diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb')
-rw-r--r-- | Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb b/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb new file mode 100644 index 0000000..a1a32c2 --- /dev/null +++ b/Engineering_Physics_by_G_Aruldhas/9-QUANTUM_MECHANICS.ipynb @@ -0,0 +1,205 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: QUANTUM MECHANICS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.14: Probability_of_electron_moving_in_1D_box.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.14: Probability of electron moving in 1D box : Page-207 (2010)\n", +"a = 2e-010; // Width of 1D box, m\n", +"x1 = 0; // Position of first extreme of the box, m\n", +"x2 = 1e-010; // Position of second extreme of the box, m\n", +"P = integrate('2/a*(sin(2*%pi*x/a))^2', 'x', x1, x2); // The probability of finding the electron between x = 0 and x = 1e-010\n", +"printf('\nThe probability of finding the electron between x = 0 and x = 1e-010 = %3.1f', P);\n", +"\n", +"// Result\n", +"// The probability of finding the electron between x = 0 and x = 1e-010 = 0.5 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: De_broglie_wavelength_of_an_electron_from_accelerating_potential.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.1: De-broglie wavelength of an electron from accelerating potential : Page-202 (2010)\n", +"V = 100; // Accelerating potential for electron, volt\n", +"lambda = sqrt(150/V)*1e-010; // de-Broglie wavelength of electron, m\n", +"printf('\nThe De-Broglie wavelength of electron = %4.2e m', lambda);\n", +"\n", +"// Result\n", +"// The De-Broglie wavelength of electron = 1.22e-010 m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: De_broglie_wavelength_of_an_electron_from_kinetic_energy.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.2: De-broglie wavelength of an electron from kinetic energy : Page-203 (2010)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"m = 9.1e-031; // Mass of the electron, kg\n", +"Ek = 10; // Kinetic energy of electron, eV\n", +"// Ek = p^2/(2*m), solving for p\n", +"p = sqrt(2*m*Ek*e); // Momentum of the electron, kg-m/s\n", +"lambda = h/p ; // de-Broglie wavelength of electron from De-Broglie relation, m\n", +"printf('\nThe de-Broglie wavelength of electron = %4.2e nm', lambda/1e-009);\n", +"\n", +"// Result\n", +"// The de-Broglie wavelength of electron = 3.88e-001 nm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Uncertainty_principle_for_position_and_momentum.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.4: Uncertainty principle for position and momentum: Page-203 (2010)\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"m = 9.1e-031; // Mass of the electron, kg\n", +"v = 1.1e+006; // Speed of the electron, m/s\n", +"p = m*v; // Momentum of the electron, kg-m/s\n", +"dp = 0.1/100*p; // Uncertainty in momentum, kg-m/s\n", +"h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n", +"// From Heisenberg uncertainty principle,\n", +"// dx*dp = h_bar/2, solving for dx\n", +"dx = h_bar/(2*dp); // Uncertainty in position, m\n", +"printf('\nThe uncertainty in position of electron = %4.2e m', dx);\n", +"\n", +"// Result\n", +"// The uncertainty in position of electron = 5.27e-008 m " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Uncertainty_principle_for_energy_and_time.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.5: Uncertainty principle for energy and time: Page-203 (2010)\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"h = 6.626e-034; // Planck's constant, Js\n", +"dt = 1e-008; // Uncertainty in time, s\n", +"h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n", +"// From Heisenberg uncertainty principle,\n", +"// dE*dt = h_bar/2, solving for dE\n", +"dE = h_bar/(2*dt*e); // Uncertainty in energy of the excited state, m\n", +"printf('\nThe uncertainty in energy of the excited state = %4.2e eV', dE);\n", +"\n", +"// Result\n", +"// The uncertainty in energy of the excited state = 3.30e-008 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Width_of_spectral_line_from_Uncertainty_principle.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex9.6: Width of spectral line from Uncertainty principle: Page-204 (2010)\n", +"c = 3e+008; // Speed of light, m/s\n", +"dt = 1e-008; // Average lifetime, s\n", +"lambda = 400e-009; // Wavelength of spectral line, m\n", +"// From Heisenberg uncertainty principle,\n", +"// dE = h_bar/(2*dt) and also dE = h*c/lambda^2*d_lambda, which give\n", +"// h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for d_lambda\n", +"d_lambda = lambda^2/(4*%pi*c*dt); // Width of spectral line, m\n", +"printf('\nThe width of spectral line = %4.2e m', d_lambda);\n", +"\n", +"// Result\n", +"// The width of spectral line = 4.24e-015 m " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |