diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb')
-rw-r--r-- | Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb | 841 |
1 files changed, 841 insertions, 0 deletions
diff --git a/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb b/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb new file mode 100644 index 0000000..1a3bc87 --- /dev/null +++ b/Engineering_Physics_by_U_Mukherji/6-Semiconductors.ipynb @@ -0,0 +1,841 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Hall_Effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_10,pg 124\n", +"\n", +"Rhp=3.66*10^-4\n", +"\n", +"rho=8.93*10^-3\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"p=1/(Rhp*e)\n", +"\n", +"Uhp=Rhp/rho\n", +"\n", +"Bz=0.5\n", +"\n", +"theta=atan(Uhp*Bz)\n", +"\n", +"theta=theta*(180/%pi)\n", +"\n", +"printf('density of charge carrier\n')\n", +"\n", +"disp(p)\n", +"\n", +"printf('\nhall angle\n')\n", +"\n", +"printf('theta=%.2f deg.',theta)\n", +"\n", +"printf('\nhall mobility\n')\n", +"\n", +"printf('Uhp=%.4f m2/VS',Uhp)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: effect_of_external_impurity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_11,pg 124\n", +"\n", +"ni=2.5*10^13\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"un=3900\n", +"\n", +"up=1900\n", +"\n", +"sigin=ni*e*(un+up)//intrinsic conductivity\n", +"\n", +"//1 donor atom/10^8 Ge atom dropped\n", +"\n", +"rhoGe=4.42*10^22//no. of Ge atom/cc\n", +"\n", +"Nd=rhoGe/10^8\n", +"\n", +"sigex=Nd*e*un//extrinsic conductivity\n", +"\n", +"printf('extrinsic conductivity\n')\n", +"\n", +"printf('sigex=%.4f ohm cm',sigex)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: probability_of_electron_in_CB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_12,pg 124\n", +"\n", +"//permeability of electron to be in C.B=F(Ec)\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"Eg=5.6\n", +"\n", +"Ef=Eg/2\n", +"\n", +"Ec=Eg\n", +"\n", +"K=1.38*10^-23\n", +"\n", +"T=27+273//converting in Kelvin\n", +"\n", +"KT=K*T\n", +"\n", +"KT=KT/e\n", +"\n", +"//e^(Ec-Ef/KT)>>1\n", +"\n", +"Fermi_F=e^((Ef-Ec)/KT)//fermi factor\n", +"\n", +"printf('probability of electron on CB\n')\n", +"\n", +"disp(Fermi_F)\n", +"\n", +"printf('\nit is infinite in negative direction for an insulator like diamond, so diamond cannot take part in conduction')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: Hall_Effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_13,pg 125\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"n=7*10^21\n", +"\n", +"ue=0.39\n", +"\n", +"V=10^-3\n", +"\n", +"A=10^-6\n", +"\n", +"L=10*10^-3\n", +"\n", +"I=(n*e*ue*V*A)/L\n", +"\n", +"Rhe=-(1/(n*e))\n", +"\n", +"Bz=0.2\n", +"\n", +"d=10^-3\n", +"\n", +"Vhe=(Rhe*I*Bz)/d\n", +"\n", +"printf('current through bar I=%.7f A\n',I)\n", +"\n", +"printf('\nhall coeff. Rhe=%.6f m3/c\n',Rhe)\n", +"\n", +"printf('\nhall voltage Vhe=%.8f volt\n',Vhe)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: find_forward_bias_current_flow.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_14,pg 136\n", +"\n", +"J2=0.2*10^-6\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"V=0.1\n", +"\n", +"K=1.38*10^-23\n", +"\n", +"T=300\n", +"\n", +"J=J2*(e^((e*V)/(K*T)))//as e^((e*v)/KT)>>1\n", +"\n", +"printf('forward bias current flow\n')\n", +"\n", +"disp(J)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: find_static_and_dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_15,pg 148\n", +"\n", +"V1=1.4\n", +"\n", +"I1=60*10^-3\n", +"\n", +"V2=1.5\n", +"\n", +"I2=85*10^-3\n", +"\n", +"Rs1=V1/I1\n", +"\n", +"Rs2=V2/I2\n", +"\n", +"dV=V2-V1\n", +"\n", +"dI=I2-I1\n", +"\n", +"Rd=dV/dI\n", +"\n", +"printf('static resistance\n')\n", +"\n", +"printf('Rs1=%.2f ohm\n',Rs1)\n", +"\n", +"printf('Rs2=%.2f ohm\n',Rs2)\n", +"\n", +"printf('dynamic resistance\n')\n", +"\n", +"printf('Rd=%.2f ohm',Rd)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: find_alpha_and_beta.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_16,pg 148\n", +"\n", +"Ie=1*10^-3\n", +"\n", +"Ib=0.02*10^-3\n", +"\n", +"Ic=Ie-Ib\n", +"\n", +"B=Ic/Ib\n", +"\n", +"alpha=Ic/Ie\n", +"\n", +"printf('alpha=%.2f \n',alpha)\n", +"\n", +"printf('B=%.2f \n',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.17: find_leakage_current_Iceo.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_17,pg 148\n", +"\n", +"alpha=0.99\n", +"\n", +"Icbo=0.5*10^-6\n", +"\n", +"B=alpha/(1-alpha)\n", +"\n", +"Iceo=(1/(1-alpha))*Icbo\n", +"\n", +"printf('B=%.f \n',B)\n", +"\n", +"printf('Iceo=%.8f A',Iceo)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.18: find_alpha_and_beta.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_18,pg 148\n", +"\n", +"delIc=2.5*10^-3\n", +"\n", +"delIb=40*10^-6\n", +"\n", +"B=delIc/delIb\n", +"\n", +"alpha=B/(1+B)\n", +"\n", +"printf('alpha=%.5f\n',alpha)\n", +"\n", +"printf('B=%.2f',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.19: find_current_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_19,pg 148\n", +"\n", +"Ie=1*10^-3\n", +"\n", +"Ib=0.04*10^-3\n", +"\n", +"Ic=Ie-Ib\n", +"\n", +"alpha=Ic/Ie\n", +"\n", +"printf('current gain\n')\n", +"\n", +"printf('alpha=%.2f',alpha)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: final_velocity_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_1,pg 121\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"V=1000\n", +"\n", +"m=9.1*10^-31\n", +"\n", +"v=sqrt((2*e*V)/m)\n", +"\n", +"printf('final velocity of electron\n')\n", +"\n", +"printf('v=%.f m/sec',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.20: find_base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_20,pg 149\n", +"\n", +"V=1.5\n", +"\n", +"R=10^3\n", +"\n", +"Ic=V/R\n", +"\n", +"alpha=0.96\n", +"\n", +"Ie=Ic/alpha\n", +"\n", +"Ib=Ie-Ic\n", +"\n", +"printf('base current\n')\n", +"\n", +"printf('Ib=%.6f A',Ib)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: find_electric_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_2,pg 121\n", +"\n", +"Jc=1\n", +"\n", +"sig=5.8*10^7\n", +"\n", +"E=(Jc)/sig\n", +"\n", +"printf('electric field established\n')\n", +"\n", +"disp(E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: electric_field_intensity_for_silver.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_3,pg 121\n", +"\n", +"vd=1*10^-3\n", +"\n", +"sig=6.17*10^7\n", +"\n", +"ue=0.0056\n", +"\n", +"rhoe=-(sig/ue)\n", +"\n", +"Jc1=-rhoe*vd\n", +"\n", +"E1=(Jc1)/sig\n", +"\n", +"I=80\n", +"\n", +"A=9*10^-6\n", +"\n", +"Jc2=I/A\n", +"\n", +"E2=Jc2/sig\n", +"\n", +"V=0.5*10^-3\n", +"\n", +"d=3*10^-3\n", +"\n", +"E3=V/d\n", +"\n", +"printf('E-field due to Jc1\n')\n", +"\n", +"printf('E1=%.6f V/m',E1)\n", +"\n", +"printf('\nE-field due to Jc2\n')\n", +"\n", +"printf('E2=%.6f V/m',E2)\n", +"\n", +"printf('\nE-field due to cube\n')\n", +"\n", +"printf('E3=%.6f V/m',E3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: find_current_density_current_and_power_out.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_4,pg 122\n", +"\n", +"sig=3.82*10^7\n", +"\n", +"L=1000*12*2.54*10^-2//converting into m\n", +"\n", +"r=0.4*2.54*10^-2\n", +"\n", +"V=1.2\n", +"\n", +"Jc=sig*(V/L)\n", +"\n", +"A=3.14*(r^2)\n", +"\n", +"Ic=Jc*A\n", +"\n", +"P=Ic*V\n", +"\n", +"printf('current density\n')\n", +"\n", +"printf('Jc=%.f A/m2',Jc)\n", +"\n", +"printf('\ntotal current\n')\n", +"\n", +"printf('Ic=%.2f A',Ic)\n", +"\n", +"printf('\npower dissipation\n')\n", +"\n", +"printf('P=%.2f watt',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: conductivity_due_to_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_5,pg 122\n", +"\n", +"ni=2.5*10^19\n", +"\n", +"um=0.39\n", +"\n", +"up=0.19\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"L=6*10^-3\n", +"\n", +"R=120\n", +"\n", +"A=0.5*10^-6\n", +"\n", +"sigp=L/(R*A)\n", +"\n", +"p=sigp/(e*up)\n", +"\n", +"Na=p\n", +"\n", +"n=(ni^2)/Na\n", +"\n", +"sigm=n*e*um\n", +"\n", +"ratio=sigp/sigm\n", +"\n", +"printf('p-type impurity concentration\n')\n", +"\n", +"disp(p)\n", +"\n", +"printf('\nproportion of conductivity due to hole and electron\n')\n", +"\n", +"printf('ratio=%.f',ratio);printf(':1')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: calculate_current_due_to_Ge_plate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_6,pg 123\n", +"\n", +"ni=2*10^19\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"up=0.17\n", +"\n", +"un=0.36\n", +"\n", +"V=2\n", +"\n", +"A=10^-4\n", +"\n", +"d=0.3*10^-3\n", +"\n", +"I=(ni*e*(up+un)*V*A)/d\n", +"\n", +"printf('current produced in Ge-plate\n')\n", +"\n", +"printf('I=%.4f A',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: find_intrinsic_carrier_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_7,pg 123\n", +"\n", +"rho=6.3*10^4\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"up=0.14\n", +"\n", +"un=0.05\n", +"\n", +"ni=1/(rho*e*(up+un))\n", +"\n", +"printf('intrinsic carrier concentration\n')\n", +"\n", +"disp(ni)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Hall_Effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_8,pg 123\n", +"\n", +"L=10^-3\n", +"\n", +"R=1.5\n", +"\n", +"A=10^-6\n", +"\n", +"Ey=0.6\n", +"\n", +"w=10^-3\n", +"\n", +"d=10^-3\n", +"\n", +"I=120*10^-3\n", +"\n", +"Bz=0.05\n", +"\n", +"e=1.6*10^-19\n", +"\n", +"sigp=L/(R*A)\n", +"\n", +"Vhp=Ey*w\n", +"\n", +"Rhp=(Vhp*d)/(I*Bz)\n", +"\n", +"Uhp=sigp*Rhp\n", +"\n", +"theta=atan(Uhp*Bz)\n", +"\n", +"theta=theta*(180/%pi)\n", +"\n", +"p=1/(Rhp*e)\n", +"\n", +"printf('hall voltage :Vhp=%.4f Volt\n',Vhp)\n", +"\n", +"printf('\nhall coeff. :Rhp=%.5f m3/e\n',Rhp)\n", +"\n", +"printf('\nhall mobility :Uhp=%.4f m2/VS\n',Uhp)\n", +"\n", +"printf('\nhall angle :theta=%.2f deg.\n',theta)\n", +"\n", +"printf('\ndensity of charge carrier\n')\n", +"\n", +"disp(p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: concentration_of_holes_in_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter6,Example6_9,pg 123\n", +"\n", +"n=1.4*10^24\n", +"\n", +"ni=1.4*10^19\n", +"\n", +"Nd=n\n", +"\n", +"p=(ni^2)/Nd\n", +"\n", +"nbyp=n/p\n", +"\n", +"printf('electron-hole concentration ratio\n')\n", +"\n", +"disp(nbyp)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |