diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb | 720 |
1 files changed, 720 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb new file mode 100644 index 0000000..2e9bd9c --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/7-Semiconducting_materials.ipynb @@ -0,0 +1,720 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Semiconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: find_the_new_position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.10 , pg 214\n", +"T1=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"T2=330 //temperature (in K)\n", +"E1=0.3 // E1=(Ec-Ef_300) (in eV)\n", +"E2=(E1*T2)/T1 //E2=(Ec-Ef_330) (in eV)\n", +"printf('At 330 K the Fermi energy kevel lies ')\n", +"disp(E2)\n", +"printf('(in eV) below conduction band')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.11: calculate_concentration_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.11 , pg 214\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"Eg=1.1 //bandgap (in eV)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.31*Me //electron effective mass\n", +"ni=2*((2*%pi*k*T*Mn)/h^2)^(3/2)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n", +"printf('Intrinsic concentration (in m^-3)')\n", +"disp(ni)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: calculate_drift_mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.12 , pg 214\n", +"T=300 //temperature (in K)\n", +"Rh=0.55*10^-10 //Hall coefficient (in m^3/(A*s))\n", +"sigma=5.9*10^7 //conductivity (in ohm^-1 * m^-1)\n", +"DM= Rh*sigma //drift mobility\n", +"printf('Drift mobility (in m^2/(V *s))=')\n", +"disp(DM)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.13: calculate_concentration_of_conduction_electrons_in_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.13 , pg 215\n", +"Ud=3.2*10^-3 //electron drift mobility (in m^2/(V*s))\n", +"sigma=5.9*10^7 //conductivity (in /(ohm*m))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"Na=6.022*10^23 //Avogadro constant (in mol^-1)\n", +"ni=sigma/(Ud*e) //intrinsic concentration (in m^-3)\n", +"Aw=63.5 //atomic weight\n", +"d=8960 //density (in Kg/m^3)\n", +"n=10^3 //number of free electrons per atom\n", +"N=(Na*d*n)/Aw //concentration of free electrons in pure Cu\n", +"Avg_N=ni/N //Average number of electrons contributed per Cu atom\n", +"printf('concentration of free electrons in pure Cu (in m^-3)')\n", +"disp(N)\n", +"printf('Average number of electrons contributed per Cu atom\n')\n", +"printf('Avg_N=%.2f ',Avg_N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.14: calculate_charge_carrier_density_and_electron_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.14 , pg 215\n", +"RH=3.66*10^-11 //Hall coefficient (in m^3/(A*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=112*10^7 //conductivity (in (oh*m)^-1)\n", +"n=1/(RH*e) //charge carrier density\n", +"Un=sigma/(n*e) //electron mobility\n", +"printf('charge carrier density(in m^-3)=')\n", +"disp(n)\n", +"printf('Electron mobility=')\n", +"printf('Un=%.3f m^2/(A*s)',Un)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.15: calculate_magnitude_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.15 , pg 216\n", +"I=50 //current (in A)\n", +"B=1.5 //magnetic field (in T)\n", +"d=0.2*10^-2 //width of slab (in m)\n", +"n=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(B*I)/(n*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)\n", +"\n", +"\n", +"\n", +"\n", +"//Answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.16: find_resistance_of_intrinsic_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.16 , pg 216\n", +"ni=2.5*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.39 //electron mobility (in m^2/(V*s))\n", +"up=0.19 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"l=10^-2 //length (in m)\n", +"A=10^-3*10^-3 //area (in m^2)\n", +"sigma=ni*e*(Un+up) // electrical conductivity (in (ohm*m)^-1)\n", +"R=l/(sigma*A) //Resistance\n", +"printf('Resistance of intrinsic Ge rod\n')\n", +"printf('R=%.0f ohm',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.17: determine_the_position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.17 , pg 216\n", +"Eg=1.12 //bandgap (in eV)\n", +"T=300 //temperature (in K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.12*Me\n", +"Mp=0.28*Me\n", +"k=1.38*10^-23 //Boltzmann constant (in (m^2*Kg)/(s^2*K))\n", +"Ef=(Eg/2)+((log(Mp/Mn)*3*k*T)/(4*1.6*10^-19))\n", +"printf('position of Fermi level')\n", +"printf('Ef=%.3f eV',Ef)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.18: calculate_electrical_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.18 , pg 217\n", +"ni=1.5*10^16 //intrinsic carrier density(in m^-3)\n", +"Un=0.13 //electron mobility (in m^2/(V*s))\n", +"up=0.05 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.6f (ohm*m)^-1',sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.19: find_intrinsic_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.19 , pg 217\n", +"ni=2.15*10^13 //intrinsic carrier density(in cm^-3)\n", +"Un=3900 //electron mobility (in cm^2/(V*s))\n", +"up=1900 //hole mobility (in cm^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma_I=ni*e*(Un+up) // electrical conductivity (in (ohm*cm)^-1)\n", +"rho_I=1/sigma_I //intrinsic resistivity\n", +"printf('Intrinsic resistivity\n')\n", +"printf('rho_I=%.0f ohm*cm',rho_I)\n", +"\n", +"\n", +"\n", +"\n", +"//Intrisic carrier density is given as 2.15*10^-13 instead of 2.15*10^13" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Evaluate_approximate_donor_binding_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.1 , pg 208\n", +"Er=13.2 // relative permittivity\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mnc=0.067*Me\n", +"h=6.625*10^-34 //plancks constant (in Js)\n", +"Eo=8.85*10^-12\n", +"e=1.6*10^-19 //electronic charge of electron (in C)\n", +"E=(Mnc*e^4)/(8*(Er*Eo)^2*h^2) //Donor binding energy (in J)\n", +"printf('Donor binding energy (in J)=')\n", +"disp(E)\n", +"printf('E=%.4f eV',(E/e))" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.20: find_electrical_conductivity_before_and_after_addition_of_B_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.20 , pg 217\n", +"ni=2.1*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.4 //electron mobility (in m^2/(V*s))\n", +"up=0.2 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.3f (ohm*m)^-1',sigma)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.21: find_Hall_coefficient_and_electron_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.21 , pg 218\n", +"e=1.6*10^-19 // charge of electron (in C)\n", +"I=5*10^-3 // current (in mA)\n", +"V=1.35 // voltage (in V)\n", +"Vh=20*10^-3 //Hall voltage (in V)\n", +"B=0.45 //magnetic induction (in T)\n", +"l=10^-2 //length (in m)\n", +"b=5*10^-3 //breadth (in m)\n", +"d=10^-3 //thickness (in m)\n", +"R=V/I //resistance (in ohm)\n", +"A=b*d //area (in m^2)\n", +"rho= (R*A)/l //resistivity (in ohm*m)\n", +"E=Vh/d //Hall electric field (in V/m)\n", +"J=I/A //current density (in A/m^2)\n", +"Rh=E/(B*J) //Hall coefficient \n", +"Un=Rh/rho //electron mobility (in m^2/(V*S))\n", +"printf('Hall coefficient =')\n", +"printf('Rh=%.3f m^3/C \n',Rh)\n", +"printf('Electron mobility=')\n", +"printf('Un=%.2f m^2/(V*S)',Un)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.22: find_Hall_potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.22 , pg 218\n", +"Ix=200 //current (in A)\n", +"Bz=1.5 //magnetic field (in T)\n", +"d=10^-3 //width of slab (in m)\n", +"p=8.4*10^28 //concentration of electrons (in m^-3)\n", +"e=1.6*10^-19 // charge (in C)\n", +"VH=(Bz*Ix)/(p*e*d) //Hall voltage\n", +"printf('Hall voltage(in V)=')\n", +"disp(VH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: calculate_equilibrium_hole_concentration_and_how_is_Ef_located_relative_to_Ei.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.2 , pg 208\n", +"ni=1.5*10^10 //intrinsic concentration (in cm^-3)\n", +"Nd=10^16 //donor concentration (in atoms/cm^3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"n0=Nd //Assuming n0=Nd ( since Nd >> ni)\n", +"p0=ni^2/n0 //hole concentration\n", +"E=k*T*log(n0/ni) // E=(Ef-Ei) location of Ef relative to Ei\n", +"printf('Hole concentration (in cm^-3)')\n", +"disp(p0)\n", +"printf('Location of Ef relative to Ei (in eV)')\n", +"disp(E/e)\n", +"x = linspace(-5.5,5.5,51);\n", +"y = 1 ;\n", +"\n", +"scf(2);\n", +"clf(2);\n", +"plot(x,y+0.1);\n", +"\n", +"plot(x,y,'ro-');\n", +"plot(x,y-0.347,'--');\n", +"plot(x,y*0,'bs:');\n", +"xlabel(['x axis';'(independent variable)']);\n", +"ylabel('Energy level (eV)');\n", +"title('Band diagram');\n", +"legend(['Ec';'Ef';'Ei';'Ev']);\n", +"set(gca(),'data_bounds',matrix([-6,6,-0.1,1.1],2,-1));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: calculate_resistivity_of_sample.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.3 , pg 208\n", +"Nd=10^14 //Donor density (in atoms/cm^3)\n", +"e=1.6*10^-19 //electronic charge of electron (in C)\n", +"Un=3900 // electron mobility (in cm^2/(V*s)) for Ge at 300 K\n", +"sigma=Nd*e*Un //conductivity\n", +"rho=1/sigma //resistivity\n", +"printf('Resistivity=\n')\n", +"printf('rho=%.2f ohm*cm',rho)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: calculate_resistivity_and_Hall_coefficient_and_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7 4 , pg 209\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Ix=2*10^-3 //current (in A)\n", +"d=200*10^-4 //thickness (in cm)\n", +"Bz=5*10^-5 //magnetic induction (in Wb/cm^2)\n", +"Un=800 //electron mobility (in cm^2/(V*s))\n", +"n=5*10^16 //doping concentration (in atoms/cm^3)\n", +"\n", +"sigma=n*e*(Un) // electrical conductivity\n", +"rho=1/sigma //resistivity\n", +"Rh=-1/(e*n) //Hall coefficient\n", +"Vh=-(Ix*Bz)/(d*e*n) //Hall voltage\n", +"printf('Resistivity(in ohm*cm)')\n", +"disp(rho)\n", +"printf('Hall coefficient(in cm^3/C)')\n", +"disp(Rh)\n", +"printf('Hall voltage (in V)')\n", +"disp(Vh)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: EX7_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.5 , pg 210\n", +"T=300 //temperature (in K)\n", +"Un=0.4 //electron mobility (in m^2/(V*s))\n", +"Up=0.2 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"Eg=0.7 //bandgap (in eV)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.55*Me //electron effective mass\n", +"Mp=0.37*Me //hole effective mass\n", +"ni=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn*Mp)^(3/4)*exp(-(Eg*e)/(2*k*T)) //intrinsic concentration\n", +"sigma=ni*e*(Un+Up) //intrinsic conductivity\n", +"rho=1/sigma //intrinsic resistivity\n", +"printf('Intrinsic concentration (in m^-3)')\n", +"disp(ni)\n", +"printf('Intrinsic conductivity (in /(ohm*m)')\n", +"disp(sigma)\n", +"printf('Intrinsic resistivity (in ohm*m)')\n", +"disp(rho)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: calculate_Fermi_energy_with_respect_to_Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.6 , pg 211\n", +"Nd=10^16 //donor concentration (in cm^-3)\n", +"ni=1.45*10^10 //intrinsic concentration (in cm^-3)\n", +"T=300 //temperature (in K)\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"E=k*T*log(Nd/ni) //E=(Efd-Ei) Fermi energy with respect to Fermi energy in intrinsic Si\n", +"printf('Fermi energy with respect to Fermi energy in intrinsic Si(in eV)')\n", +"disp(E/e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: find_resistance_of_pure_and_doped_Si_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.7 , pg 211\n", +"rho=2300 //resistivity (in ohm*m) for Si (value given in book is wrong)\n", +"ni=1.6*10^16 //intrinsic concentration (in m^-3)\n", +"Ue=0.15 //electron mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge of electron (in C)\n", +"// assuming 1*1*1 (in cm) dimension of Si crystal\n", +"l=10^-2 //length (in m)\n", +"b=10^-2 //breadth (in m)\n", +"w=10^-2 //width (in m)\n", +"Nsi=5*10^28 // (in atoms/m^3)\n", +"x=1/10^9 //doping concentration\n", +"A=l*b //area (in m^2)\n", +"R1=(rho*l)/A //resistance of pure Si crystal (in ohm)\n", +"Nd=Nsi*x //donor concentration (in m^-3)\n", +"p=ni^2/Nd //concentration of hole (in m^-3)\n", +"sigma=Nd*Ue*e //coductivity of doped Si (in ohm^-1*m^-1)\n", +"R=l/(sigma*A) //resistance of doped Si crystal (in ohm)\n", +"printf('Resistance of pure Si crystal (in ohm)')\n", +"disp(R1)\n", +"printf('Resistance of doped Si crystal (in ohm)')\n", +"disp(R)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: compute_forbidden_energy_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example 7.8 , pg 212\n", +"rho=2.12 //resistivity (in ohm*m)\n", +"T=300 //temperature (in K)\n", +"Un=0.36 //electron mobility (in m^2/(V*s))\n", +"Up=0.17 //hole mobility (in m^2/(V*s))\n", +"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", +"k=1.38*10^-23 //Boltzmann constant (in J/K)\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"Me=9.11*10^-31 //mass of electron (in Kg)\n", +"Mn=0.5*Me //electron effective mass\n", +"Mp=0.37*Me //hole effective mass\n", +"ni=1/(rho*e*(Un+Up)) //intrinsic concentration (in m^-3)\n", +"Nc=2*((2*%pi*k*T)/h^2)^(3/2)*(Mn)^(3/2) //effective density of states in conduction band (in m^-3)\n", +"Nv=2*((2*%pi*k*T)/h^2)^(3/2)*(Mp)^(3/2) //effective density of states in valence band (in m^-3)\n", +"Eg=2*k*T*log(sqrt(Nc*Nv)/ni) //Forbidden energy gap\n", +"printf('Forbidden energy gap=')\n", +"printf('Eg=%.3f eV',Eg/e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: calculate_conductivity_of_sample.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 7 , Example7.9 , pg 213\n", +"ni=2.4*10^19 //intrinsic carrier density(in m^-3)\n", +"Un=0.39 //electron mobility (in m^2/(V*s))\n", +"up=0.19 //hole mobility (in m^2/(V*s))\n", +"e=1.6*10^-19 //charge in electron (in C)\n", +"sigma=ni*e*(Un+up) // electrical conductivity\n", +"printf('Electrical conductivity\n')\n", +"printf('sigma=%.3f (ohm*m)^-1',sigma)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |