diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb')
-rw-r--r-- | Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb | 118 |
1 files changed, 118 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb new file mode 100644 index 0000000..3dc2a8b --- /dev/null +++ b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb @@ -0,0 +1,118 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Lasers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: To_calculate_relative_populatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 1 , pg 52\n", +"lam=590*10^-9//wavelength(in m)\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light\n", +"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n", +"//n1=number of atoms in ground state\n", +"//n2=number of atoms in excited state\n", +"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: To_calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 2 , pg 53\n", +"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"c=3*10^8//speed of light(in m/s)\n", +"lam=590*10^-9//wavelength(in m)\n", +"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n", +"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n", +"printf('Ratio of stimulated emission to spontaneous emission is')\n", +"disp(N)\n", +"\n", +"\n", +"//answer given is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: calculate_number_of_photons_emitted_per_minute.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// chapter 2 , Example2 3 , pg 53\n", +"lam=632.8*10^-9//wavelength(in m)\n", +"Em=3.147*10^-3*60//energy emitted per minute(in J/min)\n", +"c=3*10^8//speed of light(in m/s)\n", +"h=6.625*10^-34//plancks constant(in Js)\n", +"n=c/lam //frequency of emitted photons(in Hz)\n", +"E=h*n //energy of each photon(in J)\n", +"N=Em/E //number of photons emitted per minute\n", +"printf('Number of photons emitted per minute')\n", +"disp(N)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |