diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb')
-rw-r--r-- | Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb | 695 |
1 files changed, 695 insertions, 0 deletions
diff --git a/Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb b/Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb new file mode 100644 index 0000000..cf614c7 --- /dev/null +++ b/Integrated_Circuits_by_S_Sharma/13-Integrated_Circuit_Timer.ipynb @@ -0,0 +1,695 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Integrated Circuit Timer" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.10: Resistor_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 10;// in µF\n", +"C = C*10^-6;// in F\n", +"T_ON = 5;// in sec\n", +"R = T_ON/(1.1*C);// in ohm\n", +"disp(R,'The resistor value in ohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11: Resistor_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// EXa 13.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 10;// in µF\n", +"C = C * 10^-6;// in F\n", +"T_off = 1;// in sec\n", +"//Formula T_off= 0.693*R2*C\n", +"R2 = T_off/(0.693*C);// in ohm\n", +"disp(R2,'The value of R2 in Ω is');\n", +"T_on = 3;// in sec\n", +"// Formula T_on= 0.693*(R1+R2)*C\n", +"R1 =T_on/(C*0.693)-R2;// in ohm\n", +"disp(R1,'The value of R1 in Ω is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.12: Value_of_RLED.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.22;// in µF\n", +"C=C*10^-6;// in F\n", +"T_on = 10;// in ms\n", +"T_on = T_on * 10^-3;// in s\n", +"V_CC = 15;// in V\n", +"V_BE = 0.7;// in V\n", +"V_EC = 0.2;// in V\n", +"V_LED= 1.4;// in V\n", +"I_LED= 20*10^-3;// in A\n", +"R = T_on/(C*1.1);// in ohm\n", +"R = R *10^-3;// in k ohm\n", +"disp('Values for first circuit : ')\n", +"disp(R,'The value of R in kΩ is');\n", +"V_o = V_CC-(2*V_BE) - V_EC;// in V\n", +"disp(V_o,'The output voltage in V is');\n", +"R_LED = (V_o - V_LED)/(I_LED);// in ohm \n", +"disp(R_LED,'The value of R_LED in Ω is : ')\n", +"// Part (ii)\n", +"f= 1*10^3;// in Hz\n", +"C=0.01*10^-6;// in F\n", +"D= 95/100;// duty cycle\n", +"// Formula f= 1.44/((R1+2*R2)*C)\n", +"// R1+2*R2= 1.44/(f*C) (i)\n", +"// D= (R1+R2)/(R1+2*R2) or\n", +"// R2= (1-D)/(2*D-1)*R1 (ii)\n", +"// From eq (i) and (ii)\n", +"R1= 1.44/(f*C*(1+2*((1-D)/(2*D-1))));// in ohm\n", +"R2= (1-D)/(2*D-1)*R1;// in ohm\n", +"disp('Values for second circuit : ')\n", +"disp(R1*10^-3,'The value of R1 in kΩ is : ');\n", +"disp(R2*10^-3,'The value of R2 in kΩ is : ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.13: Resistor_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"T = 5;// in msec\n", +"T = T * 10^-3;// in sec\n", +"C = 0.1;// in µF\n", +"C = C * 10^-6;// in F\n", +"R = T/(C*1.1);// in ohm\n", +"R = R * 10^-3;// in k ohm\n", +"disp(R,'The resistor in kΩ is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.14: A_555_based_square_wave_generator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 1;// in kHz\n", +"f = f * 10^3;// in Hz\n", +"T = 1/f;// in s\n", +"T = T * 10^3;// in msec\n", +"T_d = T/2;// in msec\n", +"T_d = T_d * 10^-3;// in sec\n", +"C = 0.1;// in µF\n", +"C = C * 10^-6;// in F\n", +"R2 = T_d/(0.69*C);// in ohm\n", +"R2 = R2 * 10^-3;// in k ohm\n", +"disp(C*10^6,'The value of C in µF is : ')\n", +"disp(R2,'The value of R2 in kΩ is');\n", +"disp('The value of R1 will be 100 Ω +10 kΩ pot');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.15: A_555_timer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 800;// in Hz\n", +"D = 0.6;\n", +"C = 0.1;// in µF\n", +"C = C * 10^-6;// in F\n", +"// Formula f= 1.44/((R_A+2*R_B)*C)\n", +"// R_A+2*R_B= 1.44/(f*C) (i)\n", +"// D= (R_A+R_B)/(R_A+2*R_B) or\n", +"// R_B= (1-D)/(2*D-1)*R_A (ii)\n", +"// From eq (i) and (ii)\n", +"R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1))));// in ohm\n", +"R_B= (1-D)/(2*D-1)*R_A;// in ohm\n", +"disp(R_A*10^-3,'The value of R_A in kΩ is : ');\n", +"disp(R_B*10^-3,'The value of R_B in kΩ is : ');\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.16: A_555_timer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 700;// in Hz\n", +"D = 0.5;\n", +"C = 0.1;// in µF\n", +"C = C * 10^-6;// in F\n", +"// Formula f= 1.44/((R_A+2*R_B)*C)\n", +"// R_A+2*R_B= 1.44/(f*C) (i)\n", +"// D= (R_A+R_B)/(R_A+2*R_B) or\n", +"// R_A+R_B=D*1.44/(f*C)\n", +"// From eq (i) and (ii)\n", +"R_B=round(1.44/(f*C))*(1-D);\n", +"R_A= round(D*1.44/(f*C))-R_B;\n", +"//R_A= 1.44/(f*C*(1+2*((1-D)/(2*D-1))));// in ohm\n", +"//R_B= (1-D)/(2*D-1)*R_A;// in ohm\n", +"disp(round(R_A),'The value of R_A in Ω is : ');\n", +"disp((R_B*10^-3),'The value of R_B in kΩ is : ');\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.17: Output_pulse_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R_A = 20;// in k ohm\n", +"R_A = R_A * 10^3;// in ohm\n", +"C = 0.1;// in µF\n", +"C = C*10^-6;// in F\n", +"pulse_width = 1.1*R_A*C;// in s\n", +"disp(pulse_width*10^3,'The output pulse width in ms is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.18: Relationship_between_tp_and_T.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n=4;\n", +"// t_p= X*T, where\n", +"X= [0.2+(n-1)];// (assumed)\n", +"disp('The relation between t_p and T is :')\n", +"disp('t_p = '+string(X)+'*T');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.19: Value_of_RA.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.02;// in µF\n", +"C = C * 10^-6;// in F\n", +"f=2*10^3;//frequency in Hz\n", +"T = 1/f;// in sec\n", +"n = 5;\n", +"t_p = (0.2+(n-1))*T;// in sec\n", +"R_A = t_p/(1.1*C);// in ohm\n", +"disp(R_A*10^-3,'The value of R_A in kΩ is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Frequency_and_duty_cycle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.01;// in µF\n", +"C = C *10^-6;// in F\n", +"R_A = 2;// in k ohm\n", +"R_A = R_A * 10^3;// in ohm\n", +"R_B = 100;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"T_HIGH = 0.693*(R_A+R_B)*C;// in s\n", +"T_HIGH = T_HIGH;// in sec\n", +"T_LOW = 0.693*R_B*C;// in s\n", +"T_LOW = T_LOW ;// in sec\n", +"T = T_HIGH + T_LOW;// in sec\n", +"f = 1/T;// in Hz\n", +"disp(f,'Frequency in Hz is');\n", +"D = (T_HIGH/T)*100;// in %\n", +"disp(D,'Duty cycle in % is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: Positive_and_negative_pulse_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 1;// in µF\n", +"C = C * 10^-6;// in F\n", +"R_A = 4.7;// in k ohm\n", +"R_A = R_A * 10^3;// in ohm\n", +"R_B = 1;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"T_on = 0.693*(R_A+R_B)*C;// in s\n", +"T_on = T_on;// in sec\n", +"disp(T_on * 10^3,'Positive pulse width in ms is');\n", +"T_off = 0.693*R_B*C;// in s\n", +"T_off = T_off;// in ms\n", +"disp(T_off * 10^3,'Negative pulse width in ms is');\n", +"f = 1.4/((R_A+2*R_B)*C);// in Hz\n", +"disp(f,'Free running frequency in Hz is');\n", +"D = ((R_A+R_B)/(R_A+(2*R_B)))*100;// in %\n", +"disp(D,'The duty cycle in % is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Resistor_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.01;// in µF\n", +"C = C * 10^-6;// in F\n", +"f = 1;// in kHz\n", +"f = f * 10^3;// in Hz\n", +"R_A = 1.44/(2*f*C);// in ohm\n", +"R_A = R_A * 10^-3;// in k ohm\n", +"R_B= R_A;// in kohm\n", +"disp(R_A,'The value of both the resistors required in kΩ is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: A_555_timer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 700;// in Hz\n", +"C = 0.01;// in µF\n", +"C = C * 10^-6;// in F\n", +"a = 1.44;\n", +"R_A = a/(2*f*C);// in ohm\n", +"R_A = R_A * 10^-3;// in k ohm\n", +"R_B =R_A;// in k ohm\n", +"disp(C*10^6,'The the value of C in µF is : ')\n", +"disp(R_A,'The value of both the resistors in kΩ is');\n", +"disp('(Standard value of resistor is 100 kΩ)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: Frequency_and_duty_cycle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.01;// in µF\n", +"C = C *10^-6;// in F\n", +"R_A = 2;// in k ohm\n", +"R_A = R_A * 10^3;// in ohm\n", +"R_B = 100;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"T_HIGH = 0.693*(R_A+R_B)*C;// in s\n", +"T_HIGH = T_HIGH;// in sec\n", +"T_LOW = 0.693*R_B*C;// in s\n", +"T_LOW = T_LOW ;// in sec\n", +"T = T_HIGH + T_LOW;// in sec\n", +"f = 1/T;// in Hz\n", +"disp(f,'Frequency in Hz is');\n", +"D = (T_HIGH/T)*100;// in %\n", +"disp(D,'Duty cycle in % is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: Positive_and_negative_pulse_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 1;// in µF\n", +"C = C * 10^-6;// in F\n", +"R_A = 4.7;// in k ohm\n", +"R_A = R_A * 10^3;// in ohm\n", +"R_B = 1;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"T_on = 0.693*(R_A+R_B)*C;// in s\n", +"T_on = T_on;// in sec\n", +"disp(T_on * 10^3,'Positive pulse width in ms is');\n", +"T_off = 0.693*R_B*C;// in s\n", +"T_off = T_off;// in ms\n", +"disp(T_off * 10^3,'Negative pulse width in ms is');\n", +"f = 1.4/((R_A+2*R_B)*C);// in Hz\n", +"disp(f,'Free running frequency in Hz is');\n", +"D = ((R_A+R_B)/(R_A+(2*R_B)))*100;// in %\n", +"disp(D,'The duty cycle in % is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Value_of_resistor_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C = 0.01;// in µF\n", +"C = C * 10^-6;// in F\n", +"f = 1;// in kHz\n", +"f = f* 10^3;// in Hz\n", +"a = 1.44;\n", +"R_A = a/(2*f*C);// in ohm\n", +"R_A = R_A * 10^-3;// in k ohm\n", +"R_B = R_A;// in k ohm\n", +"disp(R_A,'The value of both the resistors required in kΩ is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: A_555_timer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 700;// in Hz\n", +"C = 0.01;// in µF\n", +"C = C * 10^-6;// in F\n", +"a = 1.44;\n", +"R_A = a/(2*f*C);// in ohm\n", +"R_A = R_A * 10^-3;// in k ohm\n", +"R_B =R_A;// in k ohm\n", +"disp(C*10^6,'The the value of C in µF is : ')\n", +"disp(R_A,'The value of both the resistors in kΩ is');\n", +"disp('(Standard value of resistor is 100 kΩ)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.9: A_555_timer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 13.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f = 800;// in Hz\n", +"C = 0.01;// in µF\n", +"C =C * 10^-6;// in F\n", +"R_A = 1.44/(5*f*C);// in ohm\n", +"R_A = R_A * 10^-3;// in k ohm\n", +"disp(R_A,'The value of R_A in kΩ is');\n", +"R_B = 2*R_A;// in k ohm\n", +"disp(R_B,'The value of R_B in kΩ is ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |