summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb')
-rw-r--r--Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb841
1 files changed, 841 insertions, 0 deletions
diff --git a/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb b/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb
new file mode 100644
index 0000000..1a3bc87
--- /dev/null
+++ b/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb
@@ -0,0 +1,841 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: Hall_Effect.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_10,pg 124\n",
+"\n",
+"Rhp=3.66*10^-4\n",
+"\n",
+"rho=8.93*10^-3\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"p=1/(Rhp*e)\n",
+"\n",
+"Uhp=Rhp/rho\n",
+"\n",
+"Bz=0.5\n",
+"\n",
+"theta=atan(Uhp*Bz)\n",
+"\n",
+"theta=theta*(180/%pi)\n",
+"\n",
+"printf('density of charge carrier\n')\n",
+"\n",
+"disp(p)\n",
+"\n",
+"printf('\nhall angle\n')\n",
+"\n",
+"printf('theta=%.2f deg.',theta)\n",
+"\n",
+"printf('\nhall mobility\n')\n",
+"\n",
+"printf('Uhp=%.4f m2/VS',Uhp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: effect_of_external_impurity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_11,pg 124\n",
+"\n",
+"ni=2.5*10^13\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"un=3900\n",
+"\n",
+"up=1900\n",
+"\n",
+"sigin=ni*e*(un+up)//intrinsic conductivity\n",
+"\n",
+"//1 donor atom/10^8 Ge atom dropped\n",
+"\n",
+"rhoGe=4.42*10^22//no. of Ge atom/cc\n",
+"\n",
+"Nd=rhoGe/10^8\n",
+"\n",
+"sigex=Nd*e*un//extrinsic conductivity\n",
+"\n",
+"printf('extrinsic conductivity\n')\n",
+"\n",
+"printf('sigex=%.4f ohm cm',sigex)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: probability_of_electron_in_CB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_12,pg 124\n",
+"\n",
+"//permeability of electron to be in C.B=F(Ec)\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"Eg=5.6\n",
+"\n",
+"Ef=Eg/2\n",
+"\n",
+"Ec=Eg\n",
+"\n",
+"K=1.38*10^-23\n",
+"\n",
+"T=27+273//converting in Kelvin\n",
+"\n",
+"KT=K*T\n",
+"\n",
+"KT=KT/e\n",
+"\n",
+"//e^(Ec-Ef/KT)>>1\n",
+"\n",
+"Fermi_F=e^((Ef-Ec)/KT)//fermi factor\n",
+"\n",
+"printf('probability of electron on CB\n')\n",
+"\n",
+"disp(Fermi_F)\n",
+"\n",
+"printf('\nit is infinite in negative direction for an insulator like diamond, so diamond cannot take part in conduction')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: Hall_Effect.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_13,pg 125\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"n=7*10^21\n",
+"\n",
+"ue=0.39\n",
+"\n",
+"V=10^-3\n",
+"\n",
+"A=10^-6\n",
+"\n",
+"L=10*10^-3\n",
+"\n",
+"I=(n*e*ue*V*A)/L\n",
+"\n",
+"Rhe=-(1/(n*e))\n",
+"\n",
+"Bz=0.2\n",
+"\n",
+"d=10^-3\n",
+"\n",
+"Vhe=(Rhe*I*Bz)/d\n",
+"\n",
+"printf('current through bar I=%.7f A\n',I)\n",
+"\n",
+"printf('\nhall coeff. Rhe=%.6f m3/c\n',Rhe)\n",
+"\n",
+"printf('\nhall voltage Vhe=%.8f volt\n',Vhe)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: find_forward_bias_current_flow.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_14,pg 136\n",
+"\n",
+"J2=0.2*10^-6\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"V=0.1\n",
+"\n",
+"K=1.38*10^-23\n",
+"\n",
+"T=300\n",
+"\n",
+"J=J2*(e^((e*V)/(K*T)))//as e^((e*v)/KT)>>1\n",
+"\n",
+"printf('forward bias current flow\n')\n",
+"\n",
+"disp(J)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: find_static_and_dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_15,pg 148\n",
+"\n",
+"V1=1.4\n",
+"\n",
+"I1=60*10^-3\n",
+"\n",
+"V2=1.5\n",
+"\n",
+"I2=85*10^-3\n",
+"\n",
+"Rs1=V1/I1\n",
+"\n",
+"Rs2=V2/I2\n",
+"\n",
+"dV=V2-V1\n",
+"\n",
+"dI=I2-I1\n",
+"\n",
+"Rd=dV/dI\n",
+"\n",
+"printf('static resistance\n')\n",
+"\n",
+"printf('Rs1=%.2f ohm\n',Rs1)\n",
+"\n",
+"printf('Rs2=%.2f ohm\n',Rs2)\n",
+"\n",
+"printf('dynamic resistance\n')\n",
+"\n",
+"printf('Rd=%.2f ohm',Rd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: find_alpha_and_beta.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_16,pg 148\n",
+"\n",
+"Ie=1*10^-3\n",
+"\n",
+"Ib=0.02*10^-3\n",
+"\n",
+"Ic=Ie-Ib\n",
+"\n",
+"B=Ic/Ib\n",
+"\n",
+"alpha=Ic/Ie\n",
+"\n",
+"printf('alpha=%.2f \n',alpha)\n",
+"\n",
+"printf('B=%.2f \n',B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.17: find_leakage_current_Iceo.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_17,pg 148\n",
+"\n",
+"alpha=0.99\n",
+"\n",
+"Icbo=0.5*10^-6\n",
+"\n",
+"B=alpha/(1-alpha)\n",
+"\n",
+"Iceo=(1/(1-alpha))*Icbo\n",
+"\n",
+"printf('B=%.f \n',B)\n",
+"\n",
+"printf('Iceo=%.8f A',Iceo)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18: find_alpha_and_beta.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_18,pg 148\n",
+"\n",
+"delIc=2.5*10^-3\n",
+"\n",
+"delIb=40*10^-6\n",
+"\n",
+"B=delIc/delIb\n",
+"\n",
+"alpha=B/(1+B)\n",
+"\n",
+"printf('alpha=%.5f\n',alpha)\n",
+"\n",
+"printf('B=%.2f',B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19: find_current_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_19,pg 148\n",
+"\n",
+"Ie=1*10^-3\n",
+"\n",
+"Ib=0.04*10^-3\n",
+"\n",
+"Ic=Ie-Ib\n",
+"\n",
+"alpha=Ic/Ie\n",
+"\n",
+"printf('current gain\n')\n",
+"\n",
+"printf('alpha=%.2f',alpha)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: final_velocity_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_1,pg 121\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"V=1000\n",
+"\n",
+"m=9.1*10^-31\n",
+"\n",
+"v=sqrt((2*e*V)/m)\n",
+"\n",
+"printf('final velocity of electron\n')\n",
+"\n",
+"printf('v=%.f m/sec',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20: find_base_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_20,pg 149\n",
+"\n",
+"V=1.5\n",
+"\n",
+"R=10^3\n",
+"\n",
+"Ic=V/R\n",
+"\n",
+"alpha=0.96\n",
+"\n",
+"Ie=Ic/alpha\n",
+"\n",
+"Ib=Ie-Ic\n",
+"\n",
+"printf('base current\n')\n",
+"\n",
+"printf('Ib=%.6f A',Ib)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: find_electric_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_2,pg 121\n",
+"\n",
+"Jc=1\n",
+"\n",
+"sig=5.8*10^7\n",
+"\n",
+"E=(Jc)/sig\n",
+"\n",
+"printf('electric field established\n')\n",
+"\n",
+"disp(E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: electric_field_intensity_for_silver.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_3,pg 121\n",
+"\n",
+"vd=1*10^-3\n",
+"\n",
+"sig=6.17*10^7\n",
+"\n",
+"ue=0.0056\n",
+"\n",
+"rhoe=-(sig/ue)\n",
+"\n",
+"Jc1=-rhoe*vd\n",
+"\n",
+"E1=(Jc1)/sig\n",
+"\n",
+"I=80\n",
+"\n",
+"A=9*10^-6\n",
+"\n",
+"Jc2=I/A\n",
+"\n",
+"E2=Jc2/sig\n",
+"\n",
+"V=0.5*10^-3\n",
+"\n",
+"d=3*10^-3\n",
+"\n",
+"E3=V/d\n",
+"\n",
+"printf('E-field due to Jc1\n')\n",
+"\n",
+"printf('E1=%.6f V/m',E1)\n",
+"\n",
+"printf('\nE-field due to Jc2\n')\n",
+"\n",
+"printf('E2=%.6f V/m',E2)\n",
+"\n",
+"printf('\nE-field due to cube\n')\n",
+"\n",
+"printf('E3=%.6f V/m',E3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: find_current_density_current_and_power_out.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_4,pg 122\n",
+"\n",
+"sig=3.82*10^7\n",
+"\n",
+"L=1000*12*2.54*10^-2//converting into m\n",
+"\n",
+"r=0.4*2.54*10^-2\n",
+"\n",
+"V=1.2\n",
+"\n",
+"Jc=sig*(V/L)\n",
+"\n",
+"A=3.14*(r^2)\n",
+"\n",
+"Ic=Jc*A\n",
+"\n",
+"P=Ic*V\n",
+"\n",
+"printf('current density\n')\n",
+"\n",
+"printf('Jc=%.f A/m2',Jc)\n",
+"\n",
+"printf('\ntotal current\n')\n",
+"\n",
+"printf('Ic=%.2f A',Ic)\n",
+"\n",
+"printf('\npower dissipation\n')\n",
+"\n",
+"printf('P=%.2f watt',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: conductivity_due_to_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_5,pg 122\n",
+"\n",
+"ni=2.5*10^19\n",
+"\n",
+"um=0.39\n",
+"\n",
+"up=0.19\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"L=6*10^-3\n",
+"\n",
+"R=120\n",
+"\n",
+"A=0.5*10^-6\n",
+"\n",
+"sigp=L/(R*A)\n",
+"\n",
+"p=sigp/(e*up)\n",
+"\n",
+"Na=p\n",
+"\n",
+"n=(ni^2)/Na\n",
+"\n",
+"sigm=n*e*um\n",
+"\n",
+"ratio=sigp/sigm\n",
+"\n",
+"printf('p-type impurity concentration\n')\n",
+"\n",
+"disp(p)\n",
+"\n",
+"printf('\nproportion of conductivity due to hole and electron\n')\n",
+"\n",
+"printf('ratio=%.f',ratio);printf(':1')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: calculate_current_due_to_Ge_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_6,pg 123\n",
+"\n",
+"ni=2*10^19\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"up=0.17\n",
+"\n",
+"un=0.36\n",
+"\n",
+"V=2\n",
+"\n",
+"A=10^-4\n",
+"\n",
+"d=0.3*10^-3\n",
+"\n",
+"I=(ni*e*(up+un)*V*A)/d\n",
+"\n",
+"printf('current produced in Ge-plate\n')\n",
+"\n",
+"printf('I=%.4f A',I)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: find_intrinsic_carrier_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_7,pg 123\n",
+"\n",
+"rho=6.3*10^4\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"up=0.14\n",
+"\n",
+"un=0.05\n",
+"\n",
+"ni=1/(rho*e*(up+un))\n",
+"\n",
+"printf('intrinsic carrier concentration\n')\n",
+"\n",
+"disp(ni)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Hall_Effect.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_8,pg 123\n",
+"\n",
+"L=10^-3\n",
+"\n",
+"R=1.5\n",
+"\n",
+"A=10^-6\n",
+"\n",
+"Ey=0.6\n",
+"\n",
+"w=10^-3\n",
+"\n",
+"d=10^-3\n",
+"\n",
+"I=120*10^-3\n",
+"\n",
+"Bz=0.05\n",
+"\n",
+"e=1.6*10^-19\n",
+"\n",
+"sigp=L/(R*A)\n",
+"\n",
+"Vhp=Ey*w\n",
+"\n",
+"Rhp=(Vhp*d)/(I*Bz)\n",
+"\n",
+"Uhp=sigp*Rhp\n",
+"\n",
+"theta=atan(Uhp*Bz)\n",
+"\n",
+"theta=theta*(180/%pi)\n",
+"\n",
+"p=1/(Rhp*e)\n",
+"\n",
+"printf('hall voltage :Vhp=%.4f Volt\n',Vhp)\n",
+"\n",
+"printf('\nhall coeff. :Rhp=%.5f m3/e\n',Rhp)\n",
+"\n",
+"printf('\nhall mobility :Uhp=%.4f m2/VS\n',Uhp)\n",
+"\n",
+"printf('\nhall angle :theta=%.2f deg.\n',theta)\n",
+"\n",
+"printf('\ndensity of charge carrier\n')\n",
+"\n",
+"disp(p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: concentration_of_holes_in_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//chapter6,Example6_9,pg 123\n",
+"\n",
+"n=1.4*10^24\n",
+"\n",
+"ni=1.4*10^19\n",
+"\n",
+"Nd=n\n",
+"\n",
+"p=(ni^2)/Nd\n",
+"\n",
+"nbyp=n/p\n",
+"\n",
+"printf('electron-hole concentration ratio\n')\n",
+"\n",
+"disp(nbyp)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}