summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2
all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb')
-rw-r--r--Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb441
1 files changed, 441 insertions, 0 deletions
diff --git a/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
new file mode 100644
index 0000000..52f947f
--- /dev/null
+++ b/Engineering_Physics_by_D_K_Bhattacharya/1-ultrasonics.ipynb
@@ -0,0 +1,441 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: ultrasonics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: To_find_depth_of_sea.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 10 , pg 24\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.83 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by sound\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: To_calculate_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 11 , pg 24\n",
+"aS=1050//total absorption inside hall(in Sabine)\n",
+"//a=average absorption coefficient , S=area of interior surface\n",
+"V=9000//volume of hall(in m^3)\n",
+"T=(0.165*V)/aS//reverberation time\n",
+"printf('Reverberation time of hall\n')\n",
+"printf('T=%.4f sec',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: To_find_area_of_interior_surface.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 12 , pg 25\n",
+"V=13500//volume(in m^3)\n",
+"T=1.2//reverberation time(in sec)\n",
+"a=0.65//average absorption coefficient(in Sabine/m^2)\n",
+"S=(0.165*V)/(a*T)//area of interior surface\n",
+"printf('Area of interior surface\n')\n",
+"printf('S=%.1f m^2',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: To_find_reverberation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 13 , pg 25\n",
+"V=15000//volume(in m^3)\n",
+"T1=1.3//initial reverberation time(in sec)\n",
+"aS=(0.165*V)/T1 //total absorption of hall (in Sabine)\n",
+"T2=(0.165*V)/(aS+300)//revrberation time of hall after adding 300 chairs each having absorption of 1 Sabine\n",
+"printf('Reverberation time of hall after adding 300 chairs\n')\n",
+"printf('T2=%.3f sec',T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: To_find_depth_of_submarine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 14 , pg 26\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.5 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: To_find_frequency_of_waves.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 15 , pg 26\n",
+"lam=2*0.4*10^-3 //distance between 2 antinodes is lam/2 (in m)\n",
+"n=1.5*10^6 //frequency of crystal(in Hz)\n",
+"v=n*lam //velocity\n",
+"printf('velocity of waves in sea water\n')\n",
+"printf('v=%.1f m/s',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: To_evaluate_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 16 , pg 26\n",
+"l=40*10^-3//length(in m)\n",
+"E=11.5*10^10//youngs modulus(in N/m^2)\n",
+"d=7250//density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal\n')\n",
+"printf('n=%.2f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: To_find_depth_of_submerged_submarine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 1 , pg 20\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.33 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of submarine\n",
+"disp (d, ' the velocity of ultrasonic waves ( in m) is ' )\n",
+"disp (d1, ' the depth of submarine ( in m) is ' )\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 2 , pg 21\n",
+"d=7.25*10^3 //density(in kg/m^3)\n",
+"E=115*10^9 //youngs modulus(in N/m^2)\n",
+"l=40*10^-3 //length of rod(in m)\n",
+"n=sqrt(E/d)/(2*l) //natural frequency of rod\n",
+"disp (n*10^-3, 'the natural frequency of rod (in kHz) is ')\n",
+"printf('yes,the rod can be used for producing ultrasonic waves because its frequency lies in the ultrasonic range')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 3 , pg 21\n",
+"l=10^-3//length(in m)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"d=2650//density(in kg/m^3)\n",
+"p=1//fundamental mode\n",
+"n= p*sqrt(E/d)/(2*l) //natural frequency\n",
+"printf('Fundamental frequency of quartz crystal\n')\n",
+"printf('n=%.2f Hz',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: compute_the_velocity_of_waves.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 4 , pg 22\n",
+"lam=2*0.55*10^-3 //distance between 2 antinodes is lam/2 (in m)\n",
+"n=1.45*10^6 //frequency of crystal(in Hz) (given) they have taken n=1.5 Hz in calculation\n",
+"v=n*lam //velocity\n",
+"printf('velocity of waves in sea water\n')\n",
+"printf('v=%.1f m/s',v)\n",
+"\n",
+"\n",
+"//sum is solved using n=1.5 Hz while the frequency given is n=1.45 Hz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 5 , pg 22\n",
+"l=50*10^-3//length of rod(in m)\n",
+"d=7250//density(in kg/m^3)\n",
+"E=11.5*10^10//youngs modulus(in N/m^2)\n",
+"n=sqrt(E/d)/(2*l)//natural frequency\n",
+"printf('Natural frequency of rod\n')\n",
+"printf('n=%.2f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 6 , pg 23\n",
+"l=2*10^-3//length(in m)\n",
+"d=2650//density(in kg/m^3)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of crystal\n')\n",
+"printf('n=%.3f MHz',n*10^-6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: To_calculate_the_natural_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 7 , pg 23\n",
+"l=3*10^-3//length(in m)\n",
+"d=2500//density(in kg/m^3)\n",
+"E=8*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of ultrasound\n')\n",
+"printf('n=%.3f KHz',n*10^-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: To_calculate_the_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 8 , pg 23\n",
+"l=1.5*10^-3//length(in m)\n",
+"d=2650//density(in kg/m^3)\n",
+"E=7.9*10^10//youngs modulus(in N/m^2)\n",
+"p=1\n",
+"n=(p*sqrt(E/d))/(2*l)//natural frequency\n",
+"printf('frequency of crystal\n')\n",
+"printf('n=%.3f MHz',n*10^-6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: To_find_depth_of_sea.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// chapter 1 , Example1 9 , pg 24\n",
+"v=1440 //velocity of ultrasonic waves(in m/s)\n",
+"t=0.95 //time lapsed(in sec)\n",
+"d=(v*t) //distance travelled by ultrasonic waves\n",
+"d1=d/2 //depth of sea\n",
+"disp (d1, ' the depth of sea ( in m) is ' )\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}