summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb')
-rw-r--r--Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb276
1 files changed, 276 insertions, 0 deletions
diff --git a/Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb b/Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb
new file mode 100644
index 0000000..87f9f96
--- /dev/null
+++ b/Engineering_Mechanics_by_A_K_Tayal/10-Uniform_Flexible_Suspension_Cables.ipynb
@@ -0,0 +1,276 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Uniform Flexible Suspension Cables"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Cable_subjected_to_concentrated_loads.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initilization of variables\n",
+"W1=400 // N // vertical load at pt C\n",
+"W2=600 // N // vertical load at pt D\n",
+"W3=400 // N // vertical load at pt E\n",
+"l=2 // m // l= Lac=Lcd=Lde=Leb\n",
+"h=2.25 // m // distance of the cable from top\n",
+"L=2 // m // dist of A from top\n",
+"// Calculations\n",
+"// Solving eqn's 1&2 using MATRIX for Xb & Yb\n",
+"A=[-L 4*l;-h 2*l]\n",
+"B=[((W1*l)+(W2*2*l)+(W1*3*l));(W1*l)]\n",
+"C=inv(A)*B\n",
+"// Now consider the F.B.D of BE, Take moment at E\n",
+"y_e=(C(2)*l)/C(1) // m / here y_e is the distance between E and the top\n",
+"theta_1=atand(y_e/l) // degree // where theta_1 is the angle between BE and the horizontal\n",
+"T_BE=C(1)/cosd(theta_1) // N (T_BE=T_max)\n",
+"// Now consider the F.B.D of portion BEDC\n",
+"// Take moment at C\n",
+"y_c=((C(2)*6)-(W3*4)-(W2*2))/(C(1)) // m\n",
+"theta_4=atand(((y_c)-(l))/(l)) // degree\n",
+"T_CA=C(1)/cosd(theta_4) // N // Tension in CA\n",
+"// Results\n",
+"clc\n",
+"printf('(i) The horizontal reaction at B (Xb) is %f N \n',C(1))\n",
+"printf('(i) The vertical reaction at B (Yb) is %f N \n',C(2))\n",
+"printf('(ii) The sag at point E (y_e) is %f m \n',y_e)\n",
+"printf('(iii) The tension in portion CA (T_CA) is %f N \n',T_CA)\n",
+"printf('(iv) The max tension in the cable (T_max) is %f N \n',T_BE)\n",
+"printf('(iv) The max slope (theta_1) in the cable is %f degree \n',theta_1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Cables_subjected_to_concentrated_loads.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initiization of variables\n",
+"W1=100 // N // Pt load at C\n",
+"W2=150 // N // Pt load at D\n",
+"W3=200 // N // Pt load at E\n",
+"l=1 // m // l=Lac=Lcd=Lde=Leb\n",
+"h=2 // m // dist between Rb & top\n",
+"Xa=200 // N\n",
+"Xb=200 // N\n",
+"// Calculations\n",
+"// consider the F.B.D of entire cable\n",
+"// Take moment at A\n",
+"Yb=((W1*l)+(W2*2*l)+(W3*3*l)-(Xb*h))/(4*l) // N\n",
+"Ya=W1+W2+W3-Yb // N // sum Fy=0\n",
+"// Now consider the F.B.D of AC\n",
+"// Take moment at C,\n",
+"y_c=(Ya*l)/Xa // m\n",
+"theta_1=atand(y_c/l) // degree\n",
+"T_AC=Xa/cosd(theta_1) // N // T_AC*cosd(theta_1)=horizontal component of tension in the cable\n",
+"// here, T_AC=T_max\n",
+"T_max=T_AC // N\n",
+"// Now consider the F.B.D of portion ACD\n",
+"y_d=((Ya*2*l)-(W1*l))/(Xa) // m // taking moment at D\n",
+"theta_2=atand(((y_d)-(y_c))/(l)) // degree\n",
+"T_CD=Xa/(cosd(theta_2)) // N \n",
+"// Results\n",
+"clc\n",
+"printf('(i) The component of support reaction at A (Ya) is %f N \n',Ya)\n",
+"printf('(i) The component of support reaction at B (Yb) is %f N \n',Yb)\n",
+"printf('(ii) The tension in portion AC (T_AC) of the cable is %f N \n',T_AC)\n",
+"printf('(ii) The tension in portion CD (T_CD) of the cable is %f N \n',T_CD)\n",
+"printf('(iii) The max tension in the cable is %f N \n',T_max)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Cables_uniformly_loaded_per_unit_horizontal_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initilization of variables\n",
+"w=75 // kg/m // mass per unit length of thw pipe\n",
+"l=20 // m // dist between A & B\n",
+"g=9.81 // m/s^2 // acc due to gravity\n",
+"y=2 // m // position of C below B\n",
+"// Calculations\n",
+"// Let x_b be the distance of point C from B \n",
+"// In eq'n x_b^2+32*x_b-320=0\n",
+"a=1\n",
+"b=32\n",
+"c=-320\n",
+"x_b=(-b+sqrt(b^2-(4*a*c)))/(2*a) // m // we get x_b by equating eqn's 1&2\n",
+"// Now tension T_0\n",
+"T_0=((w*g*x_b^2)/(2*y))*(10^-3) //kN // from eq'n 1\n",
+"// Now the max tension occurs at point A,hence x is given as,\n",
+"x=20-x_b // m\n",
+"w_x=w*g*x*10^(-3) // kN \n",
+"T_max=sqrt((T_0)^2+(w_x)^2) // kN // Maximum Tension\n",
+"// Results\n",
+"clc\n",
+"printf('The lowest point C which is situated at a distance (x_b) from support B is %f m \n',x_b)\n",
+"printf('The maximum tension (T_max) in the cable is %f kN \n',T_max)\n",
+"printf('The minimum tension (T_0) in the cable is %f kN \n',T_0)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Cables_uniformly_loaded_per_unit_horizontal_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initilization of variables\n",
+"m=0.5 // kg/m // mass of the cable per unit length\n",
+"g=9.81 // m/s^2\n",
+"x=30 // m // length AB\n",
+"y=0.5 // m // dist between C & the horizontal\n",
+"x_b=15 // m // dist of horizontal from C to B\n",
+"// Calculations\n",
+"w=m*g // N/m // weight of the cable per unit length\n",
+"T_0=(w*x_b^2)/(2*y) // N // From eq'n 1\n",
+"T_B=sqrt((T_0)^2+(w*x/2)^2) // N // Tension in the cable at point B\n",
+"W=T_B // N // As pulley is frictionless the tension in the pulley on each side is same,so W=T_B\n",
+"// Slope of the cable at B,\n",
+"theta=acosd(T_0/T_B) // degree\n",
+"// Now length of the cable between C & B is,\n",
+"S_cb=x_b(1+((2/3)*(y/x_b)^2)) // m\n",
+"// Now total length of the cable AB is,\n",
+"S_ab=2*S_cb // m \n",
+"// Results\n",
+"clc\n",
+"printf('(i) The magnitude of load W is %f N \n',W)\n",
+"printf('(ii) The angle of the cable with the horizontal at B is %f degree \n',theta)\n",
+"printf('(iii) The total length of the cable AB is %f m \n',S_ab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Cables_uniformly_loaded_per_unit_horizontal_distance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initilization of variables\n",
+"x=30 // m // distance between two electric poles\n",
+"Tmax=400 // N // Max Pull or tension\n",
+"w=3 // N/m // weight per unit length of the cable\n",
+"// Calculations\n",
+"// The cable is assumed to be parabolic in shape, its eq'n is y=w*x^2/2*T_0.....(eq'n 1). Substuting the co-ordinates of point B (l/2,h), where h is the sag in the cable.This gives, T_0=(w*(l/2)^2)/(2*h)=wl^2/8*h\n",
+"// Now the maximum pull or tension occurs at B,\n",
+"T_B=Tmax // N \n",
+"// Hence T_B=Tmax=sqrt(T_0^2+(w*l/2)^2). On simplyfyingthis eq'n we get, \n",
+"h=sqrt(x^2/(16*(((Tmax*2)/(w*x))^2-(1)))) // m \n",
+"// Results \n",
+"clc\n",
+"printf('The smallest value of the sag in the cable is %f m \n',h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Catenary_Cables.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Initilization of variables\n",
+"l=200 // m // length of the cable\n",
+"m=1000 // kg // mass of the cable\n",
+"S=50 // m // sag in the cable\n",
+"s=l/2 // m\n",
+"g=9.81 // m/s^2\n",
+"// Calculations\n",
+"w=(m*g)/l // N/m // mass per unit length of the cable\n",
+"// Substuting the values s=l/2 & y=c+S in eq'n 1 to get the value of c,\n",
+"c=7500/100 // m \n",
+"Tmax=sqrt((w*c)^2+(w*s)^2) // N // Maximum Tension\n",
+"// To determine the span (2*x) let us use the eq'n of catenary, y=c*cosh(x/c), where y=c+50. On simplyfying we get y/c=cosh(x/c), here let y/c=A\n",
+"y=c+50\n",
+"A=y/c \n",
+"x=c*(acosh(A)) // m \n",
+"L=2*x // m // where L= span\n",
+"// Results\n",
+"clc\n",
+"printf('The horizontal distance between the supports and the max Tension (L) is %f m \n',L)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}