diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb')
-rw-r--r-- | Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb b/Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb new file mode 100644 index 0000000..3f7728d --- /dev/null +++ b/Engineering_Mechanics_by_A_K_Tayal/12-Moment_of_Inertia.ipynb @@ -0,0 +1,309 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Moment of Inertia" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.10: Moment_of_Inertia_of_a_Composite_area_or_hollow_section.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"b1=120 // mm // width of the flange pate of L-section\n", +"d1=20 // mm // depth of the flange plate\n", +"b2=20 // mm // width/thickness of the web\n", +"d2=130 // mm // depth of the web\n", +"// Calculations\n", +"// (a) Location of the centroid of the composite area\n", +"A_1=b1*d1 // mm^2 // area of the flange plate\n", +"A_2=b2*d2 // mm^2 // area of the web\n", +"y_1=d2+(d1/2) // mm // y-coordinate of the centroid\n", +"y_2=d2/2 // mm // y-coordinate of the centroid\n", +"x_1=60 // mm // x-coordinate of the centroid\n", +"x_2=110 // mm // x-coordinate of the centroid\n", +"y_c=((A_1*y_1)+(A_2*y_2))/(A_1+A_2) // mm // from the bottom edge\n", +"x_c=((A_1*x_1)+(A_2*x_2))/(A_1+A_2) // mm // from the bottom edge\n", +"// (b) Moment of Inertia of the composite area about the centroidal x-axis\n", +"// Area (A_1) M.I of area A_1 about x-axis\n", +"I_x1=(b1*(d1^3))/12 // mm^4\n", +"// M.I of the area A_1 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"OC_1=d2+(d1/2) // mm // from the bottom edge\n", +"OC_2=d2/2 // mm // from the bottom edge\n", +"OC=y_c // mm // from the bottom edge\n", +"d_1=(d2-y_c)+(d1/2) // mm\n", +"d_2=y_c-OC_2 // mm \n", +"I_X1=(I_x1)+(A_1*d_1^2) // mm^4\n", +"// Area(A_2) M.I of area A_2 about x-axis\n", +"I_x2=(b2*d2^3)/12 // mm^4\n", +"// M.I of the area A_2 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"I_X2=(I_x2)+(A_2*d_2^2) // mm^4\n", +"// COMPOSITE AREA:M.O.I of the composite area about the centroidal x-axis\n", +"I_x=(I_X1)+(I_X2) // mm^4\n", +"// (c) Moment of Inertia of the composite area about the centroidal y-axis\n", +"// Area (A_1) M.I of area A_1 about y-axis\n", +"I_y1=(d1*(b1^3))/12 // mm^4\n", +"// M.I of the area A_1 about the centroidal y-axis of the composite area (By parallel-axis theorem)\n", +"d_3=x_c-(b1/2) // mm // distance between c &c1 along x axis\n", +"I_Y1=(I_y1)+(A_1*d_3^2) // mm^4\n", +"// Area(A_2) M.I of area A_2 about y-axis\n", +"I_y2=(d2*b2^3)/12 // mm^4\n", +"// M.I of the area A_2 about the centroidal y-axis of the composite area (By parallel-axis theorem)\n", +"d_4=b1-x_c-(b2/2) // mm // distance between c &c2 along x axis\n", +"I_Y2=(I_y2)+(A_2*d_4^2) // mm^4\n", +"// COMPOSITE AREA:M.O.I of the composite area about the centroidal y-axis\n", +"I_y=(I_Y1)+(I_Y2) // mm^4\n", +"// Results\n", +"clc\n", +"printf('The M.O.I of the composite area about the centroidal x-axis is %f mm^4 \n',I_x)\n", +"printf('The M.O.I of the composite area about the centroidal Y-axis is %f mm^4 \n',I_y)\n", +"// NOTE: The answer for I_x given in text book is 0.76*10^6 insted of 10.76*10^6" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.14: Product_of_Inertia.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"b=1 // cm // smaller side of the L-section\n", +"h=4 // cm // larger side of the L-section\n", +"// Calculations\n", +"// (A) RECTANGLE A_1: Using the paralel axis theorem\n", +"Ixy=0\n", +"I_xy1=(Ixy)+((h*b)*(b/2)*(h/2)) // cm^4\n", +"// (B) RECTANGLE A_2: Using the paralel axis theorem\n", +"I_xy2=(Ixy)+((b*(h-1))*(1+(3/2))*(b/2)) // cm^4\n", +"// Product of inertia of the total area\n", +"I_xy=I_xy1+I_xy2 // cm^4\n", +"// Calculations\n", +"clc\n", +"printf('The Product of inertia of the L-section is %f cm^4 \n',I_xy)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.15: Principal_Moment_of_Inertia.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"I_x=1548 // cm^4 // M.O.I of the Z-section about X-axis\n", +"I_y=2668 // cm^4 // M.O.I of the Z-section about Y-axis\n", +"b=12 // cm // width of flange of the Z-section\n", +"d=3 // cm // depth of flange of the Z-section\n", +"t=2 // cm // thickness of the web of the Z-section\n", +"h=6 // cm // depth of the web of the Z-section\n", +"//Calculations\n", +"A_1=b*d // cm^2 // area of top flange\n", +"x_1=-5 // cm // distance of the centroid from X-axis for top flange\n", +"y_1=4.5 // cm // distance of the centroid from Y-axis for top flange\n", +"A_2=t*h // cm^2 // area of web\n", +"x_2=0 // cm // distance of the centroid from X-axis for the web\n", +"y_2=0 // cm // distance of the centroid from Y-axis for the web\n", +"A_3=b*d // cm^2 // area of bottom flange\n", +"x_3=5 // cm // distance of the centroid from X-axis for top flange\n", +"y_3=-4.5 // cm // distance of the centroid from Y-axis for top flange\n", +"// Product of Inertia of the total area is,\n", +"I_xy=((A_1*x_1*y_1)+(A_3*x_3*y_3)) // cm^4\n", +"// The direction of the principal axes is,\n", +"theta_m=(atand((2*I_xy)/(I_y-I_x)))/2 // degree\n", +"// Principa M.O.I\n", +"I_max=((I_x+I_y)/2)+(sqrt(((I_x-I_y)/2)^2+(I_xy)^2)) // cm^4\n", +"I_mini=((I_x+I_y)/2)-(sqrt(((I_x-I_y)/2)^2+(I_xy)^2)) // cm^4\n", +"// Results\n", +"clc\n", +"printf('The principal axes of the section about O is %f degree \n',theta_m)\n", +"printf('The Maximum value of principal M.O.I is %f cm^4 \n',I_max)\n", +"printf('The Minimum value of principal M.O.I is %f cm^4 \n',I_mini)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: EX12_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"A= 50 // cm^2 // area of the shaded portion\n", +"J_A=22.5*10^2 // cm^4 // polar moment of inertia of the shaded portion\n", +"d=6 // cm\n", +"// Calculations\n", +"J_c=J_A-(A*d^2) \n", +"// substuting the value of I_x from eq'n 2 in eq'n 1 we get,\n", +"I_y=J_c/3 // cm^4 // M.O.I about Y-axis\n", +"// Now from eq'n 2,\n", +"I_x=2*I_y // cm^4 // M.O.I about X-axis\n", +"// Results\n", +"clc\n", +"printf('The centroidal moment of inertia about X-axis (I_x) is %f cm^4 \n',I_x)\n", +"printf('The centroidal moment of inertia about Y-axis (I_y) is %f cm^4 \n',I_y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: Moment_of_Inertia_of_a_Composite_area_or_hollow_section.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"b=20 // cm // width of the pate\n", +"d=30 // cm // depth of the plate\n", +"r=15 // cm // radius of the circular hole\n", +"h=20 // cm // distance between the centre of the circle & the x-axis\n", +"// Calculations\n", +"// (a) Location of the centroid of the composite area\n", +"A_1=b*d // cm^2 // area of the plate\n", +"y_1=d/2 // cm // y-coordinate of the centroid\n", +"A_2=(%pi*r^2)/4 // cm^2 // area of the circle removed (negative)\n", +"y_2=h // cm // y-coordinate of the centroid\n", +"y_c=((A_1*y_1)-(A_2*y_2))/(A_1-A_2) // cm // from the bottom edge\n", +"// (b) Moment of Inertia of the composite area about the centroidal x-axis\n", +"// Area (A_1) M.I of area A_1 about x-axis\n", +"I_x1=(b*(d^3))/12 // cm^4\n", +"// M.I of the area A_1 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"OC_1=15 // cm // from the bottom edge\n", +"OC_2=20 // cm\n", +"OC=12.9 // cm // from the bottom edge\n", +"d_1=OC_1-OC // cm\n", +"d_2=OC_2-OC // cm \n", +"I_X1=(I_x1)+(A_1*d_1^2) // cm^4\n", +"// Area(A_2) M.I of area A_2 about x-axis\n", +"I_x2=(%pi*r^4)/64 // cm^2\n", +"// M.I of the area A_2 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"I_X2=(I_x2)+(A_2*d_2^2) // cm^4\n", +"// COMPOSITE AREA:M.O.I of the composite area about the centroidal x-axis\n", +"I_x=(I_X1)-(I_X2) // cm^4\n", +"// Results\n", +"clc\n", +"printf('The M.O.I of the composite area about the centroidal x-axis is %f cm^4 \n',I_x)\n", +"// There may be a small error in the answer due to decimal point discrepancy" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: Moment_of_Inertia_of_a_Composite_area_or_hollow_section.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Initilization of variables\n", +"b1=80 // mm // width of the flange pate\n", +"d1=20 // mm // depth of the flange plate\n", +"b2=40 // mm // width/thickness of the web\n", +"d2=60 // mm // depth of the web\n", +"// Calculations\n", +"// (a) Location of the centroid of the composite area\n", +"A_1=b1*d1 // mm^2 // area of the flange plate\n", +"y_1=d2+(d1/2) // mm // y-coordinate of the centroid\n", +"A_2=b2*d2 // mm^2 // area of the web\n", +"y_2=d2/2 // mm // y-coordinate of the centroid\n", +"y_c=((A_1*y_1)+(A_2*y_2))/(A_1+A_2) // mm // from the bottom edge\n", +"// (b) Moment of Inertia of the composite area about the centroidal x-axis\n", +"// Area (A_1) M.I of area A_1 about x-axis\n", +"I_x1=(b1*(d1^3))/12 // mm^4\n", +"// M.I of the area A_1 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"OC_1=70 // mm // from the bottom edge\n", +"OC_2=30 // mm // from the bottom edge\n", +"OC=y_c // mm // from the bottom edge\n", +"d_1=(d2-y_c)+(d1/2) // mm\n", +"d_2=y_c-OC_2 // mm \n", +"I_X1=(I_x1)+(A_1*d_1^2) // mm^4\n", +"// Area(A_2) M.I of area A_2 about x-axis\n", +"I_x2=(b2*d2^3)/12 // mm^4\n", +"// M.I of the area A_2 about the centroidal x-axis of the composite area (By parallel-axis theorem)\n", +"I_X2=(I_x2)+(A_2*d_2^2) // mm^4\n", +"// COMPOSITE AREA:M.O.I of the composite area about the centroidal x-axis\n", +"I_x=(I_X1)+(I_X2) // mm^4\n", +"// Results\n", +"clc\n", +"printf('The M.O.I of the composite area about the centroidal x-axis is %f mm^4 \n',I_x)\n", +"// NOTE: The answer given in the text book is 2.31*10^3 insted of 2.31*10^6." + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |