diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb')
-rw-r--r-- | Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb | 899 |
1 files changed, 899 insertions, 0 deletions
diff --git a/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb b/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb new file mode 100644 index 0000000..24d965b --- /dev/null +++ b/Heat_And_Thermodynamics_by_D_S_Mathur/8-thermodynamics.ipynb @@ -0,0 +1,899 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: chapter_8_example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=20+273//k\n", +"T2=273//k\n", +"m=2//kg\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"Q2=m*L/3600\n", +"w=(T1-T2)*Q2*4.2/(T2)\n", +"//results\n", +"printf(' \n minimum power output of the motor= % 1f H.P',w/746)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: chapter_8_example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=20+273//k\n", +"T2=273//k\n", +"m=2//kg\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"Q2=m*L/3600\n", +"w=(T1-T2)*Q2*4.2/(T2)\n", +"//results\n", +"printf(' \n minimum power output of the motor= % 1f H.P',w/746)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.12: chapter_8_example_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=10^5//N/m^2\n", +"l=1//m\n", +"a=0.2//m^2\n", +"n=5\n", +"//CALCULATIONS\n", +"power=2*p*l*a*n/746\n", +"//results\n", +"printf(' \n horse power of engine= % 1f H P',power)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.13: chapter_8_example_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dp=1//atm\n", +"L=80000//cal\n", +"T=273//k\n", +"r=11/10\n", +"//CALCULATIONS\n", +"dv=(1-r)/1000\n", +"dt=T*dv*(13600*9.81*0.76)/(L*4.2)\n", +"//results\n", +"printf(' \n depression in melting point of ice= % 1f c',-dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.14: chapter_8_example_14.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dt=0.5//c\n", +"L=80000*4.2//J/kg\n", +"T=273//k\n", +"dv=0.000091//m^3\n", +"//CALCULATIONS\n", +"dp=(L*dt)/(T*dv*100000)\n", +"//results\n", +"printf(' \n pressure= % 1f atm',dp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.15: chapter_8_example_15.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dp=1.01*10^5//Nm^-2\n", +"L=4563000*4.2//J\n", +"dv=18.7*10^-3//m^3\n", +"T=353//k\n", +"//CALCULATIONS\n", +"dT=(dp*T*dv)/L\n", +"//results\n", +"printf(' \n change in melting point= % 1f c',dT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.16: chapter_8_example_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T=373//k\n", +"L=537000*4.2//J\n", +"dp=0.0212*13600*9.81\n", +"dv=1.673//m^3\n", +"//CALCULATIONS\n", +"dT=dp*T*dv/L\n", +"//results\n", +"printf(' \n change in temperature of boiling water= % 1f c',dT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.17: chapter_8_example_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variabes\n", +"dp=(100-1)*1.01*10^5\n", +"L=24500//J\n", +"T=600//k\n", +"d2=11010\n", +"d1=10650\n", +"//CALCULATIONS\n", +"dv=(1/d2)-(1/d1)\n", +"dT=dp*T*dv/L\n", +"mp=T+(-dT)\n", +"//results\n", +"printf(' \n new melting point= % 1f c',mp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.18: chapter_8_example_18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=1.5//kg/cm2\n", +"T=373//k\n", +"v=1600//cc\n", +"L=2240000//J/kg\n", +"//CALCULATIONS\n", +"dp=((p*1000*980)-(1.01*10^6))/10\n", +"dv=(v-1)/1000\n", +"dT=dp*T*dv/L\n", +"T1=dT+T-273\n", +"//results\n", +"printf(' \n new temperature of cooker= % 1f c',T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.19: chapter_8_example_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"c1=1000\n", +"T=373//k\n", +"L=539300//cal\n", +"r=604// cal/kg/deg\n", +"//CALCULATIONS\n", +"c2=c1-(r)-(L/T)\n", +"//results\n", +"printf(' \n specific heat of saturated steam= % 1f cal/kg',c2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: chapter_8_example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"Q=50//cal\n", +"W=20//cal\n", +"Qi=36//cal\n", +"Wi=-13//cal\n", +"ui=10//cal\n", +"ub=22//cal\n", +"//CALCULATIONS\n", +"du=Q-W\n", +"Wibf=Qi-du\n", +"Qfi=du+Wi\n", +"Uf=du+ui\n", +"Qbf=Uf-ub\n", +"//results\n", +"printf(' \n Wibf= % 1f cal',Wibf)\n", +"printf(' \n Qfi= % 1f cal',Qfi)\n", +"printf(' \n Uf= % 1f cal',Uf)\n", +"printf(' \n Qbf= % 1f cal',Qbf)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.20: chapter_8_example_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.1//kg\n", +"v=1.01*10^-4//m^3\n", +"vs=0.167404//m^3\n", +"t1=101//c\n", +"t2=99//c\n", +"p1=0.788//m\n", +"p2=0.7337//m\n", +"T=373//k\n", +"//CALCULATIONS\n", +"v1=v/m\n", +"v2=vs/m\n", +"dv=v2-v1\n", +"dt=t1-t2\n", +"dp=p1-p2\n", +"dP=dp*13600*9.81\n", +"L=dP*T*dv/(dt*4.2)\n", +"//results\n", +"printf(' \n latent heat of steam= % 1f cal/kg',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.21: chapter_8_example_21.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=1100//k\n", +"T3=200//k\n", +"r=0.5\n", +"//CALCULATIONS\n", +"T=(T1-(T3*r))/(1+r)\n", +"//results\n", +"printf(' \n value of T= % 1f k',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.22: chapter_8_example_22.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T2=500//k\n", +"T1=1000//k\n", +"//CALCULATIONS\n", +"r=1-(T2/T1)\n", +"x=T1/r\n", +"//results\n", +"printf(' \n value of x= % 1f k',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.23: chapter_8_example_23.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T1=900//k\n", +"T2=300//k\n", +"Q1=10^6//cal\n", +"//CALCULATIONS\n", +"r=(1-(T2/T1))\n", +"r1=r*100\n", +"w=r*Q1\n", +"w1=w*4.2//J\n", +"w2=w1/(3.6*10^6)\n", +"w3=w1/(1.609*10^-19)\n", +"//results\n", +"printf(' \n efficiency= % 1f ',r1)\n", +"printf(' \n work in KWH= % 1f KWH',w2)\n", +"printf(' \n work in ev= % 1e ev',w3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.24: chapter_8_example_24.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"T2=300///k\n", +"T1=900//k\n", +"T3=600//k\n", +"Q2=15000//k.cal\n", +"Q1=12000//k.cal\n", +"//CALCULATIONS\n", +"na=1-(T2/T1)\n", +"nb=1-(T2/T3)\n", +"w1=Q1*na\n", +"w2=Q2*nb\n", +"//results\n", +"printf(' \n w1= % 1f kcal',w1)\n", +"printf(' \n w2= % 1f kcal',w2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.25: chapter_8_example_25.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variab;es\n", +"l=420//m\n", +"g=9.81//m/sec^2\n", +"c=1000\n", +"//CALCULATIONS\n", +"dt=(g*l)/(c*4.2)\n", +"//results\n", +"printf(' \n difference in temperature= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.26: chapter_8_example_26.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"m=0.005//kg\n", +"c=0.17//kcal/kg/c\n", +"t1=12.4//c\n", +"t2=10.2//c\n", +"//CALCULATIONS\n", +"du=m*c*(t1-t2)*4.2*1000\n", +"//results\n", +"printf(' \n change in internal energy= % 1f J',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.27: chapter_8_example_27.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"dq=-80\n", +"dv=0.091*10^-6//m^3\n", +"p=1.013*10^5//n/m^2\n", +"//CALCULATIONS\n", +"du=dq-(p*dv/46)\n", +"//results\n", +"printf(' \n change in internal energy= % 1f cal',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.28: chapter_8_example_28.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"p=1*10^5//n/m^2\n", +"v2=2.6//litre\n", +"v1=2.2//litre\n", +"dq=250//j\n", +"//CALCULATIONS\n", +"dv=(v2-v1)*10^-3\n", +"dw=p*dv\n", +"du=dq-dw\n", +"//results\n", +"printf(' \n change in internal energy= % 1f J',du)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.29: chapter_8_example_29.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"v2=6//lit\n", +"v1=2//lit\n", +"r=3/2\n", +"p1=1.01*10^5//n/m^2\n", +"//CALCULATIONS\n", +"g=(r+1)/r\n", +"p2=p1*(v2/v1)^g\n", +"w=(1/(g-1))*((p1*v2*10^-3)-(p2*v1*10^-3))\n", +"//results\n", +"printf(' \n work done= % 1f J',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: chapter_8_example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"g=1.4\n", +"T1=15+273//k\n", +"r=2\n", +"p=2//atm\n", +"r1=0.5\n", +"//CALCULATIONS\n", +"T2=T1*r^(g-1)\n", +"t2=T1*r1^((g-1)/g)\n", +"//results\n", +"printf(' \n final temperature= % 1f k',T2)\n", +"printf(' \n temperature= % 1f k',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: chapter_8_example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"r=1/20\n", +"p1=1//atm\n", +"g=1.4\n", +"T1=273//k\n", +"//CALCULATIONS\n", +"p2=p1/r\n", +"pad=p2^g\n", +"T2=T1*((1/r)^(g-1))\n", +"dt=T2-T1\n", +"//RESULTS\n", +"printf(' \n pressure required= % 1f atm',p2)\n", +"printf(' \n pressure for adiabatic conditions= % 1f atm',pad)\n", +"printf(' \n rise in temperature= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: chapter_8_example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"R=8400//j/mole\n", +"T1=273//k\n", +"g=1.66\n", +"r=2\n", +"//CALCULATIONS\n", +"T2=T1*r^(g-1)\n", +"w=(R*(T1-T2))/(22400*(g-1))\n", +"wi=R*T1*log(1/r)/22400\n", +"//results\n", +"printf(' \n amount of work done= % 1f J',w)\n", +"printf(' \n isothermal work done= % 1f J',wi)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: chapter_8_example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"r1=2\n", +"r=2\n", +"rv=0.75\n", +"//CALCULATIONS\n", +"g=log(r1/rv)/log(r)\n", +"//results\n", +"printf(' \n gamma value= % 1f ',g)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: chapter_8_example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"t0=273//k\n", +"d0=1.29//kg/m^3\n", +"p=0.75//m\n", +"t=273+17//k\n", +"p0=0.76//m\n", +"v=342.15//m/sec\n", +"//CALCULATIONS\n", +"d=t0*d0*p/(t*p0)\n", +"g=(v*v*d)/(p*13600*9.81)\n", +"//results\n", +"printf(' \n gamma value= % 1f ',g)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: chapter_8_example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"n=0.5\n", +"n1=0.6\n", +"T2=27+273//k\n", +"//CALCULATIONS\n", +"T1=T2/(1-n)\n", +"T=T2/(1-n1)\n", +"dt=T-T1\n", +"//results\n", +"printf(' \n source tempperature must be raised by= % 1f c',dt)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: chapter_8_example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"w=100//watt\n", +"T2=100+273//k\n", +"T1=273//k\n", +"L=80000//cal/kg\n", +"//CALCULATIONS\n", +"dt=T2-T1\n", +"Q1=T2*w/dt\n", +"m=(Q1-w)*60/(4.2*L)\n", +"//results\n", +"printf(' \n mass of ice melts in 1 min= % 1f kg',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: chapter_8_example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//initialisation of variables\n", +"L=80000//cal/kg\n", +"T1=27+273//k\n", +"T2=0+273//k\n", +"//CALCULATIONS\n", +"Q1=T1*L/T2\n", +"w=4.2*(Q1-L)\n", +"c=L/(Q1-L)\n", +"//results\n", +"printf(' \n coefficient of performance= % 1f ',c)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |