summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb')
-rw-r--r--Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb211
1 files changed, 211 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb
new file mode 100644
index 0000000..a2cfa70
--- /dev/null
+++ b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb
@@ -0,0 +1,211 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Superconducting materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: Critical_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.12.1\n",
+"//Page No.356\n",
+"//To find critical field.\n",
+"clc;clear;\n",
+"Tc = 3.7;//Critical temperature of tin -[K].\n",
+"Ho = 0.0306;//Magnetic field -[T].\n",
+"T = 2;//Temperature -[K].\n",
+"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n",
+"printf('\nCritical field at 2K is %.4f T',Hc);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Critical_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example NO.12.2\n",
+"//Page No.356\n",
+"//To find critical field.\n",
+"clc;clear;\n",
+"Tc = 7.26;//Critical temperature of lead -[K].\n",
+"Ho = 6.4*10^3;//Magnetic field -[A/m^3].\n",
+"T = 5;//Temperature -[K].\n",
+"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n",
+"printf('\nCritical field at 5K is %.2f T',Hc);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: value_of_Tc.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.12.3\n",
+"//Page No.357\n",
+"//To find the value of Tc.\n",
+"clc;clear;\n",
+"M1 = (199.5^(1/2));//Atomic mass. \n",
+"M2 = (203.4^(1/2));//Atomic mass.\n",
+"Tc1 = (4.185);//Critical temperature of Hg -[K].\n",
+"Tc = (Tc1*M1/M2);//Critical temperature\n",
+"printf('\nCritical temperature of Hg with atomic mass,203.4 is %.5f K',Tc);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: critical_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.12.4\n",
+"//Page No.357\n",
+"//To find critical current density.\n",
+"clc;clear;\n",
+"D=1*10^(-3);//Diameter of the wire -[m].\n",
+"Tc = 7.18;//Critical temperature -[K].\n",
+"Ho = 6.5*10^4;//Critical field -[A/m].\n",
+"T = 4.2;//Temperature -[K].\n",
+"R = 0.5*10^-3;//Radius.\n",
+"I = 134.33;//Current.\n",
+"Hc = Ho*(1-((T^(2))/(Tc^(2))));\n",
+"printf('\nCritical magnetic field is %3.3e A/m',Hc);\n",
+"ic = (2*%pi*R*Hc);\n",
+"printf('\nCritical current is %.2f A',ic);\n",
+"J = (I/(%pi*R^2));\n",
+"printf('\nCritical current density is %3.3e A/m^2',J);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: frequency_of_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.12.5\n",
+"//Page No.358\n",
+"//To find frequency.\n",
+"clc;clear;\n",
+"e = (1.6*10^-19);//value of electron.\n",
+"V = (6*10^-6);//Voltage applied across the junction -[V]\n",
+"h = (6.626*10^-34);//Planck's constant\n",
+"v = ((2*e*V)/h);//Frequency of ac signal\n",
+"printf('\nFrequency of ac signal is %3.3e Hz',v);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: Band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.12.6\n",
+"//Page No.358\n",
+"//To find band gap of superconducting lead \n",
+"clc;clear;\n",
+"KB = (1.38*10^-23);//Boltzman's constant.\n",
+"Tc = (7.19);//Critical temperature of lead -[K].\n",
+"Eg = (3.5*KB*Tc);//Energy gap of semiconductor.\n",
+"printf('\nBand gap of superconducting lead is %3.3e J',Eg);\n",
+"Eg = (Eg/(1.6*10^-19*10^(-3)));\n",
+"printf('\nBand gap of superconducting lead is %.2f meV',Eg);\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}