diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.gz all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.tar.bz2 all-scilab-tbc-books-ipynb-06b09e7d29d252fb2f5a056eeb8bd1264ff6a333.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb')
-rw-r--r-- | Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb | 340 |
1 files changed, 340 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb new file mode 100644 index 0000000..52eabbb --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb @@ -0,0 +1,340 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Conducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.10.\n", +"//Page No.234.\n", +"clc;clear;\n", +"K = 387;//Thermal conductivity of copper -[W m^-1 K^-1].\n", +"d = 5.82*10^(7);//Electrical conductivity of copper -[ohm^-1 m^-1].\n", +"T = 300;//Temperature -[K].\n", +"L = (K/(d*T));\n", +"printf('\nThe Lorentz number is %3.3e W ohm K^-2',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: conductivity_and_Larentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.11.\n", +"//Page No.235.\n", +"clc;clear;\n", +"n = 8.49*10^(28);//Concentration of electrons in copper -[m^-3].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"Tr = 2.44*10^(-14);//Relaxation time of electron -[s]\n", +"m = 9.1*10^(-31);//mass of electron.\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"T = 293;//Temperature -[K].\n", +"d = ((n*e^(2)*Tr)/(m));\n", +"printf('\n1)The electrical conductivity is %3.3e per ohm meter',d);\n", +"K = ((n*(%pi)^(2)*k^(2)*T*Tr)/(3*m));\n", +"printf('\n 2)The thermal conductivity is %.2f W m^-1.K^-1',K);\n", +"L = K/(d*T);\n", +"printf('\n3)The Lorentz number is %3.3e W ohm K^-2',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Resistivity_of_sodium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.1\n", +"//Page No.231.\n", +"clc;clear;\n", +"m = 9.1*10^(-31);//mass\n", +"n = 2.533*10^(28);//concentration of electrons -[per m^3]\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"Tr = 3.1*10^(-14);//Relaxation time -[s].\n", +"d = m/(n*e^(2)*Tr);//The resistivity of sodium at 0 degree celcius.\n", +"printf('\nThe resistivity of sodium at 0 degree celcius is %3.3e ohm m',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.2.\n", +"//Page No.231.\n", +"clc;clear;\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"slope = 3.75*10^(3);\n", +"Eg = ((2*k)*slope)/(1.6*10^(-19));//The band gap of the semiconductor.\n", +"printf('\nThe band gap of the semiconductor is %.3f eV',Eg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Probability_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.3.\n", +"//Page No.231.\n", +"clc;clear;\n", +"T = 1262;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"E = 0.5*1.6*10^(-19);//Here E= E-Ef.\n", +"f = 1/(1+exp(E/(k*T)));//'f' is the probability of occupation of electron at 989 degree celcius.\n", +"printf('\nThe probability of occupation of electron at 989 degree celcius is %.2f',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.4.\n", +"//Page No.232.\n", +"clc;clear;\n", +"ue = 0.0035*10^(3);// mobility of electron\n", +"E = 0.5;//Electric field strength\n", +"vd = ue*E;\n", +"printf('\nThe drift velocity of the electron is %.2f m/s',vd);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.6.\n", +"//Page No.232.\n", +"clc;clear;\n", +"n = 18.1*10^(28);\n", +"h = 6.62*10^(-34);//Planck's constant.\n", +"m = 9.1*10^(-31);//mass\n", +"Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.\n", +"printf('\nThe Fermi energy of Al at 0 k in joules is %3.3e J',Efo);\n", +"Efo = (Efo/(1.6*10^(-19)));\n", +"printf('\nThe Fermi energy of Al at 0 k in eV is %3.3e eV',Efo);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: Fermi_energy_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.6.\n", +"//Page No.232.\n", +"clc;clear;\n", +"n = 18.1*10^(28);\n", +"h = 6.62*10^(-34);//Planck's constant.\n", +"m = 9.1*10^(-31);//mass of electron\n", +"Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.\n", +"printf('\nFermi energy of Al at 0 k in joules = %3.3e J',Efo);\n", +"Efo = (Efo/(1.6*10^(-19)));\n", +"printf('\nFermi energy of Al at 0 k in eV = %.2fe eV',Efo);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: concentration_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.7.\n", +"//Page No.233.\n", +"clc;clear;\n", +"h = 6.62*10^(-34);//Planck's constant -[J s].\n", +"m = 9.1*10^(-31);//mass -[kg].\n", +"Efo = 5.5*1.6*10^(-19);//Fermi energy.\n", +"n = ((2*m*Efo)^(3/2))*(8*(%pi))/(3*(h^(3)));\n", +"printf('\nThe concentration of free electrons per unit volume of silver is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: probability_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.8.\n", +"//Page No.233.\n", +"clc;clear;\n", +"T = 298;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"Eg = 1.07*1.6*10^(-19);//Here E= E-Eg.\n", +"f = 1/(1+exp(Eg/(2*k*T)));//probability of an electron to the conduction band at 25 degree celcius.\n", +"printf('\nThe probability of an electron thermlly excited to the conduction band at 25 degree celcius is %3.3e',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: fermi_energy_and_fermi_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.9.\n", +"//Page No.234.\n", +"clc;clear;\n", +"m = 9.1*10^(-31);//mass of electron.\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"vf = 0.86*10^(6);//Fermi velocity -[m s^-1].\n", +"Ef = 0.5*m*vf^(2);//Fermi energy \n", +"printf('\nThe Fermi energy of the metal in joules is %3.3e J',Ef);\n", +"Ef = Ef/(1.6*10^(-19));\n", +"printf('\nThe Fermi energy o the metal in eV is %.2f eV',Ef);\n", +"Tf = ((Ef)/k);//Fermi temperature.\n", +"Tf = ((3.365*10^(-19))/k);\n", +"printf('\nThe Fermi temperature of the metal is %3.3e K',Tf);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |