summaryrefslogtreecommitdiff
path: root/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb')
-rw-r--r--Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb298
1 files changed, 298 insertions, 0 deletions
diff --git a/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb b/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb
new file mode 100644
index 0000000..70a25b8
--- /dev/null
+++ b/Integrated_Circuits_by_S_Sharma/10-Nonlinear_Applications_of_IC_Op_Amps.ipynb
@@ -0,0 +1,298 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Nonlinear Applications of IC Op Amps"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10: Values_of_VUT_VLT_and_oscillation_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R1 = 86;// in k ohm\n",
+"V_sat = 15;// in V\n",
+"R2 = 100;// in k ohm\n",
+"V_UT = (R1/(R1+R2))*V_sat;// in V\n",
+"disp(V_UT,'The value of V_UT in V is ');\n",
+"V_LT = (R1/(R1+R2))*(-V_sat);// in V\n",
+"disp(V_LT,'The value of V_LT in V is');\n",
+"R_F = 100;// in k ohm\n",
+"R_F= R_F*10^3;// in ohm\n",
+"C = 0.1;// in µF\n",
+"C = C * 10^-6;// in F\n",
+"f_o = 1/(2*R_F*C*log( (V_sat-V_LT)/(V_sat-V_UT) ));// in Hz\n",
+"disp(f_o,'Frequency of oscillation in Hz is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.12: Change_in_output_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_Vin = 5;// in V\n",
+"FRR = 80;// in dB\n",
+"// Formula FRR= 20*log10(del_Vin/del_Vout)\n",
+"del_Vout=del_Vin/(10^(FRR/20));// in V\n",
+"disp(del_Vout*10^3,'Change in output voltage in mV is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Threshold_voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_CC = 15;// in V\n",
+"V_sat = V_CC;// in V\n",
+"R1 = 120;// in ohm\n",
+"R2 = 51;// in k ohm\n",
+"R2 = R2 * 10^3;// in ohm\n",
+"V_in = 1;// in V\n",
+"V_UT = (V_sat*R1)/(R1+R2);//in V\n",
+"disp(V_UT*10^3,'When supply voltage is +15V then threshold voltage in mV is');\n",
+"V_ULT = ((-V_sat)*R1)/(R1+R2);// in V\n",
+"V_ULT = V_ULT;// in V\n",
+"disp(V_ULT*10^3,'When supply voltage is -15V then threshold voltage in mV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Value_of_R1_and_R2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// EXa 10.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_sat = 12;// in V\n",
+"V_H = 6;// in V\n",
+"R1 = 10;// in k ohm\n",
+"R1 = R1 * 10^3;// in ohm\n",
+"// Formula V_H= R1/(R1+R2)*(V_sat-(-V_sat)) and Let\n",
+"V = V_H/(V_sat-(-V_sat));// in V (assumed)\n",
+"R2= (R1-V*R1)/V\n",
+"disp(R1*10^-3,'The value of R1 in kΩ is');\n",
+"disp(R2*10^-3,'The value of R2 in kΩ is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Time_duratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P = 5;// in V\n",
+"V_LT = -1.5;// in V\n",
+"V_H = 2;// in V\n",
+"f = 1;// in kHz\n",
+"f = f * 10^3;// in Hz\n",
+"V_UT = V_H-V_LT;// in V\n",
+"V_m = V_P/2;// in V\n",
+"// Formula V_LT= V_m*sind(theta)\n",
+"theta= asind(-V_LT/V_m);\n",
+"T = 1/f;// in sec\n",
+"theta1 = theta+180;// in degree\n",
+"T1 = (T*theta1)/360;// in sec\n",
+"T2 = T-T1;// in sec\n",
+"disp(T1*10^3,'The value of T1 in ms is : ')\n",
+"disp(T2*10^3,'The value of T2 in ms is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Value_of_R1_and_R2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_H = 10;// in V\n",
+"V_L = -10;// in V\n",
+"I_max = 100;// in µA\n",
+"I_max = I_max * 10^-6;// in A\n",
+"V_HV = 0.1;// in V\n",
+"V_sat = 10;// in V\n",
+"R2 = 1;// in k ohm\n",
+"R1 = 199;// in k ohm\n",
+"R = (R1*R2)/(R1+R2);// in k ohm\n",
+"disp(R*10^3,'The resistance in Ω is');\n",
+"\n",
+"// Note: The unit of the answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: values_of_VLT_VUT_and_VH.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_sat = 12;// in V\n",
+"R1 = 1;// in k ohm\n",
+"R2 = 3;// in k ohm\n",
+"V_LT = ((-V_sat)*R1)/R2;// in V\n",
+"disp(V_LT,'The value of V_LT in V is');\n",
+"V_UT = (-(-V_sat) * R1)/R2;// in V\n",
+"disp(V_UT,'The value of V_UT in V is');\n",
+"V_H = (R1/R2)*(V_sat - (-V_sat));// in V\n",
+"disp(V_H,'The value of V_H in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Threshold_voltages_and_hysteresis_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 10.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R1 = 80;// in k ohm\n",
+"R2 = 20;// in k ohm\n",
+"V_sat = 12.5;// in V\n",
+"V_UT = (R2/(R1+R2))*V_sat;// in V\n",
+"disp(V_UT,'Upper threshold voltage in V is');\n",
+"V_LT = (R2/(R1+R2))*(-V_sat);// in V\n",
+"disp(V_LT,'Lower threshold voltage in V is');\n",
+"V_HV = (R2/(R1+R2))*(2*V_sat);// in V\n",
+"disp(V_HV,'The hysteresis voltage in V is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}