diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb')
-rw-r--r-- | Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb | 298 |
1 files changed, 298 insertions, 0 deletions
diff --git a/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb b/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb new file mode 100644 index 0000000..70a25b8 --- /dev/null +++ b/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb @@ -0,0 +1,298 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Nonlinear Applications of IC Op Amps" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.10: Values_of_VUT_VLT_and_oscillation_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R1 = 86;// in k ohm\n", +"V_sat = 15;// in V\n", +"R2 = 100;// in k ohm\n", +"V_UT = (R1/(R1+R2))*V_sat;// in V\n", +"disp(V_UT,'The value of V_UT in V is ');\n", +"V_LT = (R1/(R1+R2))*(-V_sat);// in V\n", +"disp(V_LT,'The value of V_LT in V is');\n", +"R_F = 100;// in k ohm\n", +"R_F= R_F*10^3;// in ohm\n", +"C = 0.1;// in µF\n", +"C = C * 10^-6;// in F\n", +"f_o = 1/(2*R_F*C*log( (V_sat-V_LT)/(V_sat-V_UT) ));// in Hz\n", +"disp(f_o,'Frequency of oscillation in Hz is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.12: Change_in_output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_Vin = 5;// in V\n", +"FRR = 80;// in dB\n", +"// Formula FRR= 20*log10(del_Vin/del_Vout)\n", +"del_Vout=del_Vin/(10^(FRR/20));// in V\n", +"disp(del_Vout*10^3,'Change in output voltage in mV is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Threshold_voltages.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 15;// in V\n", +"V_sat = V_CC;// in V\n", +"R1 = 120;// in ohm\n", +"R2 = 51;// in k ohm\n", +"R2 = R2 * 10^3;// in ohm\n", +"V_in = 1;// in V\n", +"V_UT = (V_sat*R1)/(R1+R2);//in V\n", +"disp(V_UT*10^3,'When supply voltage is +15V then threshold voltage in mV is');\n", +"V_ULT = ((-V_sat)*R1)/(R1+R2);// in V\n", +"V_ULT = V_ULT;// in V\n", +"disp(V_ULT*10^3,'When supply voltage is -15V then threshold voltage in mV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Value_of_R1_and_R2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// EXa 10.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_sat = 12;// in V\n", +"V_H = 6;// in V\n", +"R1 = 10;// in k ohm\n", +"R1 = R1 * 10^3;// in ohm\n", +"// Formula V_H= R1/(R1+R2)*(V_sat-(-V_sat)) and Let\n", +"V = V_H/(V_sat-(-V_sat));// in V (assumed)\n", +"R2= (R1-V*R1)/V\n", +"disp(R1*10^-3,'The value of R1 in kΩ is');\n", +"disp(R2*10^-3,'The value of R2 in kΩ is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Time_duratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_P = 5;// in V\n", +"V_LT = -1.5;// in V\n", +"V_H = 2;// in V\n", +"f = 1;// in kHz\n", +"f = f * 10^3;// in Hz\n", +"V_UT = V_H-V_LT;// in V\n", +"V_m = V_P/2;// in V\n", +"// Formula V_LT= V_m*sind(theta)\n", +"theta= asind(-V_LT/V_m);\n", +"T = 1/f;// in sec\n", +"theta1 = theta+180;// in degree\n", +"T1 = (T*theta1)/360;// in sec\n", +"T2 = T-T1;// in sec\n", +"disp(T1*10^3,'The value of T1 in ms is : ')\n", +"disp(T2*10^3,'The value of T2 in ms is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Value_of_R1_and_R2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_H = 10;// in V\n", +"V_L = -10;// in V\n", +"I_max = 100;// in µA\n", +"I_max = I_max * 10^-6;// in A\n", +"V_HV = 0.1;// in V\n", +"V_sat = 10;// in V\n", +"R2 = 1;// in k ohm\n", +"R1 = 199;// in k ohm\n", +"R = (R1*R2)/(R1+R2);// in k ohm\n", +"disp(R*10^3,'The resistance in Ω is');\n", +"\n", +"// Note: The unit of the answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: values_of_VLT_VUT_and_VH.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_sat = 12;// in V\n", +"R1 = 1;// in k ohm\n", +"R2 = 3;// in k ohm\n", +"V_LT = ((-V_sat)*R1)/R2;// in V\n", +"disp(V_LT,'The value of V_LT in V is');\n", +"V_UT = (-(-V_sat) * R1)/R2;// in V\n", +"disp(V_UT,'The value of V_UT in V is');\n", +"V_H = (R1/R2)*(V_sat - (-V_sat));// in V\n", +"disp(V_H,'The value of V_H in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: Threshold_voltages_and_hysteresis_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 10.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R1 = 80;// in k ohm\n", +"R2 = 20;// in k ohm\n", +"V_sat = 12.5;// in V\n", +"V_UT = (R2/(R1+R2))*V_sat;// in V\n", +"disp(V_UT,'Upper threshold voltage in V is');\n", +"V_LT = (R2/(R1+R2))*(-V_sat);// in V\n", +"disp(V_LT,'Lower threshold voltage in V is');\n", +"V_HV = (R2/(R1+R2))*(2*V_sat);// in V\n", +"disp(V_HV,'The hysteresis voltage in V is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |