diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb')
-rw-r--r-- | Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb b/Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb new file mode 100644 index 0000000..3d03e2b --- /dev/null +++ b/Fundamental_Of_Physics_by_D_Haliday/6-Force_and_Motion_ll.ipynb @@ -0,0 +1,326 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Force and Motion ll" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Sample_Problem_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"mu_k = 0.6\n", +"d = 290 //in meter\n", +"g = 9.8 //in m/s^2\n", +"v_final = 0\n", +"\n", +"//Sample Problem 6-1\n", +"printf('**Sample Problem 6-1**\n')\n", +"//using newton's 3rd equation of motion\n", +"ac = - mu_k * g //due to friction hence a negative sign\n", +"v_initial = sqrt(v_final^2 - 2 * ac * d)\n", +"printf('The inital velocity of that car would have been %f m/s', v_initial)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Sample_Problem_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//GIven that\n", +"g = 9.8 //in /s^2\n", +"mass = 75 //in kg\n", +"mu_k = 0.10\n", +"phi = dtor(42)\n", +"\n", +"//Sample Problem 6-2a\n", +"printf('**Sample Problem 6-2a**\n')\n", +"//T * cos(phi)- mu_k * N = 0\n", +"//T * sin(phi) + N = mass * g\n", +"mat_A = [cos(phi),-mu_k;sin(phi),1]\n", +"mat_B = [0 ;mass * g]\n", +"F = inv(mat_A) * mat_B\n", +"printf('The Tension in the string is %f N\n', F(1))\n", +"\n", +"//Sample Problem 6-2b\n", +"printf('\n**Sample Problem 6-2b**\n')\n", +"printf('The force of friction will not change')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Sample_Problem_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"exec('degree_rad.sci',-1)\n", +"\n", +"//Given that\n", +"theta = dtor(13)\n", +"\n", +"//Sample Problem 6-3\n", +"printf('**Sample Problem 6-3**\n')\n", +"//N = mg cos(theta)\n", +"//f_s = mg sin(theta)\n", +"//dividing->\n", +"//f_s/N = tan(theta)\n", +"mu_s = tan(theta)\n", +"printf('The value of coefficient of static friction is %f', mu_s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Sample_Problem_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"v1 = 97 //in km/hr\n", +"//Assuming\n", +"A1 = 1 \n", +"//therefore\n", +"A2 = 2\n", +"\n", +"//Sample Problem 6-4\n", +"printf('**Sample Problem 6-4**\n')\n", +"//the terminal velocity is inversly proportional to squre root of area\n", +"v2 = v1 * sqrt(A1/A2)\n", +"printf('The final velocity of cat will be %f km/hr', v2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Sample_Problem_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"g = 9.8 //in m/s^2\n", +"Radius = 1.5 * 10^-3 //in meter\n", +"height = 1200 //in meter\n", +"C_drag = 0.60\n", +"density_water = 1000 //in kg/m^3\n", +"density_air = 1.2 //in kg/m^3\n", +"\n", +"//Sample Problem 6-5a\n", +"printf('**Sample Problem 6-5a**\n')\n", +"//v_t = sqrt(2*F_g/(C*density*A))\n", +"volume_drop = 4/3*%pi*Radius^3\n", +"mass_drop = density_water *volume_drop\n", +"Area_drop = %pi *Radius^2\n", +"v_terminal = sqrt(2*mass_drop*g/(C_drag*density_air*Area_drop))\n", +"printf('The terminal velocity will be %f m/s\n', v_terminal)\n", +"\n", +"//Sample Problem 6-5b\n", +"printf('\n**Sample Problem 6-5b**\n')\n", +"v_without_drag = sqrt(2 *g * height)\n", +"printf('The velocity just before the impact if there were no drag force would be %f m/s', v_without_drag)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Sample_Problem_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"Radius_earth = 6.37 * 10^6\n", +"h_alti = 520 * 10^3 //in meter\n", +"velocity = 7.6 * 10^3 //in m/s converted from km/s\n", +"mass = 79 //in kg\n", +"\n", +"//Sample Problem 6-6a\n", +"printf('**Sample Problem 6-6a**\n')\n", +"acce = velocity^2/(h_alti + Radius_earth)\n", +"printf('The acceleration is equal to %f m/s^2\n', acce)\n", +"\n", +"//Sample Problem 6-5b\n", +"printf('\n**Sample Problem 6-6b**\n')\n", +"Force_total = mass * acce\n", +"printf('The net force is equal ro %f N', Force_total)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Sample_Problem_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"g = 9.8 //in m/s^2\n", +"Radius = 2.7 //in meter\n", +"\n", +"//Sample Problem 6-7\n", +"printf('**Sample Problem 6-7**\n')\n", +"//The velocity at highest point is equal to sqrt(gR)\n", +"velocity_topmost = sqrt(g * Radius)\n", +"printf('The velocity of ball at the topmost point would be %f m/s', velocity_topmost)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Sample_Problem_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"g = 9.8 //in m/s^2\n", +"R = 2.1 //in m\n", +"mu_s = 0.40\n", +"\n", +"//Sample Problem 6-8a\n", +"printf('**Sample Problem 6-8a**\n')\n", +"//N = mv^2/R\n", +"//mg = mu_s * N\n", +"//mg = mu_s * m*v^2/R\n", +"//v = sqrt(g*R/mu_s)\n", +"v_min = sqrt(g*R/mu_s)\n", +"printf('The minimum spped of the cylender should be %f m/s\n', v_min)\n", +"\n", +"//Sample Problem 6-8b\n", +"printf('\n**Sample Problem 6-8b**\n')\n", +"mass = 49 //in kg\n", +"c_force = mass * v_min^2/R\n", +"printf('The Centripetal force on the rider would be %f N', c_force)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Sample_Problem_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Given that\n", +"g = 9.8 //in m/s^2\n", +"mass = 1600 //in kg\n", +"v_cons = 20 //in m/s\n", +"R_track = 190 //in meter\n", +"\n", +"//Sample Problem 6-9\n", +"printf('**Sample Problem 6-9**\n')\n", +"N = mass * g\n", +"f_s = mass * v_cons^2 /R_track\n", +"mu_s = f_s/N\n", +"printf('The coefficient of static friction for the given surface is %f', mu_s)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |