summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb118
1 files changed, 118 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
new file mode 100644
index 0000000..3dc2a8b
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/2-Lasers.ipynb
@@ -0,0 +1,118 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Lasers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: To_calculate_relative_populatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 1 , pg 52\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light\n",
+"N=exp(-(h*c)/(lam*k*T)) //N=(n2/n1)=relative population of atoms in the 1st excited state and in ground state\n",
+"//n1=number of atoms in ground state\n",
+"//n2=number of atoms in excited state\n",
+"printf('Relative population of Na atoms in the 1st excited state and in ground state\n')\n",
+"disp(N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: To_calculate_ratio_of_stimulated_emission_to_spontaneous_emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 2 , pg 53\n",
+"T=250+273 //temperature(in kelvin) (converting celsius into kelvin)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"lam=590*10^-9//wavelength(in m)\n",
+"k=1.38*10^-23//boltzman constant (in (m^2*Kg)/(s^2*k))\n",
+"N=1/(exp((h*c)/(lam*k*T))-1) //N=((n21)'/(n21)) ratio of stimulated emission to spontaneous emission\n",
+"printf('Ratio of stimulated emission to spontaneous emission is')\n",
+"disp(N)\n",
+"\n",
+"\n",
+"//answer given is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: calculate_number_of_photons_emitted_per_minute.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 2 , Example2 3 , pg 53\n",
+"lam=632.8*10^-9//wavelength(in m)\n",
+"Em=3.147*10^-3*60//energy emitted per minute(in J/min)\n",
+"c=3*10^8//speed of light(in m/s)\n",
+"h=6.625*10^-34//plancks constant(in Js)\n",
+"n=c/lam //frequency of emitted photons(in Hz)\n",
+"E=h*n //energy of each photon(in J)\n",
+"N=Em/E //number of photons emitted per minute\n",
+"printf('Number of photons emitted per minute')\n",
+"disp(N)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}