
+"disp(neta*100,'thermal efficiency in %');\n",
+"clear()"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: 6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//example 9.6\n",
+"clc; funcprot(0);\n",
+"// Initialization of Variable\n",
+"ha=102.7;//Btu/lb\n",
+"Va=909.3;//ft/s\n",
+"h3=546.54;//Btu/lb\n",
+"h2=216.2;//Btu/lb\n",
+"pr4=113.8;\n",
+"h5=265.8;//Btu/lb\n",
+"pr3=233.5;\n",
+"h1=102.7+Va^2/2/32.2/778;\n",
+"pr1=1.051;\n",
+"pra=0.6268;\n",
+"p1=pr1/pra*11.8;\n",
+"disp(p1,'Pressure in lbf/in^2');\n",
+"p2=8*p1;\n",
+"disp(p2,'Pressure in lbf/in^2');\n",
+"p3=p2;\n",
+"h4=h3+h1-h2;\n",
+"p4=p3*pr4/pr3;\n",
+"disp(p4,'Pressure in lbf/in^2');\n",
+"V5=sqroot(2*(h4-h5)*32.2*778);\n",
+"disp(V5,'velocity in ft/s (2069 mi/h)');\n",
+"clear()"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}