summaryrefslogtreecommitdiff
path: root/Examples_in_Thermodynamics_Problems_by_W_R_Crawford
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Examples_in_Thermodynamics_Problems_by_W_R_Crawford
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Examples_in_Thermodynamics_Problems_by_W_R_Crawford')
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/1-Heating_and_expansion_of_gases_entropy_.ipynb449
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/2-Air_cycle_efficiencies.ipynb129
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/3-Properties_of_steam.ipynb386
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/4-The_steam_engine.ipynb422
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/5-Air_compressors_and_motors_refrigeration.ipynb438
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/6-flow_through_nozzles_steam_turbines_.ipynb638
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/7-Combustion_boiler_trials.ipynb438
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/8-Internal_combustion_engines_Variable_specific_heats.ipynb408
-rw-r--r--Examples_in_Thermodynamics_Problems_by_W_R_Crawford/9-Valve_Dlagrams_and_value_gears.ipynb185
9 files changed, 3493 insertions, 0 deletions
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/1-Heating_and_expansion_of_gases_entropy_.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/1-Heating_and_expansion_of_gases_entropy_.ipynb
new file mode 100644
index 0000000..ad43cd9
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/1-Heating_and_expansion_of_gases_entropy_.ipynb
@@ -0,0 +1,449 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Heating and expansion of gases entropy "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=2//ft^3\n",
+"p=1100//lb/in^2\n",
+"t1=44//Degree C\n",
+"t2=15//Degree C\n",
+"p1=300//lb/in^2\n",
+"t3=3//Degree c\n",
+"Cv=0.17//ft/lb\n",
+"T=273//F\n",
+"R=96//ft lb\n",
+"p3=300//lb/in^2\n",
+"n=1.12//lb\n",
+"gama=1.404//lb\n",
+"W=[(144*p*v)/(T+t1)]/R//lb\n",
+"//CALCULATIONS\n",
+"Wc=W*Cv*(t1-t2)//C.H.U\n",
+"p2=p*(T+t2)/(T+t1)//lb /in^2\n",
+"A=(144*p3*v)/(R*276)//lb\n",
+"W1=(A/W)*v//ft^3\n",
+"H=[(gama-n)/(gama-1)]*[144*(p*0.65-p1*v)/(n-1)]//ft lb\n",
+"H1=H/1400//C.H.u\n",
+"//RESULTS\n",
+"printf('the heat was lost by all the air in the vessel before leakage began=% f C.H.U',Wc)\n",
+"printf('the heat was lost or gainned leakage by the air=% f C.H .U',H1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=0.218//ft^3\n",
+"h1=0.156//ft^3\n",
+"n=0.249//lb\n",
+"h2=0.178//lb\n",
+"c=0.208//lb\n",
+"c1=0.162//lb\n",
+"w1=1//ft^3\n",
+"p=150//lb/in^2\n",
+"T=100//Degree C\n",
+"T1=373//F\n",
+"Cp=(h*0.2312)+(n*0.3237)+(c*0.4451)//C.H.U/lb\n",
+"Cv=(h1*0.2312)+(h2*0.3237)+(c1*0.4451)//C.H.U//lb\n",
+"R=1400*(Cp-Cv)//ft lb units\n",
+"//CALCULATIONS\n",
+"W=(144*p*w1)/(R*T1)//lb\n",
+"//RESULTS\n",
+"printf('The characteristic constant of the gas=% f lb',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=280//lb/in^2\n",
+"v=2//ft^3\n",
+"p2=20//lb/in^2\n",
+"v2=18.03//ft^3\n",
+"//CALCULATIONS\n",
+"W=144*(p1*v-p2*v2)/(1.2-1)//ft/lb\n",
+"//RESULTS\n",
+"printf('The volume and work done during the expansion=% f ft/lb',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T=200//Degree C\n",
+"p=150//lb/in^2\n",
+"v=12//ft^3\n",
+"R=96//Lb\n",
+"T1=473//F\n",
+"T2=273//F\n",
+"j=1400//lb\n",
+"Cv=0.169//lb/in^2\n",
+"v1=(R*T1)/(p*144)//ft^3\n",
+"//CALCULATIONS\n",
+"Fhi=(R/j)*log(v/v1)+Cv*log(T2/T1)//rank\n",
+"//RESULTS\n",
+"printf('The change of entropy=% f rank',Fhi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.22: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=10//ft^3\n",
+"T=20//Degree C\n",
+"p=15//lb in^2\n",
+"p1=200//lb//in^2\n",
+"gama=1.41 //lb\n",
+"Cv=0.169//lb\n",
+"v2=1.153//ft^3\n",
+"j=1400//lb\n",
+"T1=293//F\n",
+"T2=451//F\n",
+"T1=[(p1*v2)/(p*v)]*T1//Degree C\n",
+"//CALCULATIONS\n",
+"R=Cv*j*(gama-1)\n",
+"W=0.816//lb\n",
+"Fhi=Cv*[(gama-1.2)/(1.2-1)]*log(T1/T2)*W//rnak\n",
+"//RESULTS\n",
+"printf('The change of entropy=% f rank',Fhi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"p=1//lb\n",
+"T=200//Degree C\n",
+"p1=15//lb/in^2\n",
+"v1=4//ft^3\n",
+"gama=1.41//lb\n",
+"Cv=0.169//lb\n",
+"J=1400//lb\n",
+"n=1.2\n",
+"T=473//F\n",
+"v2=16.1//ft^3\n",
+"T1=473//F\n",
+"//CALCULATIONS\n",
+"T2=(p1*v2)/(p*v1)*T1//Degree C\n",
+"R=Cv*J*(gama-p)//lb/in^2\n",
+"Fhi=0.1772*log(1.317)//rank\n",
+"//RESULTS\n",
+"printf('the change of entropy from intial conditions=% f rank',Fhi)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.26: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w=0.066//ft^3\n",
+"p=14.7//lb/in^2\n",
+"w1=14.2//lb/in^2\n",
+"w2=2780//lb/in^2\n",
+"g=0.038//lb\n",
+"a=28.9//lb\n",
+"R=w2/w1//for gas\n",
+"R1=93//for air\n",
+"T=273//F\n",
+"V=0.4245//ft^3\n",
+"//CALCULATIONS\\n",
+"W=(p*144*w)/(T*R)//lb\n",
+"m=(g-W)//lb gas\n",
+"T2=(V+w)//ft^3\n",
+"//RESULTS\n",
+"printf('The volume of mixture=% f ft^3',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=2//ft^3\n",
+"v2=20//ft^3\n",
+"p=100000//ft lb\n",
+"v2=10.41//lb/in^2\n",
+"v3=10//lb/in^2\n",
+"p1=1.3//lb\n",
+"p2=(v2*199.5)/9.95//lb/in^2\n",
+"//CALCULATIONS\n",
+"P=(p2/v3-v2)//lb/in^2\n",
+"//RESULTS\n",
+"printf('The initial andfinal pressure=% f lb/in^2',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Cp=0.24//lb/in^2\n",
+"Cv=0.18//ft^3\n",
+"p1=5//lb/in^2\n",
+"T1=20//Degree C\n",
+"T2=150//Degree C\n",
+"//CALCULATIONS\n",
+"W=p1*Cp*(T2-T1)//C.H.U\n",
+"H=p1*Cv*(T2-T1)//C.H.U\n",
+"Gamma=Cp/Cv//lb/in^2\n",
+"//RESULTS\n",
+"printf('the constant pressure=% f C.H.U',W)\n",
+"printf('the constant volume the value of gas=% f lb/in^2',Gamma)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Gama=1.33//ft/lb\n",
+"p=100//lb/in^2\n",
+"p1=20//lb/in^2\n",
+"v2=10.05//ft^3\n",
+"v=3//ft/lb\n",
+"//CALCULATIONS\n",
+"W=144*(p*v-p1*v2)/0.33//ft lb\n",
+"//RESULTS\n",
+"printf('The work done=% f ft lb',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=3.74//ft/lb\n",
+"p1=2.48//ft/lb\n",
+"v=5.7//ft lb\n",
+"Cv=0.21//ft/lb\n",
+"P=440//lb/in^2\n",
+"P1=160//lb/in^2\n",
+"P2=14//lb/in^2\n",
+"T=25//degree C\n",
+"T1=100//F\n",
+"vs=(%pi*(p1)^2/4)*(p/1728)//ft^3\n",
+"vc=5.7//ft^3\n",
+"v1=4.7//ft^3\n",
+"v2=vs/v1//ft^3\n",
+"v3=0.01273//ft^3\n",
+"T2=298//F\n",
+"//CALCULATIONS\n",
+"W=(P2*144*v3)/(T2*T1)//lb\n",
+"T3=[(P1*144*1)/(P2*144*7)*T2]//Degree C\n",
+"T4=(P/P1)*T3//Degree C\n",
+"H=W*Cv*(T4-T3)//C.H.U\n",
+"//RESULTS\n",
+"printf('The heat supplied during explosion=% f C.H.U',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=10//ft^3\n",
+"p=100//lb/in^2\n",
+"p1=18//lb/in^2\n",
+"v1=50//ft^3\n",
+"n=log(p/p1)/log(5)\n",
+"gama=1.4//air\n",
+"//CALCULATIONS\n",
+"W=[144*(p*v-p1*v1)]/(n-1)//ft lb\n",
+"H=(gama-n)/(gama-1)*W//ft lb\n",
+"E=W-H//ft lb\n",
+"//RESULTS\n",
+"printf('The heat supplied and the change of internal energy=% f ft lb',E)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/2-Air_cycle_efficiencies.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/2-Air_cycle_efficiencies.ipynb
new file mode 100644
index 0000000..f09887e
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/2-Air_cycle_efficiencies.ipynb
@@ -0,0 +1,129 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Air cycle efficiencies"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T1=(100+273)//Degree C\n",
+"T2=(300+273)//degree C\n",
+"T=(1-T1/T2)*100//F\n",
+"lam=0.41//in\n",
+"//CALCULATIONS\n",
+"R=log(T2)-log(T1)//lb/in^2\n",
+"r=2.849//ratio of compression\n",
+"//RESULTS\n",
+"printf('The ideal efficiency and the compression ratio=% f ratio of compression',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"r=0.60//in\n",
+"v=3//in\n",
+"p=15.4//lb\n",
+"r=5//in\n",
+"P=2000//r p m\n",
+"V=19000//B.Th.U Per lb\n",
+"lam=1.41 //lb\n",
+"n=0.4831//percent\n",
+"P=15.4/4//lb\n",
+"H=P*V//B.Th.U\n",
+"l=4.5//lb\n",
+"A=9//lb\n",
+"S=1000//lb\n",
+"//CALCULATIONS\n",
+"R=0.60*n*100//percent\n",
+"C=H*R//B.Th.U\n",
+"I=(C*778)/(60*33000)//lb\n",
+"P1=(I*12*4*33)/(l*A*%pi)//lb/in^2\n",
+"//RESULTS\n",
+"printf('The mean efficity pressure=% f lb/in^2',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=15//in\n",
+"S=(5*14/100)//ln\n",
+"lam=1.4//in\n",
+"v1=1.7//in\n",
+"//CALCULATIONS\n",
+"N=(1-0.38)*100//percent\n",
+"//RESULTS\n",
+"printf('the ideal effiecncy for an engine =% f percent',N)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/3-Properties_of_steam.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/3-Properties_of_steam.ipynb
new file mode 100644
index 0000000..3ec4f5a
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/3-Properties_of_steam.ipynb
@@ -0,0 +1,386 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Properties of steam"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w=40//lb\n",
+"w1=380//lb\n",
+"t1=80//Degree\n",
+"p=85//lb/in^2\n",
+"p1=15//lb/in^2\n",
+"W=w+w1//lb/hr\n",
+"P=p+p1//lb/in^2\n",
+"T=659.3//C.H.U/lb\n",
+"d=10//h.p\n",
+"//CALCULATIONS\n",
+"H=W*T-w1*t1//C.H.U/hr\n",
+"H1=(d*33000*60)/1400//C.H.U/hr\n",
+"T1=H1/H*100//percent\n",
+"D=w1/(w1+w)//C.H.U/hr\n",
+"H2=[W*(99.6+D*539.3)-w1*t1]//C.H.U/hr\n",
+"T2=H-H2//C.H.U/hr\n",
+"H3=T2-H1//C.H.U/hr\n",
+"E=(1400*H3)/(60*33000)//h.p\n",
+"//RESULTS\n",
+"printf('The amount of radiations from the engine =% f h.p',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=120//lb/in^2\n",
+"ts=264//degree C\n",
+"T1=(273+130.6)//F\n",
+"v=0.0171//ft^3/lb\n",
+"L1=518.4//lb\n",
+"T2=(273+171.9)//F\n",
+"L2=487.4//lb\n",
+"Cp=0.48//lb\n",
+"L=0.0894/Cp//lb\n",
+"Ts=T2*1.205//degree\n",
+"ta=536-273//Degree C\n",
+"T=649.9//C.H.U\n",
+"S=131.2//C.H.U\n",
+"w=(144*40)/1400*(10.49-v)//C.H.U\n",
+"C=T-S//C.H.U\n",
+"I=C-w//C.H.U\n",
+"E=(704.7-57.8)//C.H.U\n",
+"E1=E-606.5//C.H.U\n",
+"//CALCULATIONS\n",
+"E1=E-606.5//C.H.U\n",
+"H=(704.7-T)//C.H.U\n",
+"//RESULTS\n",
+"printf('Heat and internal energy after each operation=% f C.H.U',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"A=28.1//in Hg vacuum\n",
+"a=0.93//lb/in^2\n",
+"T=33//Degree\n",
+"p=0.729//lb/in^2\n",
+"P=-p+a//lb/in^2\n",
+"p1=120000//lb\n",
+"p2=28.1//in\n",
+"a1=0.9//ln\n",
+"p3=1000//lb\n",
+"t=15//degree C\n",
+"A1=[a1*(p1/(60*p3))]//lb/mim\n",
+"v=(A1*96*306)/(144*P)//ft^3 of air per min\n",
+"V=37.3+a1*610//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"H=(V-T)//C.H.U\n",
+"W=(H/t)*(p1/60)//gal/min\n",
+"//RESULTS\n",
+"printf('The water per minute in cubic feet per minute passing to air extractor=% f gal/min',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=100//lb/in^2\n",
+"x=0.8//lb\n",
+"t1=164//degree C\n",
+"t2=4.45 //ft^3\n",
+"p1=0.016//ft^3\n",
+"h1=493.4//C.H.U/lb\n",
+"h2=165.9//C.H.U/lb\n",
+"S=h2+h1//C.H.U/lb\n",
+"w=(144*p)/1400*(t2-p1)//C.H.U/lb\n",
+"H=h2+(x*h1)//C.H.U//lb\n",
+"w1=(x*144*p)/1400*(t2-p1)//C.H.U\n",
+"//CALCULATIONS\n",
+"E=S-w//C.H.U/lb\n",
+"IE=H-w1//C.H.U/lb\n",
+"//RESULTS\n",
+"printf('The steam is total heat dry and satured=% f C.H.U/lb',E)\n",
+"printf('Total heat of wet steam=% f C.H.U/lb',IE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"t1=35//degree C\n",
+"p=100//lb/in^2\n",
+"L=435//C.H.U\n",
+"L2=539.3//C.H.U\n",
+"h1=165.9//H.C.U/lb\n",
+"h2=493.4//C.H.U/lb\n",
+"S=(h1-t1)//C.H.U\n",
+"h3=304.1//C.H.U\n",
+"h4=335//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"X1=h3/h2//C.H.U/lb\n",
+"X2=h4/L2//C.H.U/lb\n",
+"//RESULTS\n",
+"printf('The heat giving to the water and steam is =% f C.H.U/lb',X2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=35//lb/in^2\n",
+"w=1425//lb\n",
+"q=1474//lb\n",
+"s1=126.7//C.H.U/lb\n",
+"s2=28//C.H.U/lb\n",
+"t1=5//degree C\n",
+"t2=28//degree C\n",
+"L1=521.4//C.H.U/lb\n",
+"w1=245//lb\n",
+"w2=0.2//lb\n",
+"//CALCULATIONS\n",
+"W=(s1-s2)+L1//C.H.U/lb\n",
+"H=q*(t2-t1)//C.H.U/lb\n",
+"T=H/W//lb\n",
+"//RESULTS\n",
+"printf('The total equivalent=% f lb',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=100//lb/in^2\n",
+"w=2400//lb\n",
+"t1=15//degree C\n",
+"s1=165.9//C.H.U/lb\n",
+"x=0.9//lb\n",
+"L2=493.4//C.H.U/lb\n",
+"t2=65//degree\n",
+"x4=0.8//lb\n",
+"s3=64.8//C.H.U/lb\n",
+"w1=2000//lb\n",
+"w2=2400//lb\n",
+"b1=12400//lb\n",
+"b2=22000//lb\n",
+"p1=4400//lb\n",
+"n=421.65//lb\n",
+"h1=w2*[s1+(x*L2)]//C.H.U/hr\n",
+"h2=w1*[s1+(x4+L2)]//C.H.U/hr\n",
+"//CALCULATIONS\n",
+"T=w*[(s1-t1)+(x*L2)]//C.H.U/hr\n",
+"T1=w1*[(s1-s3)+(x4*L2)]//C.H.U/hr\n",
+"H=T+T1//C.H.U/hr\n",
+"X=n/L2//C.H.U/lb\n",
+"//RESULTS\n",
+"printf('The thermal capacity of the pipe=% f C.H.U/hr',X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w1=4.5//lb\n",
+"s1=45.5//lb\n",
+"p1=165//lb/in^2\n",
+"T=140//Degree C\n",
+"h1=30//in\n",
+"h2=4//in\n",
+"p2=0.49//ln/in^2\n",
+"T1=(w1+s1)//lb\n",
+"T2=103.5//Degree C\n",
+"T3=140//Degree\n",
+"h3=0.48//in\n",
+"x=0.988//berfore throttling\n",
+"T=[103.12+537.1+h3*(T3-T2)]//C.H.U/lb\n",
+"x1=0.012//lb of water\n",
+"X=s1*x1//lb water\n",
+"w=50//lb of steam\n",
+"//CALCULATIONS\n",
+"P=h2+h1//in of mercury\n",
+"P1=s1*x1//lb/in^2\n",
+"T4=w1+P1//lb\n",
+"D=(w-T4)/w//lb\n",
+"//RESULTS\n",
+"printf('The dryness of steam with a combined=% f lb',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w=40//lb\n",
+"w1=380//lb\n",
+"t1=80//Degree\n",
+"p=85//lb/in^2\n",
+"p1=15//lb/in^2\n",
+"W=w+w1//lb/hr\n",
+"P=p+p1//lb/in^2\n",
+"T=659.3//C.H.U/lb\n",
+"d=10//h.p\n",
+"//CALCULATIONS\n",
+"H=W*T-w1*t1//C.H.U/hr\n",
+"H1=(d*33000*60)/1400//C.H.U/hr\n",
+"T1=H1/H*100//percent\n",
+"D=w1/(w1+w)//C.H.U/hr\n",
+"H2=[W*(99.6+D*539.3)-w1*t1]//C.H.U/hr\n",
+"T2=H-H2//C.H.U/hr\n",
+"H3=T2-H1//C.H.U/hr\n",
+"E=(1400*H3)/(60*33000)//h.p\n",
+"//RESULTS\n",
+"printf('The amount of radiations from the engine =% f h.p',E)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/4-The_steam_engine.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/4-The_steam_engine.ipynb
new file mode 100644
index 0000000..97eafd0
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/4-The_steam_engine.ipynb
@@ -0,0 +1,422 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: The steam engine"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=85//lb/in^2\n",
+"h=210//i.p.m\n",
+"h1=8//in\n",
+"h2=2.5//in\n",
+"h3=20//in\n",
+"x=0.75//in\n",
+"p1=100//ln/in^2\n",
+"x1=33000//in\n",
+"p2=15//lb/in^2\n",
+"v2=%pi/4*(h1/12)^2*(h3/12)//ft^3\n",
+"A=144*[29.08*1.6931-8.724]//ft/lb\n",
+"d=x*A//ft/lb\n",
+"v3=0.5816//ft^3\n",
+"P=d/(144*v3)//lb/in^2\n",
+"P1=%pi/4*64//in^2\n",
+"r=25*%pi/16//in^2\n",
+"//CALCULATIONS\n",
+"H=P*(h3/12)*P1*h/(x1)\n",
+"I=(P*(h3/12)*(P1-r)*h)/(x1)//I.h.P\n",
+"T=H+I//I.h.p\n",
+"//RESULTS\n",
+"printf('the h.p diameter of the piston and piston rod =% f I.h.p',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=1.025//in^2\n",
+"h=18//in\n",
+"h1=24//in\n",
+"x=8.2//percent\n",
+"v=15//in\n",
+"v2=6.9//ft^3\n",
+"p=0.74//lb/in^2\n",
+"p1=50//lb/in^2\n",
+"p2=83//lb/in^2\n",
+"P3=48.0//lb/in\n",
+"P1=29.8//lb/in^2\n",
+"P2=14.6//lb/in^2\n",
+"h2=29.8//in\n",
+"D=(%pi/4)*(3/2)^2*2//ft^3\n",
+"v1=23400//ft.lb\n",
+"W=a*v1//ft.lb\n",
+"V=0.082*D//ft^3\n",
+"Q=1.530//ft^3\n",
+"//CALCULATIONS\n",
+"I=V+Q//ft^3\n",
+"P=P3+P2//lb/in^2\n",
+"V1=p*v2//ft^3\n",
+"W1=I/V1//lb\n",
+"S=p2+P2///l/in^2\n",
+"H=659.06//C.H.U/lb\n",
+"T=W/(H*W1*1400)*100//percent\n",
+"//RESULTS\n",
+"printf('The thermal efficiency of the engine=% f percent',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=4.6//ft^3\n",
+"h=5//percent\n",
+"p=60//lb/in^2\n",
+"p1=0.8//ft^3\n",
+"p2=19//lb/in^2\n",
+"a=100//r.p.m\n",
+"h1=5920//lb\n",
+"W=h1/(2*a*p)//lb\n",
+"V=(0.25*v)//ft^3\n",
+"v1=21.07//ft^3\n",
+"w=V/v1//lb\n",
+"H=W+w//lb\n",
+"v2=H*7.17//ft^3\n",
+"P=w*v2//ft^3\n",
+"P1=0.675*v//ft^3\n",
+"//CALCULATIONS\n",
+"DP=P1/v2//ft^2\n",
+"//RESULTS\n",
+"printf('The assumptions do you make in working out the dryness of the steam=% f ft^3',DP)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=0.08//lb\n",
+"p=60//lb/in^2\n",
+"p1=0.50//lb/in^2\n",
+"v=0.5//ft^3\n",
+"v1=7.17//ft^3\n",
+"V=h*v1//ft^3\n",
+"//CALCULATIONS\n",
+"W=p1/v1//lb\n",
+"I=v/v1//lb\n",
+"M=h-I//lb\n",
+"//RESULTS\n",
+"printf('the dryness of the steam at this pressure and missing quantity =% f lb',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=120//lb/in^2\n",
+"p2=15//lb/in^2\n",
+"//CALCULATIONS\n",
+"v=1.65//lb\n",
+"D=sqrt(v)//lb\n",
+"//RESULTS\n",
+"printf('The above pressure are by gauge=% f lb',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=90//lb/in^2\n",
+"x1=0.9//lb\n",
+"p1=10//lb/in^2\n",
+"x2=0.81//lb\n",
+"s1=161.5//lb.in^2\n",
+"s2=89.1//lb.in^2\n",
+"L1=496.8//lb.in^2\n",
+"L2=545.5//lb.in^2\n",
+"//CALCULATIONS\n",
+"bc=(s1-s2)+(x1*L1)//C.H.U/lb\n",
+"da=x2*L2//C.H.U/lb\n",
+"W=bc-da//C.H.U/lb\n",
+"R=W/bc*100//percent\n",
+"//RESULTS\n",
+"printf('the work done per =% f percent',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=150//lb/in^2\n",
+"x=198//r.p.m\n",
+"x1=33000//lb\n",
+"h=2700//lb\n",
+"h1=1400//lb\n",
+"h2=51600//lb\n",
+"r=165//C.H.U/lb\n",
+"s=60//lb\n",
+"t=48//Degree C\n",
+"t1=11//degree C\n",
+"t2=36//Degree C\n",
+"P1=(40*75*t2*x)/(12*x1)//lb\n",
+"P2=(38*70*t2*x)/(12*x1)//lb\n",
+"L1=(t1*300*t2*x)/(12*x1)//lb\n",
+"L2=(12*295*t2*x)/(12*x1)//lb\n",
+"T=P1*P2*L1*L2//lb\n",
+"H=5294//C.H.U/min\n",
+"T1=h/s///lb/min\n",
+"H1=T1*663//lb/min\n",
+"H2=(h2/s*(36-11)+(h/s)*(t))//C.H.U\n",
+"H3=(h/60)*t//C.H.U\n",
+"//CALCULATIONS\n",
+"TE=H/H1-H3*100//percent\n",
+"R=r/(663-t)*100//percent\n",
+"//RESULTS\n",
+"printf('The rankine efficiency =% f percent',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.23: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=100//ln/in^2\n",
+"p2=2.5//lb/in^2\n",
+"p3=20//lb/in^2\n",
+"d=0.75//lb\n",
+"p=0.5//lb\n",
+"r=16//in\n",
+"p4=p1/r//lb/in^2\n",
+"P5=50//lb/in^2\n",
+"W1=13960//ft/lb\n",
+"W2=19040//ft/lb\n",
+"T=33000//ft/lb\n",
+"v=4.43//ft^3\n",
+"v1=v*d//ft^3\n",
+"W3=T*v1//ft/lb\n",
+"Hp=3416//ft/lb\n",
+"Lp=3416//ft/lb\n",
+"//CALCULATIONS\n",
+"W=Lp*v1//ft lb\n",
+"//RESULTS\n",
+"printf('The thermal efficiency of a compound steam and work done=% f ft lb',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=1600//i.h.p\n",
+"h1=20000//lb\n",
+"h2=230//lb/in^2\n",
+"T1=293.3//Degree C\n",
+"x=25.91//in\n",
+"v=30//in\n",
+"T2=201//Degree C\n",
+"T=T1-T2//degree C\n",
+"x2=0.845//lb\n",
+"L2=566.51//lb\n",
+"s1=724//lb\n",
+"h3=1400//C.H.U/hr\n",
+"x=33000//ft^3\n",
+"//CALCULATIONS\n",
+"H=671.48//C.H.U/lb\n",
+"ea=x2*L2//C.H.U/lb\n",
+"W=H-ea//C.H.U/lb\n",
+"R=W/H*100//percent\n",
+"S=h2*s1//C.H.U\n",
+"I=[(h*x*60)/(h3*h1*s1)]*100//percent\n",
+"R1=I/R*100//pecent\n",
+"//RESULTS\n",
+"printf('The indicated thermal efficiency ratio=% f percent',R1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h1=180//lb/in^2\n",
+"h2=3//lb/in^2\n",
+"r1=60//percent\n",
+"r2=90//percent\n",
+"p3=100//lb/in^2\n",
+"p4=10//lb/in^2\n",
+"v1=4.4//ft^3/lb\n",
+"v2=2*v1//ft^3\n",
+"p=44//lb/in^2\n",
+"x2=0.95//ft^3\n",
+"s1=165.9//lb\n",
+"s2=89.1//lb\n",
+"L1=493.4//lb\n",
+"H=(s1-s2)+L1//C.H.U/lb\n",
+"W=65.8//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"R=W/H*100//percent\n",
+"//RESULTS\n",
+"printf('The rankine efficiency of the engine=% f percent',R)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/5-Air_compressors_and_motors_refrigeration.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/5-Air_compressors_and_motors_refrigeration.ipynb
new file mode 100644
index 0000000..7b12d4f
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/5-Air_compressors_and_motors_refrigeration.ipynb
@@ -0,0 +1,438 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Air compressors and motors refrigeration"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=15//lb/in^2\n",
+"p2=60//lb/in^2\n",
+"t=16//Degree C\n",
+"Ta=273+t//Degree C absolute\n",
+"T=1.486//lb/in^2\n",
+"Td=Ta/T//Degree C absolute\n",
+"//CALCULATIONS\n",
+"P=Td/(Ta-Td)//Degree C absolute\n",
+"//RESULTS\n",
+"printf('The lowest temperature and coefficient of per formance=% f Degree C absolute',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T1=30//Degree c\n",
+"T2=-10//degree C\n",
+"t1=263//F\n",
+"t2=303//F\n",
+"h1=20//Units\n",
+"h2=79//C.H.U/lb\n",
+"h=24//hours\n",
+"T3=1//Degree C\n",
+"p=2.2046//C.H.U/sec\n",
+"//CALCULATIONS\n",
+"P=h1*p//C.H.U/sec\n",
+"T=t1/(t2-t1)//F\n",
+"H=P*60//C.H.U\n",
+"W=(H*1400)/T//ft/lb\n",
+"hp=W/33000//h.p\n",
+"W1=(H*60*h)/(80*2240)//tons\n",
+"//RESULTS\n",
+"printf('the cycle is a perfect one=% f tons',W1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=930//lb/in^2\n",
+"p2=440//lb/in^2\n",
+"T=268//F\n",
+"t1=25//F\n",
+"t2=5//F\n",
+"h1=19.4//C.H.U\n",
+"h2=-1.8//C.H.U\n",
+"h3=29//C.H.U\n",
+"h4=58.6//C.H.U\n",
+"d=0.6//C.H.U\n",
+"d1=0.06//lb\n",
+"d2=-0.01//lb\n",
+"c=40//percent\n",
+"h=24//hour\n",
+"t3=10//C\n",
+"d3=15//lb\n",
+"h5=80//C.H.U\n",
+"//CALCULATIONS\n",
+"A=[h1-(h2)]-[d1-(d2)]*T//C.H.U\n",
+"FD=A/T//units of entropy\n",
+"AD=(d*h4/T-0.07-A/T)*T//C.H.U\n",
+"W=4.28//C.H.U\n",
+"T=AD/W//C.H.U\n",
+"P=0.4*T//C.H.U\n",
+"H=P*W*d3//C.H.U\n",
+"H1=P*W*d3*60*h//C.H.U\n",
+"H2=t3+h5//C.H.U\n",
+"W1=H1/(H2*2240)//tond\n",
+"//RESULTS\n",
+"printf('The many tons of ice would a machine working between the same limit and having a relative coefficient=% f tons',W1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"t1=20//Degeree C\n",
+"t2=-10//degree C\n",
+"h=0.95//dry\n",
+"t3=35//Degree C\n",
+"h1=0.066//lb\n",
+"h2=1.089//lb\n",
+"v1=-0.033//lb\n",
+"v2=1.193//lb\n",
+"v3=0.508//lb\n",
+"T1=263//F\n",
+"T2=293//F\n",
+"//CALCULATIONS\n",
+"T=T1/(T2-T1)//F\n",
+"E=h1-(v1)//lb\n",
+"C=0.1079//lb\n",
+"CP=E/C//lb\n",
+"A=CP*(T2-T1)-E*T1//C.H.U\n",
+"F=A/T1//units of entropy\n",
+"H=254.212//C.H.U\n",
+"H2=274.447//C.H.U\n",
+"W=[CP*(T2-T1)+h*1.023*(T2-T1)-E*T1]//C.H.U\n",
+"P=H/W//C.H.U\n",
+"V=A+v3*15-T1*v3*0.0507//C.H.U\n",
+"H1=T1*[v3*0.0507+0.05*1.023]//C.H.U\n",
+"N=H2/(W+V)//C.H.U\n",
+"//RESULTS\n",
+"printf('The upper and lower temperature limits respectively=% f F',T)\n",
+"printf('The vapour compression cycle work done=% f C.H.U',H)\n",
+"printf('The vapour is now additional work done=% f C.H.U',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=0.8//dry\n",
+"p=120//lb/in^2\n",
+"p1=1//lb/in^2\n",
+"t=100//Degree C\n",
+"A=99.6-38.6-0.178*311.8//C.H.U\n",
+"G=311.8//units of entropy\n",
+"AF=440.52//C.H.U\n",
+"H=399.82//lb/in^2\n",
+"p=307//lb\n",
+"//CALCULATIONS\n",
+"T=H/p//C.H.U\n",
+"//RESULTS\n",
+"printf('theoretical coefficient pf performance as a refrigeratior=% f C.H.U',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=7//in\n",
+"b=10//in\n",
+"c=12//in\n",
+"r=96//in\n",
+"p1=15//lb/in^2\n",
+"p2=100//lb/in^2\n",
+"T=16//Degree C\n",
+"gama=1.4//in\n",
+"h=120//r.p.m\n",
+"T1=T+273//C absolute\n",
+"//CALCULATIONS\n",
+"v1=(%pi/4)*(a/c)^2*(b/c)//ft^3\n",
+"w=(p1*144*v1)/(r*T1)//lb\n",
+"w1=h*w//lb\n",
+"W=1680*[1.72-1]//ft lb\n",
+"I=144*p1*v1*log(p2/p1)//ft lb\n",
+"E=I/W*100//percent\n",
+"//RESULTS\n",
+"printf('The ideal efficiency is defined as the ratio of tthis work=% f percent',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h1=16//i.h.p\n",
+"p1=100//lb/in^2\n",
+"p2=15//lb/in^2\n",
+"R=275//R.p.m\n",
+"h=550//ft/min\n",
+"q=33000//in^2\n",
+"v1=4.85//lb\n",
+"B=8.53//in\n",
+"//CALCULATIONS\n",
+"M=(p1/v1)-p2+(p1/v1-p2)*1/0.2\n",
+"S=h/(2*R)//ft\n",
+"I=(q*h1)/(M*S*R)//in^2\n",
+"//RESULTS\n",
+"printf('The effect of the clearance volume=% f in^2',I)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=100//ft^3\n",
+"t=15//degree C\n",
+"p=120//lb/in^2\n",
+"gama=1.3//in\n",
+"t1=15//Degree C\n",
+"M=[(144*t*h*2.6)/(0.3)*(1.271-1)]//ft lb\n",
+"//CALCULATIONS\n",
+"V=sqrt(p/t)//ft lb\n",
+"//RESULTS\n",
+"printf('Compare the values of the two cylinders=% f ft lb',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=0.2//ft^3\n",
+"v=10//percent\n",
+"T=15//degree c\n",
+"p=30//lb/in62\n",
+"t1=15//Degree C\n",
+"p1=60//lb/in^2\n",
+"v1=2.2//ft^3\n",
+"v3=0.328//ft^3\n",
+"A=(v1-v3)//ft^3\n",
+"v2=1.341//ft^3\n",
+"V=v2-h//ft^\n",
+"t2=288//Degree C\n",
+"//CALCULATIONS\n",
+"T2=(t2*p*v2)/(t1*v1)//Degree C absolute\n",
+"v5=(t2/T2)*V//ft^3\n",
+"v7=0.164//ft^3\n",
+"v8=v5-(v7/11)*v5\n",
+"v6=v8/(1-v7/11)//ft^3\n",
+"//RESULTS\n",
+"printf('The required volume of the H.P cylinder including clearance=% f ft^3',v6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=80//lb/in^2\n",
+"p2=20//lb/in^2\n",
+"//CALCULATIONS\n",
+"P=sqrt(p1*p2)//lb/in62\n",
+"V=P/p1//stroke\n",
+"W=p2/P//stroke\n",
+"//RESULTS\n",
+"printf('the ratio of cut off to length of stroke=% f stroke',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=25//lb/in^2\n",
+"p2=50//lb/in^2\n",
+"p3=75//lb/in^2\n",
+"p4=100//lb/in^2\n",
+"v1=29.2//ft^3\n",
+"v2=28.8//ft^3\n",
+"v3=28.1//ft^3\n",
+"v4=27.2//ft^3\n",
+"h=14.7//lb/in^2\n",
+"v=3//percent\n",
+"s=5//stroke\n",
+"//CALCULATIONS\n",
+"V=(%pi*p1)/(4)*4//in^3\n",
+"V1=v/p4*V//in^3\n",
+"//RESULTS\n",
+"printf('The volume of efficiency of pressure=% f in^3',V1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/6-flow_through_nozzles_steam_turbines_.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/6-flow_through_nozzles_steam_turbines_.ipynb
new file mode 100644
index 0000000..24b90fe
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/6-flow_through_nozzles_steam_turbines_.ipynb
@@ -0,0 +1,638 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: flow through nozzles steam turbines "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.28: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=100//lb/in62\n",
+"p1=0.5//lb/in^2\n",
+"T1=659.3//C.H.U/lb\n",
+"T2=26.2//C H U/lb\n",
+"W=181//C H U/lb\n",
+"H1=66//C H U/lb\n",
+"H2=115//C H U /lb\n",
+"D=0.912//C H U/lb\n",
+"H3=533.4//C H U/lb\n",
+"T3=108.5 //Degree C\n",
+"T4=26.4//Degree C\n",
+"W1=82.1/(D*H3)//lb\n",
+"s=1-W1//lb\n",
+"//CALCULATIONS\n",
+"T=W/(T1-T2)*100//percent\n",
+"Wd=H1+(H2*s)//C H U/lb\n",
+"H=T1-T3//C H U//lb\n",
+"TE=Wd/H*100//percent\n",
+"//RESULTS\n",
+"printf('the without bleeding % f pecent',T)\n",
+"printf('the proper weight of steam is bled=% f percent',TE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d=0.15//lb\n",
+"p=20//lb/in^2\n",
+"p1=100//lb/iN62\n",
+"t=200//degree C\n",
+"f=10//percent\n",
+"Pt=0.5457*p1//lb/in^2\n",
+"x1=0.996//in\n",
+"x2=0.952//in\n",
+"h=29//C.H.U/lb\n",
+"h1=65//C.H.U/lb\n",
+"v=7.73//ft^3\n",
+"v1=20.12//ft^3\n",
+"T=0.364//in\n",
+"T1=0.465//in\n",
+"v2=sqrt(2*32.2*1400*h)//ft/sec\n",
+"v3=sqrt(2*32.2*1400*h1)//ft/sec\n",
+"//CALCULATIONS\n",
+"V1=d*v*x1//ft^3\n",
+"V2=d*v1*x2//ft^3\n",
+"A1=(V1/v2)*144//in^2\n",
+"A2=(V2/v3)*144//in^2\n",
+"//RESULTS\n",
+"printf('the throat and exit diameters of the nozzle=% f in^2',A2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=0.5//lb\n",
+"p1=2.5//lb/in^2\n",
+"p2=100//lb/in^2\n",
+"t=250//Degree C\n",
+"pv=1.3//constant\n",
+"pt=0.5457*p2//lb/in^2\n",
+"t1=18//degree C\n",
+"h1=32//C.H.U/lb\n",
+"h2=151//C.H.U/lb\n",
+"D=0.887//in\n",
+"V1=sqrt(2*32.2*1400*h1)//ft/sec\n",
+"V2=sqrt(2*32.2*1400*h2)//ft.sec\n",
+"s1=8.74//ft^3\n",
+"s2=140.8//ft^3\n",
+"T1=0.687//in\n",
+"T1=1.77//in\n",
+"V3=h*s1//ft^3/sec\n",
+"V4=h*s2//ft^3/sec\n",
+"//CALCULATIONS\n",
+"A1=(V3/V1)*144//in^2\n",
+"A2=(V4/V2)*144//in^2\n",
+"//RESULTS\n",
+"printf('the size os nozzle=% f in^2',A2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=500//gallons\n",
+"p1=150//lb/in^2\n",
+"p2=0.6//lb/in^2\n",
+"P=p2*p1//lb/in^2\n",
+"h=25//C.H.U/lb\n",
+"p=62.4//lb/ft^2\n",
+"V=sqrt(2*32.2*1400*h)//ft/sec\n",
+"D=0.996//in^2\n",
+"d=4.898//in^2\n",
+"v1=1.2//in\n",
+"vi=163.2//ft/sec\n",
+"m=V/32.2//ft.lb.sec\n",
+"//CALCULATIONS\n",
+"W=V/vi-1//lb\n",
+"W1=(5000)/(3600*W)//ft/sec\n",
+"V1=W1*d*D//ft^3\n",
+"A=V1/V*144//in^2\n",
+"I=(50/36+W1)//lb/sec\n",
+"A1=(I*144)/(62.4*vi)//in^2\n",
+"//RESULTS\n",
+"printf('the aera of the stream and water orifices=% f in^2',A1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=50//degree c\n",
+"v=2000//ft/sec\n",
+"p=800//ft/sec\n",
+"b=20//Degree C\n",
+"v1=0.9//in^2\n",
+"v2=513//ft/sec\n",
+"W=(1/32.2)*[1810-(-313)]*p//ft/lb lb stream /sec\n",
+"K=(v^2)/(2*32.2)//ft/lb sec\n",
+"//CALCULATIONS\n",
+"D=(W/K)*100//percent/lb\n",
+"//RESULTS\n",
+"printf('the work done per lb=% f percent/lb',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"t=65//B.Th.U per lb\n",
+"n=0.98//dry\n",
+"p=105//lb/in^2\n",
+"a=14//Degree C\n",
+"b=20//Degree C\n",
+"p1=800//ft/sec\n",
+"v=0.80//ft/lb\n",
+"p2=3.5//lb/sec\n",
+"q=1400//in\n",
+"V=sqrt(2*32.2*778*t)//ft/sec\n",
+"W=(p1)*(1750-b)/32.2//ft lb/lb stream/sec\n",
+"H=(W*p2/550)//ft/lb\n",
+"E=1/64.4*[(1053)^2-(825)^2]//ft.lb steam /sec\n",
+"//CALCULATIONS\n",
+"Hd=(E/q)//C.H.U\n",
+"//RESULTS\n",
+"printf('the steam as it leaves the blades and hourse power=% f C.H.U',Hd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18: example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=300//ft/sec\n",
+"W=880//ft/sec\n",
+"a=18//degree C\n",
+"g=32.2//ft\n",
+"//CALCULATIONS\n",
+"Wd=(p*W)/g//ft lb\n",
+"//RESULTS\n",
+"printf('the work done /lb steam sec=% f ft lb',Wd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19: Example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=35//Degree C\n",
+"b=20//degree C\n",
+"f=2//ft\n",
+"w=422//ft\n",
+"w1=222//ft\n",
+"g=32.2//ft\n",
+"s=1500//r p m\n",
+"j=0.8//ft\n",
+"p=3//lb/sec\n",
+"h=80//percent\n",
+"i=1400//ft\n",
+"P=(%pi*(31/12)*(s/60))//ft/sec\n",
+"W=P/g*[w-(-w1)]//ft lb\n",
+"H=(p*W)/550//ft lb\n",
+"//CALCULATIONS\n",
+"E=W/(j*i)//C.H.U\n",
+"//RESULTS\n",
+"printf('the house -power developed per pair of rings if the steam=% f ft lb',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=150//lb/in^2\n",
+"p2=10//lb/in^2\n",
+"n=10//percent\n",
+"T=183.6+479.4//C.H.U\n",
+"x2=0.852//C.H.U\n",
+"H=553.9//C.H.U/lb\n",
+"h1=T-H//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"V=sqrt(2*32.2*1400*h1)//ft/sec\n",
+"V1=sqrt(2*32.2*1400*0.9*h1)//ft/sec\n",
+"//RESULTS\n",
+"printf('the neglecting friction=% f ft/sec',V)\n",
+"printf('the frictional drop in the nozzle is 10 recent of the total heat drop=% f ft/sec',V1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.23: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d=7//ft\n",
+"h=2//in\n",
+"s=750//r p m\n",
+"s1=31.3//lb/sec\n",
+"h1=1.5//in\n",
+"a=25//Degree c\n",
+"p=5.7//lb/in^2\n",
+"d1=0.97//in\n",
+"h2=370//ft/sec\n",
+"j=32.2//in\n",
+"k=1400//in\n",
+"e=0.75//percent\n",
+"w=326//in\n",
+"p=290//in\n",
+"vi=155//ft/sec\n",
+"//CALCULATIONS\n",
+"P=(%pi*7.69*s)/(60)//ft/sec\n",
+"H=(P*h2*s1)/(550*j)//ft/sec\n",
+"E=(P*h2)/(j*e*k)//C.H.U/lb\n",
+"//RESULTS\n",
+"printf('the drop in pressure while the steam is passing through the turbine=% f C.H.U/lb',E) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.25: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=300//lb/in^2\n",
+"ab=100//degree C\n",
+"w=26.4//C\n",
+"t=40//lb/in^2\n",
+"t1=180//Degree C\n",
+"p1=0.5//lb/in^2\n",
+"T=732.38//C.H.U\n",
+"W=26.2//C.H.U/lb\n",
+"W1=102//C.H.U/lb\n",
+"x=0.963//in\n",
+"d=335//C.H.U/lb\n",
+"E=743.85//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"H=T-w//C.H.U/lb\n",
+"h=T-W1//C.H.U/lb\n",
+"H1=E-h//C.H.U/lb\n",
+"T1=H+H1//C.H.U/lb\n",
+"Wd=W1+d//C.H.U\n",
+"//RESULTS\n",
+"printf('the total work done per lb steam=% f C.H.U',Wd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=((3140*%pi*60*60)/(4*4*144))//ft/sec\n",
+"v1=0.852*38.37//ft^3\n",
+"//CALCULATIONS\n",
+"W=(v/v1)//lb\n",
+"V=(2970*%pi*60*60)/(4*4*144)//ft^3\n",
+"W1=(V/v1)//lb\n",
+"//RESULTS\n",
+"printf('the weight of steam per hour=% f lb',W)\n",
+"printf('the weight of steam per hour=% f lb',W1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=300//lb\n",
+"p=75//lb/in^2\n",
+"p2=8//lb/in^2\n",
+"h=90//C.H.U/lb\n",
+"Pt=0.58*p//lb/in^2 absolute\n",
+"h1=24//lb/C.H.U\n",
+"D=0.968//C.H.U\n",
+"D1=0.886//C.H.U\n",
+"v=9.7//ft^3\n",
+"v1=47.24//ft^3\n",
+"V=sqrt(2*32.2*1400*24)//ft/sec\n",
+"V1=sqrt(2*32.2*1400*90)//ft/sec\n",
+"//CALCULATIONS\n",
+"H=(p1*v*D/3600)//ft^3\n",
+"V2=(p1*v1*D1/3600)//ft^3\n",
+"A=0.768//in^2\n",
+"A1=1.72//in^2\n",
+"d=sqrt(4*0.768/%pi)//in\n",
+"d1=sqrt((4*A1)/(%pi))//in\n",
+"//RESULTS\n",
+"printf('the diameters at the throat and exit of the nozzle=% f in',d1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d=2.15//in^2\n",
+"a=0.98//dry\n",
+"p=100//lb/in^2\n",
+"p1=11000//lb\n",
+"P=0.58*p//lb/in^2\n",
+"H=24//C.H.U/lb\n",
+"D=0.947//lb\n",
+"s=7.407//ft^3\n",
+"//CALCULATION\n",
+"V=sqrt(2*32.2*1400*H)//ft/sec\n",
+"V1=V*(d/144)//ft^3\n",
+"T=V1/(s*D)//lb\n",
+"A=(p1/3600)//lb\n",
+"C=A/T//lb\n",
+"//RESULTS\n",
+"printf('the coefficient of discharge for the nozzles=% f lb',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=9.5//lb\n",
+"p1=120//lb\n",
+"e=0.88//in\n",
+"p2=80//lb/in^2\n",
+"d=25//in\n",
+"d1=0.125//in\n",
+"t=14//degree C\n",
+"T=e*19//C.H.U/lb\n",
+"D=0.975//in\n",
+"V=sqrt(2*32.2*1400*T)//ft/sec\n",
+"S=5.467//ft^3\n",
+"//CALCULATIONS\n",
+"V1=p*S*D//ft^3\n",
+"T1=(V1*144/V)//in^2\n",
+"C=25*%pi//in\n",
+"N=C/2.5//in\n",
+"P=C/31//in\n",
+"W=d1/sind(t)//in\n",
+"L=P-W//in\n",
+"W1=L*sind(t)//in\n",
+"T2=(T1)/(31*W1)//in\n",
+"//RESULTS\n",
+"printf('The number of nozzles their breadth and heigh=% f in',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=100//lb/in^2\n",
+"p2=15//lb/in^2\n",
+"d1=95//percent\n",
+"d2=30//percent\n",
+"P=0.58*p1//lb/in^2\n",
+"H=0.95*25//C.H.U/lb\n",
+"H1=0.95*76.5//C.H.U/lb\n",
+"D=0.97//in\n",
+"D1=0.905//in\n",
+"V=7.407//ft^3\n",
+"V1=sqrt(2*32.2*1400*H)//ft/sec\n",
+"V2=sqrt(2*32.2*1400*H1)//ft/sec\n",
+"//CALCULATIONS\n",
+"V3=(2*%pi*1*V1)/(64*4*144)//ft^3\n",
+"W=(V3*3600)/(V*D)//lb\n",
+"K=V2/(2*32.2)//ft lb sec\n",
+"E=[((V2)^2*W)/(2*32.2*3600)]//ft.lb\n",
+"W1=(E*d2)/(p1*550)//ft.lb\n",
+"//RESULTS\n",
+"printf('the quantity of steam used per hour and horse power developed=% f ft.lb',W1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/7-Combustion_boiler_trials.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/7-Combustion_boiler_trials.ipynb
new file mode 100644
index 0000000..ac97995
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/7-Combustion_boiler_trials.ipynb
@@ -0,0 +1,438 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Combustion boiler trials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l=8.7//percent\n",
+"Co2=42//percent\n",
+"N=28//percent\n",
+"O2=32//percent\n",
+"x=27.65//lb air\n",
+"W=(O2/12)*(100/23)//lb\n",
+"//CALCULATIONS\n",
+"A=x-W//lb\n",
+"//RESULTS\n",
+"printf('the air to flues /lb carbon=% f lb',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Co=2420//C H U\n",
+"a=3400/6//C H U\n",
+"R=Co/3246//C H U\n",
+"T=1+0.745//lb\n",
+"n=1.12 //lb\n",
+"O2=1.33/1.745//lb\n",
+"C=O2*100/23//lb\n",
+"CB=n/T//lb\n",
+"m=1.74//lb\n",
+"k=2.33//lb\n",
+"l=1.33//lb\n",
+"c=77//lb\n",
+"d=23//lb\n",
+"//CALCULATIONS\n",
+"Y=l*c/d//N2\n",
+"//RESULTS\n",
+"printf('the weight of air and steam =% f N2',Y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w=20//lb\n",
+"t=320//degree C\n",
+"t1=22//Degree C\n",
+"w1=0.0807//lb\n",
+"A=0.03901//AH\n",
+"W=0.07469//AH\n",
+"g=5.2//A\n",
+"Q=W-A//A\n",
+"//CALCULATIONS\n",
+"H=(g*0.625)/(Q)//ft\n",
+"//RESULTS\n",
+"printf('weight of equal column of external air=% f ft',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=120//lb/in^2\n",
+"h=30//in\n",
+"t=48//degree C\n",
+"C=1000//lb\n",
+"t1=26//degree C\n",
+"m=2.2//percent\n",
+"g=18//lb\n",
+"f=127//lb\n",
+"j=33000//in\n",
+"q=1400//in\n",
+"L=0.978*8000//C.H.U\n",
+"b=50//in\n",
+"t2=320//degree C\n",
+"g1=0.24//in\n",
+"d=0.90//in\n",
+"a=0.4912*30//lb/in^2\n",
+"P=p+a//lb/in^2 abs\n",
+"T=178.62+d*483.45//C.H.U/lb\n",
+"//CALCULATIONS\n",
+"Wt=C/f//lb\n",
+"H=Wt*(T-t)//C.H.U\n",
+"F=0.022*(638.9+0.48*220-t1)//C.H.U\n",
+"G=g*0.24*(t2-t1)//C.H.U\n",
+"E=H/L*100//percent\n",
+"E1=b*j*60/(L*f*q)*100//percent\n",
+"//RESULTS\n",
+"printf('the heat balance for the boiler and find its efficiency and the overall efficiency of the plant=% f percent',E1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.17: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=7950//lb C.H.U /lb\n",
+"w=15//percent\n",
+"c=0.85//lb\n",
+"w1=14//percent\n",
+"w2=9//percent\n",
+"t1=15//degree C\n",
+"t2=325//degree C\n",
+"g=0.25//lb\n",
+"//CALCULATIONS\n",
+"H=c*v//C.H.U\n",
+"H1=0.15*(638.9+0.48*225-15)//C.H.U\n",
+"C=c*c//lb\n",
+"A=19.2//lb\n",
+"Wt=A+C//lb\n",
+"P=Wt*g*(t2-t1)//C.H.U/lb coal\n",
+"R=0.14*H//C.H.U\n",
+"R1=H-H1-P-R//C.H.U\n",
+"B=R1/H*100//percent\n",
+"//RESULTS\n",
+"printf('the efficiency of a boiler =% f percent',B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"C=86//percent\n",
+"h=4.2//percent\n",
+"w=20//lb\n",
+"a=w+0.902//lb\n",
+"C2=44/12//lb\n",
+"N=0.77//lb\n",
+"CO2=3.15\n",
+"H2O=0.042*9//lb\n",
+"N2=w*N//lb\n",
+"Ox=a-CO2-H2O-N2//lb\n",
+"//CALCULATIONS\n",
+"Co2=CO2/a*100//percent\n",
+"H2o=H2O/a*100//percent\n",
+"n2=N2/a//percent\n",
+"o2=Ox/a*100//percent\n",
+"//RESULTS\n",
+"printf('the composition of the products of combutions by weight=% f percent',o2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"g=0.05//percent\n",
+"n=0.35//percent\n",
+"c=0.5//percent\n",
+"h=10//percent\n",
+"m=167//C H U\n",
+"h1=162//C H U\n",
+"v=1//ft^3\n",
+"H2=0.5//ft^3\n",
+"Co=0.05//ft^3\n",
+"v2=3//ft\n",
+"//CALCULATIONS\n",
+"G=(g*c)+(n*H2)//ft^3\n",
+"Tv=(g*h1)+(n*m)//C H U\n",
+"M=Tv/v2//C H U/ft^3\n",
+"//RESULTS\n",
+"printf('the gas with twice its volume of air=% f C H U/ft^3',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g=8//percent\n",
+"f=88//percent\n",
+"C=12//percent\n",
+"w=20//lb\n",
+"C1=11/3//lb\n",
+"CO2=3/11//lb\n",
+"e=0.08//lb\n",
+"D=0.0218//lb C\n",
+"w1=0.88//lb\n",
+"//CALCULATIONS\n",
+"W1=w1/D//lb lb fuel\n",
+"T=w1/D*w//lb/hr\n",
+"//RESULTS\n",
+"printf('the total weight of exaust gas leaving the engine per hour=% f lb/hr',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=30//percent\n",
+"b=20//percent\n",
+"c=8//percent\n",
+"h=42//percent\n",
+"t1=20//degree C\n",
+"g=0.24//in\n",
+"t2=320//degree c\n",
+"M=7.654//lb/lb fuel\n",
+"A=3*M//lb/lb fuel\n",
+"W=0.08+0.04//lb\n",
+"T=A+0.8//lb\n",
+"w1=0.72+0.3//lb\n",
+"w=T-w1//lb\n",
+"d=w*0.24*(t2-b)//C H U/lb fuel\n",
+"H=1.02*(639+0.49*220-t1)//C H U/lb fuel\n",
+"//CALCULATIONS\n",
+"T1=d+H//C H U/lb fuel\n",
+"//RESULTS\n",
+"printf('total heat carried away by flue gases=% f C H U/lb fuel',T1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=40//percent\n",
+"g=30//percent\n",
+"c=8//percent\n",
+"n=10//percent\n",
+"w=6//percent\n",
+"g1=10//percent\n",
+"g2=4.14//ft^3\n",
+"Ch4=4.562//ft^3 of air\n",
+"Co2=0.44//ft\n",
+"H2o=1.18//ft^3\n",
+"N2=3.7//ft63\n",
+"x=41.4/11//ft63\n",
+"//CALCULATIONS\n",
+"T=Ch4+x//ft^3\n",
+"v=1+T//ft^3\n",
+"V=x+g2//ft^3\n",
+"D=v-V//ft^3\n",
+"P=D/v*100//percent\n",
+"//RESULTS\n",
+"printf('the volueme of air suplied per=% f percent',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Ox=2.679//lb\n",
+"O2=Ox-0.03//lb O2/lb fuel\n",
+"o2=O2*100/23//lb air lb fuel\n",
+"E=o2/2//lb\n",
+"a=17.325//lb /lb fuel\n",
+"Co2=3.294//lb\n",
+"H2o=0.315//lb\n",
+"N2o=13.34//lb\n",
+"O2=23/100*E//lb\n",
+"So2=0.005*2//lb\n",
+"//CALCULATIONS\n",
+"W=Co2+N2o+O2+So2//lb /lb fuel\n",
+"//RESULTS\n",
+"printf('the totel weight of dry products=% f lb /lb fuel',W)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/8-Internal_combustion_engines_Variable_specific_heats.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/8-Internal_combustion_engines_Variable_specific_heats.ipynb
new file mode 100644
index 0000000..e09175d
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/8-Internal_combustion_engines_Variable_specific_heats.ipynb
@@ -0,0 +1,408 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Internal combustion engines Variable specific heats"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p1=140//lb/in^2\n",
+"p2=6.6//lb/in^2\n",
+"v1=122//r.p.m\n",
+"v2=1250//b.h.p\n",
+"t=1425//i.h.p\n",
+"p3=77.8//lb/in^2\n",
+"h=0.356//lb\n",
+"v=10000//C.H.U/lb\n",
+"h2=2400//lb\n",
+"q=33000//in\n",
+"j=1400//in\n",
+"//CALCULATIONS\n",
+"t=(v2*q*60)/(j*h*v2*v)*100//percent\n",
+"V=(p3*144*v1)/(q*2)//V\n",
+"V1=(p2*144*v1)/q//V\n",
+"T=24.16//V\n",
+"V2=t/T//ft^3\n",
+"I=V*V2//ft^3\n",
+"I1=V1*V2//ft^3\n",
+"H=24904//C/.H.U//mim\n",
+"T=(I*q*60)/(j*h*v2*v)*100//percent\n",
+"T1=(I1*q)/(j*H)*100//percent\n",
+"T2=(h*v2*v)/(60)//C.H.U\n",
+"H1=(v2*q)/(j)//C.H.U/mim\n",
+"H2=H-(I1*q*v2)/(j*t)//C.H.U/mim\n",
+"T3=H1+H2//C.H.U/mim\n",
+"Tn=T2-T3//C.H.U/mim\n",
+"//RESULTS\n",
+"printf('the overall thermal effciency=% f percent',t)\n",
+"printf('the cylinder volume in ft^3=% f volume',V)\n",
+"printf('the thermal efficiency of steam engine=% f percent',T1)\n",
+"printf('total heat in oil.mim=% f C.H.U/mim',Tn)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r=14//in\n",
+"r1=1.8//in\n",
+"t=30.4//lb\n",
+"e=0.6//lb\n",
+"lam=1.4\n",
+"d=12//in\n",
+"d1=18//in\n",
+"v=10000//C.H.U/lb\n",
+"P=200//r m p\n",
+"//CALCULATIONS\n",
+"A=1-(1/(lam*(r)^0.4))*((r1)^lam-1)/(r1-1)//percent\n",
+"T=e*A//percent\n",
+"H=t/60*v//C.H.U\n",
+"H1=H*T//C.H.U\n",
+"I=(H1*1400)/(33000)//ln/in^2\n",
+"M=(I*33000)/(2*%pi*144/4*d1/12*P/2)//lb/in^2\n",
+"//RESULTS\n",
+"printf('the indicated hourse-power and the mean effiective pressure of the engine=% flb/in^2',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.19: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"cv=0.1714//C.H.U\n",
+"R=100.3//ft.lb\n",
+"T=500//degree c\n",
+"J=1400//in\n",
+"Lam=R/J//C.H.U percent C\n",
+"//CALCULATIONS\n",
+"Cp=Lam+cv//C.H.U percent C\n",
+"//RESULTS\n",
+"printf('The specific heat at constant volume of a gaseous mixture is=% f C.H.U percent C',Cp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"b=6//in\n",
+"b1=9//in\n",
+"r1=4//ratio\n",
+"r2=1//ratio\n",
+"p=50//lb/in^2\n",
+"s=300//r p m\n",
+"e=30//per cent\n",
+"v=260//C.H.U\n",
+"a=1.41\n",
+"h=0.30//in\n",
+"g=33000//in\n",
+"g1=1400//in\n",
+"A=1-(r2/r1)^0.41//lb/in^2\n",
+"//CALCULATIONS\n",
+"I=(p*%pi*36/4*9/12*s/2)*1/g//ft^3\n",
+"X=(I*g)/(g1*v*h)//ft^3\n",
+"C=X*60/I//ft^3\n",
+"R=h/A*100//per cent\n",
+"//RESULTS\n",
+"printf('The fuel consumption in ft^3/h p hr and the efficiency relative to the air standard cycle=% f percent',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.20: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a=0.124//in\n",
+"b=0.000025//in\n",
+"R=0.0671//heat units\n",
+"//CALCULATIONS\n",
+"Cp=(R+a+b)+b//T\n",
+"//RESULTS\n",
+"printf('the specific heat of a gas at constant volume=% f T',Cp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.21: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=18//ft^3\n",
+"p=14//lb/in^2\n",
+"p1=150//lb/in^2\n",
+"Cp=0.242//T\n",
+"Cv=0.171//T\n",
+"j=1400//ft\n",
+"R=j*(Cp-Cv)//ft.lb\n",
+"p2=144//ft\n",
+"I1=137500//ft/lb\n",
+"I2=6.37//ft/lb\n",
+"v2=3.282//ft^3\n",
+"//CALCULATIONS\n",
+"T=(p2*p*v)/R//Degree C\n",
+"T2=(p2*p1*v2)/(R)//Degree c\n",
+"W=Cp*(T2-T)+0.00002*[(T2)^2-(T)^2]//C.H.U/lb\n",
+"C=v/v2//ratio\n",
+"//RESULTS\n",
+"printf('The work done the temperatures at the beginning and end of compression ratio=% f ratio',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.22: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r=12.5//rario\n",
+"p=0.39*10^6//ft.lb\n",
+"p1=14//lb/in^2\n",
+"t=373//Degree C\n",
+"g=18//ft^3\n",
+"t1=100//Degree C\n",
+"V=g/r//ft^3\n",
+"I=0.2*10^6//ft lb/lb\n",
+"T=0.59*10^6//ft.lb/lb\n",
+"D=0.221*10^6//ft.lb/lb\n",
+"A=0.095*10^6//ft.lb/lb\n",
+"E=0.264*10^6//ft.lb/lb\n",
+"E1=0.390*10^6//ft.lb/lb\n",
+"//CALCULATIONS\n",
+"W=(E/E1)*100//percent\n",
+"M=(E)/(144*(g-V))//lb.in^2\n",
+"//RESULTS\n",
+"printf('the efficiency of the engine and the m e p on the assumption that the specific heats=% f lb in^2',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=200//r p m\n",
+"h1=50//i h p\n",
+"P4=33.4//lb/in^2\n",
+"W=9000//ft lb\n",
+"x=33000//ft.lb\n",
+"p=1728//ft/lb\n",
+"//CALCULATIONS\n",
+"w=h1*x/100//ft lb\n",
+"T=w/W//ft^3\n",
+"V =13/14*T//ft^3\n",
+"D=((V*p*8)/(3*%pi))^(1/3)//in\n",
+"//RESULTS\n",
+"printf('The diameter of the cylinder of a single acting and swept volume=% f in',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"h=12//in\n",
+"h1=18//in\n",
+"v=19000//B.Th.U/lb\n",
+"T=12600//lb/in^2\n",
+"m=90//lb/in^2\n",
+"w=120//gal\n",
+"t1=140//F\n",
+"t2=60//F\n",
+"t3=570//F\n",
+"Cv=0.24//ft/lb\n",
+"q=810//ft/lb\n",
+"n=16.9//lb\n",
+"//CALCULATIONS\n",
+"H=(n/t2*v)//B.Th.U\n",
+"H1=[m*%pi*(144/4)*(h1/h)*(T/t2)]/(778*2)//B.TH.U/min\n",
+"H2=1750//B.Th.U\n",
+"H3=(H1-H2)//B.Th.U\n",
+"W=(w*10/t2)*(t1-t2)//B,Th.U\n",
+"G=((q+n)/(t2))*(t3-t2)*Cv//B.TH.U\n",
+"//RESULTS\n",
+"printf('The heat balance showing heat quantities received and the discharged per min=% f B.TH.U',G)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=12.5 //i.p.h\n",
+"p1=8.25//in\n",
+"p2=12//in\n",
+"t=110//per min\n",
+"g1=280//C.H.U/ft^3\n",
+"g2=215//ft^3\n",
+"V=25//percent\n",
+"e=0.875//in\n",
+"T=33000//in\n",
+"v1=0.4170//ft^3\n",
+"//CALCULATIONS\n",
+"M=(T*v)/((%pi*(p1)^2)/(4)*(p2/p2)*(t))//lb.in^2\n",
+"V1=%pi*(p1)^2/4*p2/1728*e//ft^3\n",
+"V2=(%pi*(p1)^2*p2)/(4*4*1728)//ft^3\n",
+"G=(g2/60*1/t)//ft^3\n",
+"T1=G*g1//C.H.U\n",
+"T2=(T1/v1)//C.H.U\n",
+"F=(M/T2)//C.H.U\n",
+"//RESULTS\n",
+"printf('The value of the Tookey factor for gas engine=%.f C.H.U',F)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/9-Valve_Dlagrams_and_value_gears.ipynb b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/9-Valve_Dlagrams_and_value_gears.ipynb
new file mode 100644
index 0000000..f421b5c
--- /dev/null
+++ b/Examples_in_Thermodynamics_Problems_by_W_R_Crawford/9-Valve_Dlagrams_and_value_gears.ipynb
@@ -0,0 +1,185 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Valve Dlagrams and value gears"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=0.6//in\n",
+"m=1.0//in\n",
+"t=0.75//in\n",
+"p=4//in\n",
+"//CALCULATIONS\n",
+"D=t/m//in\n",
+"A=(p*m/D)//in\n",
+"//RESULTS\n",
+"printf('the travel and laps of the value=% f in',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l=1.5//in\n",
+"p=4.0//in\n",
+"v=0.98//in\n",
+"//CALCULATIONS\n",
+"T=(l*p/v)//in\n",
+"//RESULTS\n",
+"printf('the particulars of a value and it eccentric=% f in',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=1/10//in\n",
+"v1=3/4//in\n",
+"v2=3/5//in\n",
+"m=1*1/2//in\n",
+"l=4//cranks\n",
+"a1=1.25//in\n",
+"a2=0.7//in\n",
+"//CALCULATIONS\n",
+"C=a1/a2//in\n",
+"A=l*a1/a2//in\n",
+"S=(A/2-a1)//in\n",
+"//RESULTS\n",
+"printf('the travel of the value =% f in',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.17: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v=3*1/2//in\n",
+"a=30//degree\n",
+"l=0.8//in\n",
+"v1=0.2//in\n",
+"L=0.13//in\n",
+"m=1.075//in\n",
+"d=0.58//in\n",
+"p=1.875//in\n",
+"//CALCULATIONS\n",
+"V=(p-d)//in\n",
+"P=V+1.25//in\n",
+"//RESULTS\n",
+"printf('the main value and the maximum opening to steam=% f in',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p=20//in\n",
+"l=100//in\n",
+"r=120//r.p.m\n",
+"v=3.5//in\n",
+"l2=1//in\n",
+"l3=1/8//in\n",
+"v1=1.44//umega in/sec\n",
+"//CALCULATIONS\n",
+"V=p*(1.06/1.166)//umega in./sec\n",
+"R=(V/v1)//umega in/sec\n",
+"//RESULTS\n",
+"printf('The ratio of velocity of the piston to the velocity=% f umega in/sec',R)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}