summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb')
-rw-r--r--Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb377
1 files changed, 377 insertions, 0 deletions
diff --git a/Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb b/Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb
new file mode 100644
index 0000000..6a3b1ea
--- /dev/null
+++ b/Engineering_Physics_by_H_K_Malik/16-FREE_ELECTRON_THEORY.ipynb
@@ -0,0 +1,377 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: FREE ELECTRON THEORY"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.10: Calculation_of_Energy_difference.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"l = 1e-10 //length of box in m\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"h = 6.62e-34 // Planck constant in J-sec\n",
+"// Sample Problem 10 on page no. 16.18\n",
+"printf('\n # PROBLEM 10 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('E = (n^2 * h^2) / (8 * m * l^2) \n')\n",
+"n = 1 // for n=1\n",
+"E = (n^2 * h^2) / (8 * m * l^2)\n",
+"n = 2 // for n=2\n",
+"E_ = (n^2 * h^2) / (8 * m * l^2)\n",
+"d = (E_ - E) * (1 / e)\n",
+"printf('\n Energy difference is %f eV.',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Calculation_of_Average_energy_of_electron_and_Speed_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"t = 0 // temperature in K\n",
+"E = 10 // Fermi energy of electron in eV\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"// Sample Problem 1 on page no. 16.14\n",
+"printf('\n # PROBLEM 1 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('1/2 * m*v^2 = E_0 \n')\n",
+"E_ = E * 3 / 5\n",
+"v = sqrt(2 * E_ * e / m)\n",
+"printf('\n Average energy of electron is %f eV.\n Speed of electron is %e m/sec.',E_,v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: Calculation_of_Average_energy_of_electron_and_Speed_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"t = 0 // temperature in K\n",
+"E = 7.9 // Fermi energy in eV\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"// Sample Problem 2 on page no. 16.14\n",
+"printf('\n # PROBLEM 2 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('1/2 * m*v^2 = E_0 \n')\n",
+"E_ = E * 3 / 5\n",
+"v = sqrt(2 * E_ * e / m)\n",
+"printf('\n Average energy of electron is %f eV.\n Speed of electron is %e m/sec.',E_,v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: Calculation_of_Fermi_energy_and_Speed_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"n = 2.5e28 // no. of free electron in per meter cube\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"h = 6.62e-34 // Planck constant in J-sec\n",
+"// Sample Problem 3 on page no. 16.15\n",
+"printf('\n # PROBLEM 3 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('1/2 * m*v^2 = E_0 \n ')\n",
+"printf('E_0 = (h^2 /(8 * pi^2 * m))*(3 * pi^2 * n)^(2/3) * (1 / e)\n')\n",
+"E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)\n",
+"v = (h / (2 * %pi * m)) * (3 * %pi^2 * n)^(1/3)\n",
+"printf('\n Fermi energy is %f eV.\n Speed of electron is %e m/sec.',E,v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: Calculation_of_Fermi_energy_and_Average_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"d = 8940 // density of copper in kg/m^3\n",
+"w = 63.55 // atomic weight of copper\n",
+"t = 0 // temperature in K\n",
+"N = 6.02e26 // Avogadro no. in per kg\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"h = 6.62e-34 // Planck constant in J-sec\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 4 on page no. 16.15\n",
+"printf('\n # PROBLEM 4 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('1/2 * m*v^2 = E_0 \n ')\n",
+"printf('E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n')\n",
+"V = w / d\n",
+"n = N / V \n",
+"E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)\n",
+"E_ = 3 * E / 5\n",
+"printf('\n Fermi energy is %f eV.\n Average energy is %f eV.',E,E_)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.5: Calculation_of_Fermi_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"d = 10.5e6 // density of silver in g/m^3\n",
+"w = 108 // atomic weight of silver\n",
+"t = 0 // temperature in K\n",
+"N = 6.02e23 // Avogadro no. in per kg\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"h = 6.62e-34 // Planck constant in J-sec\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 5 on page no. 16.16\n",
+"printf('\n # PROBLEM 5 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n')\n",
+"V = w / d\n",
+"n = N / V \n",
+"E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)\n",
+"printf('\n Fermi energy is %f eV.',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.6: Calculation_of_Fermi_energy_and_Fermi_vector_and_Total_kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"a = 4e-10 // lattice constant in mr\n",
+"t = 0 // temperature in K\n",
+"N = 6.02e23 // Avogadro no. in per kg\n",
+"m = 9.1e-31 // mass of electron in kg\n",
+"h = 6.62e-34 // Planck constant in J-sec\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 6 on page no. 16.16\n",
+"printf('\n # PROBLEM 6 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('E = (h^2 / (8 * pi^2 * m)) * (3 * pi^2 * N/V)^(2/3) \n')\n",
+"V = a^3\n",
+"n = 4 / V \n",
+"E = (h^2 / (8 * %pi^2 * m)) * (3 * %pi^2 * n)^(2/3) * (1 / e)\n",
+"k = (3 * %pi^2 *n)^(1/3)\n",
+"KE = (3 * E / 5) * (n)\n",
+"printf('\n Fermi energy is %f eV.\n Fermi vector is %e per m.\n Total kinetic energy is %e eV.',E,k,KE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.7: Calculation_of_Drift_velocity_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"d = 0.9e-3 // diameter of aluminium in m\n",
+"i = 6 // current in amp\n",
+"n = 4.5e28 // no. of electron available for conduction per meter^3 \n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 7 on page no. 16.17\n",
+"printf('\n # PROBLEM 7 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('J = I*A \n v_d = J/ne \n')\n",
+"J = i * 4 / (%pi * (d)^2)\n",
+"v = J / (n * e)\n",
+"printf('\n Drift velocity of electron is %e m/sec.',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.8: Calculation_of_Current_density_and_Drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"d = 8.92e3 // density of copper in kg/m^3\n",
+"i = 5 // current in amp\n",
+"w = 63.5 // atomic weight of copper\n",
+"r = 0.7e-3 // radius in meter\n",
+"N = 6.02e28 // Avogadro no.\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 8 on page no. 16.17\n",
+"printf('\n # PROBLEM 8 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf(' J = I*A \n v_d = J/ne \n')\n",
+"V = (w / d)\n",
+"n = N / V \n",
+"J = i / (%pi * r^2)\n",
+"v = J / (n * e)\n",
+"printf('\n Current density = %e amp/m^2.\n Drift velocity is %e m/sec.',J,v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.9: Calculation_of_Fermi_Energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"d1= 0.534*10^3 // densiy of Li in kg/m^3\n",
+"d2= 0.971*10^3 // densiy of Na in kg/m^3\n",
+"d3= 0.86*10^3 // densiy of K in kg/m^3\n",
+"w1 = 6.939 // atomic weight of Li \n",
+"w2 = 22.99 // atomic weight of Na\n",
+"w3 = 39.202 // atomic weight of K\n",
+"h = 6.62e-34 // Planck constant in J sec\n",
+"m = 9.1e-31 // mass of an electron in kg\n",
+"NA = 6.023e26 // Avogadro no.\n",
+"e = 1.6e-19 // charge on an electron in C\n",
+"// Sample Problem 9 on page no. 16.17\n",
+"printf('\n # PROBLEM 9 # \n')\n",
+"printf('Standard formula used \n')\n",
+"printf('E = h^2 / (8 * m * pi^2) * (3*pi^2*N/V)^2/3 \n')\n",
+"// For Li\n",
+"n1 = NA * d1/w1\n",
+"E1 = h^2/(8*%pi^2*m)*(3*%pi^2*n1)^(2/3)\n",
+"// For Na\n",
+"n2 = NA * d2/w2\n",
+"E2 = h^2/(8*%pi^2*m)*(3*%pi^2*n2)^(2/3)\n",
+"// For K\n",
+"n3 = NA * d3/w3\n",
+"E3 = h^2/(8*%pi^2*m)*(3*%pi^2*n3)^(2/3)\n",
+"printf('\n Fermi Energy \n For Li is %f eV.\n For Na is %f eV. \n For K is %f eV',E1/e,E2/e,E3/e)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}