summaryrefslogtreecommitdiff
path: root/Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb')
-rw-r--r--Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb337
1 files changed, 337 insertions, 0 deletions
diff --git a/Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb b/Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb
new file mode 100644
index 0000000..98cdfeb
--- /dev/null
+++ b/Fluid_Power_With_Applications_by_A_Esposito/11-ANCILLARY_HYDRAULIC_DEVICES.ipynb
@@ -0,0 +1,337 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: ANCILLARY HYDRAULIC DEVICES"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1_a: find_the_discharge_flow_and_pressure.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To find the discharge flow and pressure \n",
+"// Given:\n",
+"// high inlet flow-rate:\n",
+"Q_high_inlet=20; //gpm\n",
+"// low inlet pressure:\n",
+"p_low_inlet=500; //psi\n",
+"// Ratio of piston area to rod area:\n",
+"Ratio=5/1;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1_b: SOLUTION_the_discharge_flow_and_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('11_1_soln.sce')\n",
+"filename=pathname+filesep()+'11_1_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// high discharge pressure,\n",
+"p_high_discharge=Ratio*p_low_inlet; //psi\n",
+"// low discharge flow-rate,\n",
+"Q_low_discharge=Q_high_inlet/Ratio; //gpm\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The high discharge pressure is %.0f psi.',p_high_discharge)\n",
+"printf('\n The low discharge flow-rate is %.0f gpm.',Q_low_discharge)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2_a: determine_the_downstream_oil_temperature.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To find the downstream oil temperature\n",
+"// Given:\n",
+"// temperature of oil flowing through pressure relief valve:\n",
+"T_oil=120; //deg F\n",
+"// pressure of oil flowing through pressure relief valve:\n",
+"p=1000; //psi\n",
+"// oil flow through pressure relief valve:\n",
+"Q_gpm=10; //gpm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2_b: SOLUTION_the_downstream_oil_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('11_2_soln.sce')\n",
+"filename=pathname+filesep()+'11_2_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// heat generation rate,\n",
+"HP=(p*Q_gpm)/1714; //HP\n",
+"// heat generation rate in Btu/min,\n",
+"HP_btu=HP*42.4; //Btu/min\n",
+"// oil flow-rate in lb/min,\n",
+"Q_lb=7.42*Q_gpm; //lb/min\n",
+"// temperature increase,\n",
+"T_increase=HP_btu/(0.42*Q_lb); //deg F\n",
+"// downward oil temperature,\n",
+"T_downward=T_oil+T_increase; //deg F\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The downstream oil temperature is %.1f deg F.',T_downward)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3_a: determine_downstream_oil_temperature_in_SI.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To find the downstream oil temperature in SI Unit\n",
+"// Given:\n",
+"// temperature of oil flowing through pressure relief valve:\n",
+"T_oil=50; //deg C\n",
+"// pressure of oil flowing through pressure relief valve:\n",
+"p=70; //bar\n",
+"// oil flow through pressure relief valve:\n",
+"Q=0.000632; //m^3/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3_b: SOLUTION_downstream_oil_temperature_in_SI.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('11_3_soln.sce')\n",
+"filename=pathname+filesep()+'11_3_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// heat generation rate,\n",
+"kW=((p*10^5)*Q)/1000; //kW\n",
+"// oil flow-rate,\n",
+"Q_kg_s=895*Q; //kg/s\n",
+"// temperature increase,\n",
+"T_increase=kW/(1.8*Q_kg_s); //deg C\n",
+"// downward oil temperature,\n",
+"T_downward=T_oil+T_increase; //deg C\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The downstream oil temperature is %.1f deg C.',T_downward)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4_a: find_heat_exchanger_rating_of_system.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To find the rating of heat exchanger required to dissipate generated heat\n",
+"// Given:\n",
+"// oil flow-rate:\n",
+"Q=20; //gpm\n",
+"// operating pressure:\n",
+"p=1000; //psi\n",
+"// overall efficiency of pump:\n",
+"eff_overall=85; //%\n",
+"// power lost due to friction:\n",
+"HP_frict=10; //%"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4_b: SOLUTION_heat_exchanger_rating_of_system.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('11_4_soln.sce')\n",
+"filename=pathname+filesep()+'11_4_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// pump power loss,\n",
+"pump_HP_loss=((1/(eff_overall/100))-1)*((p*Q)/1714); //HP\n",
+"// PRV average HP loss,\n",
+"PRV_loss=0.5*((p*Q)/1714); //HP\n",
+"// line average HP loss,\n",
+"line_loss=(HP_frict/100)*PRV_loss; //HP\n",
+"// total average loss,\n",
+"total_loss=pump_HP_loss+PRV_loss+line_loss; //HP\n",
+"// heat exchanger rating,\n",
+"HEx_rating=total_loss*2544; //Btu/hr\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The heat exchanger rating is %.0f Btu/hr.',HEx_rating)\n",
+"printf('\n The answer in the program does not match with that in the textbook due to roundoff error (standard ratings) in textbook')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5_a: find_heat_exchanger_rating_in_SI.sci"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Aim:To find the rating of heat exchanger required to dissipate generated heat in SI unit\n",
+"// Given:\n",
+"// oil flow-rate:\n",
+"Q=0.00126; //m^3/s\n",
+"// operating pressure:\n",
+"p=70; //bar\n",
+"// overall efficiency of pump:\n",
+"eff_overall=85; //%\n",
+"// power lost due to friction:\n",
+"HP_frict=10; //%"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5_b: SOLUTION_heat_exchanger_rating_in_SI.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"pathname=get_absolute_file_path('11_5_soln.sce')\n",
+"filename=pathname+filesep()+'11_5_data.sci'\n",
+"exec(filename)\n",
+"// Solution:\n",
+"// pump power loss,\n",
+"pump_loss=((1/(eff_overall/100))-1)*((p*10^5*Q)/1000); //kW\n",
+"// PRV average HP loss,\n",
+"PRV_loss=0.5*((p*10^5*Q)/1000); //kW\n",
+"// line average HP loss,\n",
+"line_loss=(HP_frict/100)*PRV_loss; //kW\n",
+"// total average loss,\n",
+"HEx_rating=pump_loss+PRV_loss+line_loss; //kW\n",
+"// Results:\n",
+"printf('\n Results: ') \n",
+"printf('\n The heat exchanger rating is %.2f kW.',HEx_rating)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}