diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb')
-rw-r--r-- | Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb b/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb new file mode 100644 index 0000000..a462adf --- /dev/null +++ b/Engineering_Physics_by_G_Aruldhas/3-INTERFERENCE.ipynb @@ -0,0 +1,315 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: INTERFERENCE" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Shift_in_movable_mirror_of_Michelson_Interferometer.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.10 : Page-73 (2010)\n", +"lambda1 = 5896e-008; // Wavelength of D1 line of sodium, m\n", +"lambda2 = 5890e-008; // Wavelength of D2 line of sodium, m\n", +"lambda = (lambda1+lambda2)/2;\n", +"// As lambda1 - lambda2 = lambda^2/(2*x), solving for x\n", +"x = lambda^2/(2*(lambda1 - lambda2)); // Shift in movable mirror of Michelson Interferometer, cm\n", +"printf('\nThe shift in movable mirror = %5.3f mm', x/1e-001);\n", +"\n", +"// Result \n", +"// The shift in movable mirror = 0.289 mm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Wavelength_of_Light_using_Young_Double_Slit_experiment.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.1 : Page-71 (2010)\n", +"beta = 0.51e-02; // Fringe width, cm\n", +"d = 2.2e-02; // Distance between the slits, cm\n", +"D = 2e+02; // Distance between the slits and the screen, cm\n", +"// As beta = D*lambda/d, solving for lambda\n", +"lambda = beta*d/D; // Wavelength of light, m\n", +"printf('\nThe wavelength of light = %4d angstrom', lambda/1e-010);\n", +"\n", +"// Result \n", +"// The wavelength of light = 5610 angstrom " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Fringe_shift_due_to_change_in_wavelength.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.2 : Page-71 (2010)\n", +"lambda1 = 4250e-010; // First wavelength emitted by source of light, m\n", +"lambda2 = 5050e-010; // Second wavelength emitted by source of light, m\n", +"D = 1.5; // Distance between the source and the screen, m\n", +"d = 0.025e-03; // Distance between the slits, m\n", +"n = 3; // Number of fringe from the centre\n", +"x3 = n*lambda1*D/d; // Position of third bright fringe due to lambda1, m\n", +"x3_prime = n*lambda2*D/d; // Position of third bright fringe due to lambda2, m\n", +"printf('\nThe separation between the third bright fringe due to the two wavelengths = %4.2f cm', (x3_prime - x3)/1e-02);\n", +"\n", +"// Result \n", +"// The separation between the third bright fringe due to the two wavelengths = 1.44 cm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Refractive_index_from_double_slit_experiment.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.3 : Page-71 (2010)\n", +"lambda = 5.5e-05; // Wavelength emitted by source of light, cm\n", +"n = 4; // Number of fringes shifted\n", +"t = 3.9e-04; // Thickness of the thin glass sheet, cm\n", +"mu = n*lambda/t+1; // Refractive index of the sheet of glass\n", +"printf('\nThe refractive index of the sheet of glass = %6.4f', mu);\n", +"\n", +"// Result \n", +"// The refractive index of the sheet of glass = 1.5641 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Interference_by_thin_soap_film.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.4 : Page-72 (2010)\n", +"lambda = 5893e-010; // Wavelength of monochromatic lihgt used, m\n", +"n = 1; // Number of fringe for the least thickness of the film\n", +"r = 0; // Value of refraction angle for normal incidence, degrees\n", +"mu = 1.42; // refractive index of the soap film\n", +"// As for constructive interference, \n", +"// 2*mu*t*cos(r) = (2*n-1)*lambda/2, solving for t\n", +"t = (2*n-1)*lambda/(4*mu*cos(r)); // Thickness of the film that appears bright, m\n", +"printf('\nThe thickness of the film that appears bright = %6.1f angstrom', t/1e-010);\n", +"// As for destructive interference, \n", +"// 2*mu*t*cos(r) = n*lambda, solving for t\n", +"t = n*lambda/(2*mu*cos(r)); // Thickness of the film that appears bright, m\n", +"printf('\nThe thickness of the film that appears dark = %4d angstrom', t/1e-010);\n", +"\n", +"// Result \n", +"// The thickness of the film that appears bright = 1037.5 angstrom\n", +"// The thickness of the film that appears dark = 2075 angstrom " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Interference_due_to_thin_air_wedge.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.5 : Page-72 (2010)\n", +"lambda = 5893e-008; // Wavelength of monochromatic lihgt used, m\n", +"n = 10; // Number of fringe that are found in the distnace of 1 cm\n", +"d = 1; // Distance of 10 fringes, cm\n", +"beta = d/n; // Fringe width, cm\n", +"theta = lambda/(2*beta); // Angle of the wedge, rad\n", +"printf('\nThe angle of the wedge = %5.3e rad', theta);\n", +"\n", +"// Result \n", +"// The angle of the wedge = 2.946e-004 rad " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Separation_between_consecutive_bright_fringes_formed_by_an_air_wedge.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.6 : Page-72 (2010)\n", +"lambda = 5900e-008; // Wavelength of monochromatic lihgt used, m\n", +"t = 0.010e-01; // Spacer thickness, cm\n", +"l = 10; // Wedge length, cm\n", +"theta = t/l; // Angle of the wedge, rad\n", +"beta = lambda/(2*theta); // Fringe width, cm\n", +"printf('\nThe separation between consecutive bright fringes = %5.3e cm', beta);\n", +"\n", +"// Result \n", +"// The separation between consecutive bright fringes = 2.950e-001 cm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Newton_Rings_by_reflected_light.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.7 : Page-72 (2010)\n", +"D4 = 0.4; // Diameter of 4th dark ring, cm\n", +"D12 = 0.7; // Diameter of 12th dark ring, cm\n", +"// We have dn_puls_k^2-Dn^2 = 4*k*R*lambda, so\n", +"// D12^2-D4^2 = 32*R*lambda and D20^2-D12^2 = 32*R*lambda for k = 8, solving for D20\n", +"D20 = sqrt(2*D12^2-D4^2); // Diameter of 20th dark ring, cm\n", +"printf('\nThe diameter of 20th dark ring = %6.4f cm', D20);\n", +"\n", +"// Result \n", +"// The diameter of 20th dark ring = 0.9055 cm " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Refractive_index_from_Newton_Rings_arrangement.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.8 : Page-73 (2010)\n", +"Dn = 0.30; // Diameter of nth dark ring with air film, cm\n", +"dn = 0.25; // Diameter of nth dark ring with liquid film, cm\n", +"mu = (Dn/dn)^2; // Refractive index of the liquid\n", +"printf('\nThe refractive index of the liquid = %4.2f', mu);\n", +"\n", +"// Result \n", +"// The refractive index of the liquid = 1.44 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Wavelength_of_light_using_Michelson_Interferometer.sci" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex3.9 : Page-73 (2010)\n", +"x = 0.002945; // Distance through which movable mirror is shifted, cm\n", +"N = 100; // Number of fringes shifted\n", +"lambda = 2*x/N; // Wavelength of light, m\n", +"printf('\nThe wavelength of light = %4d angstrom', lambda/1e-008);\n", +"\n", +"// Result \n", +"// The wavelength of light = 5890 angstrom" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |