diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb')
-rw-r--r-- | Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb | 211 |
1 files changed, 211 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb new file mode 100644 index 0000000..a2cfa70 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb @@ -0,0 +1,211 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Superconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Critical_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.1\n", +"//Page No.356\n", +"//To find critical field.\n", +"clc;clear;\n", +"Tc = 3.7;//Critical temperature of tin -[K].\n", +"Ho = 0.0306;//Magnetic field -[T].\n", +"T = 2;//Temperature -[K].\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n", +"printf('\nCritical field at 2K is %.4f T',Hc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Critical_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example NO.12.2\n", +"//Page No.356\n", +"//To find critical field.\n", +"clc;clear;\n", +"Tc = 7.26;//Critical temperature of lead -[K].\n", +"Ho = 6.4*10^3;//Magnetic field -[A/m^3].\n", +"T = 5;//Temperature -[K].\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n", +"printf('\nCritical field at 5K is %.2f T',Hc);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: value_of_Tc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.3\n", +"//Page No.357\n", +"//To find the value of Tc.\n", +"clc;clear;\n", +"M1 = (199.5^(1/2));//Atomic mass. \n", +"M2 = (203.4^(1/2));//Atomic mass.\n", +"Tc1 = (4.185);//Critical temperature of Hg -[K].\n", +"Tc = (Tc1*M1/M2);//Critical temperature\n", +"printf('\nCritical temperature of Hg with atomic mass,203.4 is %.5f K',Tc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: critical_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.4\n", +"//Page No.357\n", +"//To find critical current density.\n", +"clc;clear;\n", +"D=1*10^(-3);//Diameter of the wire -[m].\n", +"Tc = 7.18;//Critical temperature -[K].\n", +"Ho = 6.5*10^4;//Critical field -[A/m].\n", +"T = 4.2;//Temperature -[K].\n", +"R = 0.5*10^-3;//Radius.\n", +"I = 134.33;//Current.\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));\n", +"printf('\nCritical magnetic field is %3.3e A/m',Hc);\n", +"ic = (2*%pi*R*Hc);\n", +"printf('\nCritical current is %.2f A',ic);\n", +"J = (I/(%pi*R^2));\n", +"printf('\nCritical current density is %3.3e A/m^2',J);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: frequency_of_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.5\n", +"//Page No.358\n", +"//To find frequency.\n", +"clc;clear;\n", +"e = (1.6*10^-19);//value of electron.\n", +"V = (6*10^-6);//Voltage applied across the junction -[V]\n", +"h = (6.626*10^-34);//Planck's constant\n", +"v = ((2*e*V)/h);//Frequency of ac signal\n", +"printf('\nFrequency of ac signal is %3.3e Hz',v);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.6\n", +"//Page No.358\n", +"//To find band gap of superconducting lead \n", +"clc;clear;\n", +"KB = (1.38*10^-23);//Boltzman's constant.\n", +"Tc = (7.19);//Critical temperature of lead -[K].\n", +"Eg = (3.5*KB*Tc);//Energy gap of semiconductor.\n", +"printf('\nBand gap of superconducting lead is %3.3e J',Eg);\n", +"Eg = (Eg/(1.6*10^-19*10^(-3)));\n", +"printf('\nBand gap of superconducting lead is %.2f meV',Eg);\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |