diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Elements_of_Electric_Drives_by_J_B_Gupta | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Elements_of_Electric_Drives_by_J_B_Gupta')
-rw-r--r-- | Elements_of_Electric_Drives_by_J_B_Gupta/1-Electric_Drives.ipynb | 2069 | ||||
-rw-r--r-- | Elements_of_Electric_Drives_by_J_B_Gupta/3-Thyristor_Control_Of_Electric_Motors.ipynb | 833 |
2 files changed, 2902 insertions, 0 deletions
diff --git a/Elements_of_Electric_Drives_by_J_B_Gupta/1-Electric_Drives.ipynb b/Elements_of_Electric_Drives_by_J_B_Gupta/1-Electric_Drives.ipynb new file mode 100644 index 0000000..1362576 --- /dev/null +++ b/Elements_of_Electric_Drives_by_J_B_Gupta/1-Electric_Drives.ipynb @@ -0,0 +1,2069 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Electric Drives" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Find_the_Value_of_speed_and_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=230;//in volts\n", +"I_1=90;//in amperes\n", +"R_a=0.08;//in ohms\n", +"R_se=0.05;//in ohms\n", +"R_m=R_a+R_se;//in ohms\n", +"R=1.5;//in ohms\n", +"E_b1=V-I_1*(R_m+R);//in volts\n", +"E_2=180;//in volts\n", +"N2=700;//in rpm\n", +"N1=N2*(E_b1/E_2);\n", +"disp(ceil(N1),'Speed (in rpm)=');\n", +"T=9.55*E_b1*I_1/N1;\n", +"disp(T,'Torque (in Newton-meter)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: Find_the_Value_of_torque_developed_and_terminal_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"P=4;//no. of poles\n", +"f=50;//in hertz\n", +"N_s=120*f/P;//in rpm\n", +"V=400/sqrt(3);//in volts\n", +"R2=4;//in ohms\n", +"R1=1.5;//in ohms\n", +"X1=4;//in ohms\n", +"X2=4;//in ohms\n", +"N=1350;//in rpm\n", +"s=(N_s-N)/N_s;//slip\n", +"T=(3*V^2*4/s)/((((R1+(R2/s))^2)+((X1+X2)^2))*(2*%pi*N_s/60));//in newton-meter\n", +"N1=900;//in rpm\n", +"s1=(N_s-N1)/N_s;//slip\n", +"T1=T*(N1/N)^2;\n", +"disp(T1,' Torque developed (in Newton-meter)=');\n", +"V1=V*sqrt((N1/N)^2*(s1/s)*((((R1+(R2/s1))^2)+((X1+X2)^2)))/(((R1+(R2/s))^2)+((X1+X2)^2)));\n", +"disp(V1,'Terminal Voltage (in volts)=');\n", +"//Answer given in the textbook is worng as the torque equation is not multiplied by R2\n", +"disp('Answer given in the textbook is worng as the torque equation is not multiplied by R2')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: Find_the_Value_of_rms_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"P=4;//no. of poles\n", +"f=50;//in hertz\n", +"N_s=120*f/P;//in rpm\n", +"s_f=0.05;//slip\n", +"N=N_s*(1-s_f);//in rpm\n", +"V=415;//in volts\n", +"s_m=0.1;//slip corresponding to maximum slip\n", +"N1=1350;//in rpm\n", +"s_fn=(N_s-N1)/N_s;//full load slip\n", +"V1=V*sqrt((N1/N)*(s_f/s_m)*(8/5));\n", +"disp(V1,' RMS Voltage (in volts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: Find_the_Value_of_Slip_Frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"f1=2;//in hertz\n", +"f=50;//in hertz\n", +"s_m=0.1;\n", +"V=400;//in volts\n", +"s1=0.04;//slip\n", +"s2=(0.2095-sqrt((0.2095)^2-s1))/2;\n", +"f_n=s2*40;\n", +"disp(f_n,'Slip Frequency (in Hertz)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.15: Find_the_Value_of_maximum_torque_at_one_half_load_and_25Hz_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1=0.02;//in ohms\n", +"X1=0.1;//in ohms\n", +"X2=X1;//in ohms\n", +"//T_ratio is defined as the ratio of maximum torque at one-half load and 25Hz frequency to maximum torque at rated voltage and frequency\n", +"T_ratio=(R1+sqrt(R1^2+(X1+X2)^2))/(2*(R1+sqrt(R1^2+((X1+X2)^2)/4)));\n", +"disp(T_ratio,' maximum torque at one-half load and 25Hz frequency =');\n", +"disp(' times the maximum torque at rated voltage and frequency (T_max)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: EX1_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"s_f=0.04;//full load slip\n", +"I_ratio=6;//Ratio of Starting current to full load current\n", +"T_ratio=I_ratio^2*s_f;//Ratio of Starting torque to full load torque\n", +"disp(T_ratio,'(a) Starting Torque =');\n", +"disp(' times the full load torque (T_f)');\n", +"s_max=sqrt((I_ratio^2-1)/(625-I_ratio^2));\n", +"disp(s_max,'(b) Slip at which Maximum torque occurs=');\n", +"T_rm=(1/2)*((s_f/s_max)+(s_max/s_f));\n", +"disp(T_rm,'(c) Ratio of maximum torque to full load torque=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.17: Find_the_value_of_starting_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_ratio=8;//Ratio of short circuit current to full load current\n", +"s_f=0.04;//full load slip\n", +"T_r1=I_ratio^2*s_f;\n", +"disp(T_r1,'(a) Sarting Torque when started by means of direct switching=');\n", +"disp(' times the full load torque');\n", +"T_r2=I_ratio^2*s_f/3;\n", +"disp(T_r2,'(b) Sarting Torque when started by star-delta starter=');\n", +"disp(' times the full load torque');\n", +"K=sqrt(3/8);// transformation ratio of transformer\n", +"T_st=K^2*I_ratio^2*s_f;\n", +"disp(T_st,'(C) Starting Torque =');\n", +"disp(' times the full load torque');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18: Find_the_value_of_ratio_of_starting_current_to_full_load_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"P=10*7355;//in watts\n", +"V=400;//in volts\n", +"pf=0.8//power factor\n", +"Eff=0.9;//efficiency in per unit\n", +"I_f=P/(sqrt(3)*V*pf*Eff);//in amperes\n", +"I_sc=7.2;//in amperes\n", +"I_sc1=I_sc*400/160;//in amperes\n", +"I_st=I_sc1/3;//Starting current (in amperes)\n", +"I_r=I_st/I_f;\n", +"disp(I_r,'Ratio of starting current to full load current=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.19: EX1_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=50*1000;//in VA\n", +"s_f=0.05;//slip\n", +"V=400;//in volts\n", +"I_f=P_o/(sqrt(3)*V);//in amperes\n", +"Z=0.866;//in ohms/phase\n", +"I_sc=V/(sqrt(3)*Z);//Short Circuit current (in amperes)\n", +"I_st=100;//Supply current at start (in amperes)\n", +"K=sqrt(I_st/I_sc);\n", +"disp(K*100,'Tap Position of auto transformer(in %)=');\n", +"I_ratio=I_sc/I_f;\n", +"T_r=K^2*I_ratio^2*s_f;\n", +"disp(T_r,'Ratio of Starting torque to full load torque =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Compare_the_annual_cost_of_a_group_drive_and_an_individual_drive.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"C_g=60000;//in Rs\n", +"D=0.12*C_g;//in Rs\n", +"E_c=75000;//in kWh\n", +"C_e=4*E_c;//in Rs\n", +"C_t=D+C_e;//in Rs\n", +"C_id=18750*10;//in Rs\n", +"AD=0.15*C_id;//in Rs\n", +"E_a=60000;//in kWh\n", +"C_ea=4*E_a;//in Rs\n", +"C_total=AD+C_ea;//in Rs\n", +"disp(C_t,'Total annual cost in case of group drive (in Rs)=');\n", +"disp(C_total,'Total annual cost in case of individual drive (in Rs)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.20: EX1_20.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=440/sqrt(3);//in volts\n", +"R_s=2;//in ohms\n", +"R_r=2;//in ohms\n", +"f=50;//in hertz\n", +"X_s=3;//in ohms\n", +"P=4;//no. of poles\n", +"X_r=3;//in ohms\n", +"R_o1=R_s+R_r;//Equivalent resistance of motor as referred to stator (in ohms)\n", +"X_o1=X_s+X_r;////Equivalent reactance of motor as referred to stator (in ohms)\n", +"I_st=V/(sqrt(R_o1^2+X_o1^2));//Starting current (in amperes)\n", +"P_cu=3*I_st^2*R_r;//Copper loss (in watts)\n", +"P2=7446;//in watts\n", +"N_s=120*f/P;//Synchronous Speed (in rpm)\n", +"T_st=9.55*P2/N_s;//Starting Torque (in Newton-meter)\n", +"disp(I_st,'Starting Current of motor at 50 Hertz (in amperes)=');\n", +"disp(T_st,'Starting Torque of motor at 50 hertz (in Newton-meters)=');\n", +"V1=V*10/50;//in volts\n", +"X_o2=X_o1*10/50;//in ohms\n", +"I_st1=V1/(sqrt(R_o1^2+X_o2^2));//Starting current (in amperes)\n", +"P_2=3*I_st1^2*R_r;//Copper loss (in watts)\n", +"N_s1=120*10/P;//Synchronous Speed (in rpm)\n", +"T_st2=9.55*P_2/N_s1;//Starting Torque (in Newton-meter)\n", +"disp(I_st1,'Starting Current of motor at 10 Hertz (in amperes)=');\n", +"disp(T_st2,'Starting Torque of motor at 10 hertz (in Newton-meters)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21: Find_the_value_of_moment_of_inertia_of_drive.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_m=100;//Motor Torque (in Newton-meter)\n", +"T_l=30;//Load Torque (in Newton-meter)\n", +"alpha=2*%pi*10;//in angular acceleration (in rad/sec^2)\n", +"J=(T_m-T_l)/alpha;\n", +"disp(J,'Moment of inertia of drive (in Kg-m^2)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.22: Find_the_value_of_Time_in_attaining_full_load_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=37.5*1000;//in watts\n", +"N=500;//in rpm\n", +"T_l=P_o*60/(2*%pi*N);//Full load torque (in Newton-meter)\n", +"T_st=(1.1+1.4)*T_l/2;// Average Starting Torque (in Newton-meters)\n", +"T_a=T_st-T_l;//total available torque for acceleration\n", +"J=20;//Moment of Inertia (in Kg-m^2)\n", +"t1=J*2*%pi*N/(60*T_a);\n", +"disp(t1,'Time in attaining full load speed (in seconds)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23: Find_the_value_of_starting_period.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=37.5*1000;//in watts\n", +"N=500;//in rpm\n", +"T_l=P_o*60/(2*%pi*N);//Full load torque (in Newton-meter)\n", +"T_m=2*T_l;// Torque developed by motor during starting\n", +"T_a=T_m-T_l;//total available torque for acceleration\n", +"E=37.5*660*9.81;//Stored energy of machine\n", +"J=E*2/(2*%pi*N/60)^2;//Moment of inertia (in Kg-m^2)\n", +"alpha=T_a/J;//angular acceleration (in rad/sec^2)\n", +"t=(2*%pi*N/60)/alpha;\n", +"disp(t,'Starting Period (in seconds)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.24: Find_the_value_of_energy_dissipated.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=220;//in volts\n", +"I=20;//in ampers\n", +"R=1;//in ohms\n", +"P_o=V*I-I^2*R;//Motor Output (in watts)\n", +"w=200;//in radians/second\n", +"T_l=P_o/w;//Load Torque (in N-m)\n", +"J=5;//kg-m^2\n", +"t_st=2.5;//in seconds\n", +"alpha=w/t_st;//angular acceleration (in rad/second^2)\n", +"K=(J*alpha+T_l)/I^2;\n", +"W_st=(J*R*w/K)+(T_l*R*t_st/K);\n", +"disp(W_st,'Energy Dissipated (in watts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.25: Find_the_value_of_additional_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_l1=22;//in amperes\n", +"V=220;//in volts\n", +"R_sh=100;//in ohms\n", +"R_a=0.1;//in ohms\n", +"I_sh=V/R_sh;//in amperes\n", +"I_a1=I_l1-I_sh;//armatur current (in amperes)\n", +"E_b1=V-I_a1*R_a;//Back Emf (in volts)\n", +"N1=1000;//in rpm\n", +"I_a2=0.8*19.8;//in amperes\n", +"R=(218.416-(800*218.02/1000))/I_a2;\n", +"disp(R,'Value of additional resistance (in ohms)=');\n", +"I_a3=0.64*I_a1;//in amperes\n", +"R3=(218.7328-(800*218.02/1000))/I_a3;\n", +"disp(R3,'Value of additional resistance (in ohms)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.26: Find_the_value_of_additional_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.26\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_1=50;//in amperes\n", +"V=500;//in volts\n", +"N_ratio=0.5;//Speed Ratio\n", +"E_b1=V;//Back Emf (in volts)\n", +"T_ratio=N_ratio^3;//Torque ratio\n", +"I_2=I_1*sqrt(T_ratio);//in amperes\n", +"R=(E_b1-(I_2*N_ratio*E_b1/I_1))/I_2;\n", +"disp(R,'Value of additional resistance (in ohms)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.27: Find_the_value_of_diverter_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.27\n", +"clc;\n", +"clear;\n", +"close;\n", +"N_ratio=1.2;//Speed Ratio\n", +"//From Saturation Curve\n", +"I_ratio=0.65;//feild current ratio corresponding to 83.3% of full load value of flux to 65% of full load value of flux\n", +"I_a_ratio=N_ratio;//Armature current ratio corresponding to 83.3% of full load value of flux to 65% of full load value of flux\n", +"R_ratio=I_ratio/(I_a_ratio-I_ratio);\n", +"disp(R_ratio,'Value of Diverter resistance (in ohms)=');\n", +"disp(' times the Series Feild Resistance (R_se)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.28: Find_the_value_of_Armature_Current_at_1000_rpm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.28\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_ab=800;//Armature current (in amperes)\n", +"N1=1000;//in rpm\n", +"N2=500;//in rpm\n", +"I=I_ab*N1/N2;\n", +"disp(I,' Armature Current at 1000 rpm (in amperes)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.29: Find_the_value_of_additional_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.29\n", +"clc;\n", +"clear;\n", +"close;\n", +"f=50;//in hertz\n", +"P=4;//No.of poles\n", +"N_s=120*f/P;//Synchronous Speed (in rpm)\n", +"N=1440;//Full load speed (in rpm)\n", +"s1=(N_s-N)/N_s;//Full load Slip\n", +"N2=1200;//in rpm\n", +"s2=(N_s-N2)/N_s;//slip\n", +"R2=0.25;//ohms per phase\n", +"R=(s2*R2/s1)-R2;\n", +"disp(R,'Value of additional resistance (in ohms)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Find_the_value_of_stable_operating_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:1.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"a=1;\n", +"b=1;\n", +"c=-30;\n", +"w_m=(-b+sqrt((b^2)-4*a*c))/(2*a);//speed of the drive\n", +"t_l=0.5*(w_m^2);//motoring torqe \n", +"disp(t_l,w_m,'stable operating point=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.30: Find_the_value_of_frequecncy_of_rotor_currents_and_slip.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.30\n", +"clc;\n", +"clear;\n", +"close;\n", +"f=50;//in hertz\n", +"P1=6;//No. of poles\n", +"P2=4;//No.of poles\n", +"N_sc=120*f/(P1+P2);//Synchronous Speed (in rpm)\n", +"s=0.02;//slip\n", +"N=N_sc*(1-s);//Actual Speed (in rpm)\n", +"N_s=120*f/P1;//Synchronous Speed of 6-pole motor\n", +"s1=(N_s-N)/N_s;\n", +"f1=s1*f;\n", +"disp(f1,'Frequency of rotor current of 6-pole motor (in Hertz)=');\n", +"disp(s1,'Slip reffered to 6-pole stator feild=');\n", +"N_s2=120*f1/P2;//Synchronous Speed of 4-pole motor\n", +"s2=(N_s2-N)/N_s2;\n", +"f2=s2*f1;\n", +"disp(f2,'Frequency of rotor current of 4-pole motor (in Hertz)=');\n", +"disp(s2,'Slip reffered to 4-pole stator feild=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.31: EX1_31.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.31\n", +"clc;\n", +"clear;\n", +"close;\n", +"f=50;//in hertz\n", +"P1=6;//No. of poles\n", +"P2=4;//No.of poles\n", +"N_s1=120*f/P1;//Synchronous Speed of 6-pole motor\n", +"N_s2=120*f/P2;//Synchronous Speed of 4-pole motor\n", +"N_sc1=120*f/(P1+P2);//Concantenated Speed of set when cumulatively compounded (in rpm)\n", +"N_sc2=120*f/(P1-P2);//Concantenated Speed of set when differentially compounded (in rpm)\n", +"disp(' Available Speeds (in rpm) are :');\n", +"disp(N_s1,'');\n", +"disp(N_s2,'');\n", +"disp(N_sc1,'');\n", +"disp(N_sc2,'');\n", +"P_o=15;//in HP\n", +"disp(P_o,'Maximum Load which can be delievered (in HP)=');\n", +"r=P1/P2;\n", +"disp(r,'Ratio of Mechanical Power Output')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.32: Find_the_value_of_Resistance_to_be_added_to_each_slip_ring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.32\n", +"clc;\n", +"clear;\n", +"close;\n", +"f=50;//in hertz\n", +"V=440;//in volts\n", +"P_o=110*1000;//in watts\n", +"P=24;//No.Of Poles\n", +"N_s=120*f/P;//Synchronous Speed (in rpm)\n", +"N=245;//in rpm\n", +"s_f=(N_s-N)/N_s;//Full load Speed\n", +"T_f=P_o/(2*%pi*N/60);//Full load Torque (in N-m)\n", +"R=0.04;//in ohms\n", +"R2=R/2;//Rotor resistance per phase (in ohms)\n", +"K=1.25;// ratio of stator turns to rotor turns\n", +"R_2=R2*K^2;//Rotor resistance reffered to stator (in ohms)\n", +"X_2=sqrt(((V^2*R_2*1.2/(T_f*500*%pi))-R_2^2)*(1/R2)^2);//in ohms\n", +"s=(N_s-175)/N_s;//slip at 175 rpm\n", +"T=T_f*175^2/N^2;//Torque at 175 rpm (in N-m)\n", +"b=-(V^2*s*60/(T*2*%pi*N_s));\n", +"a=1;\n", +"c=(s*X_2)^2;\n", +"R_n=(-b+sqrt(b^2-4*a*c))/(2*a)\n", +"R_ext=(R_n-R_2)/K^2;\n", +"disp(R_ext,'Resistance to be added to each slip ring (in ohms)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.33: EX1_33.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.33\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_f=100;//in amperes\n", +"V=220;//in volts\n", +"N=1000;//in rpm\n", +"T_f=V*I_f/(2*%pi*N/60);//Full load torque (N-m)\n", +"E_bf=V;//Back emf (in volts)\n", +"V_a=V+E_bf;// Voltage across armature (in volts)\n", +"I_b=2*I_f;//braking current\n", +"R=(V_a/I_b);//in ohms\n", +"disp(R,'Value of external resistance (in ohms)=');\n", +"T_b=T_f*I_b/I_f;\n", +"disp(T_b,'Initial Braking Torque (in N-m)=');\n", +"E_b1=E_bf*500/N;//in volts\n", +"I_b1=(V+E_b1)/R;//in amperes\n", +"T_b1=T_f*I_b1/I_f;\n", +"disp(T_b1,'Braking Torque when speed reduced to 500 rpm (in N-m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.34: Find_the_value_of_resistance_and_breaking_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.34\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=17.6*1000;//in watts\n", +"Eff=0.8;//Efficiency\n", +"V=220;//in volts\n", +"I_f=P_o/(V*Eff);//in amperes\n", +"I_af=I_f;//in amperes\n", +"R_a=0.1;//in ohms\n", +"N=1200;//in rpm\n", +"T_f=P_o/(2*%pi*N/60);//Full load torque (N-m)\n", +"E_bf=V-I_af*R_a;//Back emf (in volts)\n", +"V_a=V+E_bf;// Voltage across armature (in volts)\n", +"I_b=2*I_f;//braking current\n", +"R=(V_a/I_b)-R_a;//in ohms\n", +"disp(R,'Value of external resistance (in ohms)=');\n", +"E_b1=E_bf*400/N;//in volts\n", +"I_b1=(V+E_b1)/(R+R_a);//in amperes\n", +"T_b1=T_f*I_b1/I_f;\n", +"disp(T_b1,'Braking Torque when speed reduced to 400 rpm (in N-m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.35: EX1_35.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.35\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=220;//in volts\n", +"P_o=400*9.81*2.5;//(in watts)\n", +"Eff=0.85;//efficiency of motor\n", +"Eff_h=0.8\n", +"P_in=P_o/(Eff*Eff_h);//in watts\n", +"I=P_in/V;//in amperes\n", +"disp(I,'Current Drawn (in amperes)=');\n", +"P_out=P_o*Eff*Eff_h;//in watts\n", +"R=V^2/P_out;\n", +"disp(R,'Value of additional resistance (in ohms)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.36: Find_the_value_of_Current_Drawn_and_Value_of_additional_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.36\n", +"clc;\n", +"clear;\n", +"close;\n", +"T=245;//in N-m\n", +"N=250;//in rpm\n", +"P_in=T*2*%pi*N/60;//in watts\n", +"//Corresponding to the value of P_in we found I=27.5A and E=233 V from the given curve shown in fig.1.102\n", +"E=233;//in volts\n", +"I=27.5;//in amperes\n", +"r=E/I;//resistance of the circuit\n", +"R=r-1;//External Resistance to be inserted (in ohms)\n", +"disp(R,'External Resistance to be inserted (in ohms)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.37: Find_the_value_of_speed_under_regenerative_braking_plugging_and_dynamic_braking.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.37\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=45*1000;//in watts\n", +"R_a=0.2;//in ohms\n", +"V=500;//in volts\n", +"Eff=0.9;//Efficiency\n", +"I_lf=P_o/(V*Eff);//Rated Line current (in amperes)\n", +"R_sh=200;//in ohms\n", +"I_sh=V/R_sh;//Shunt feild Current (in amperes)\n", +"I_af=I_lf-I_sh;//Armature current on full load (in Amperes)\n", +"E_f=V-I_af*R_a;//emf induced (in volts)\n", +"N_f=600;//in rpm\n", +"E1=V+I_af*R_a;//in volts\n", +"N1=E1*N_f/E_f;\n", +"disp(N1,'Speed under regenerative braking(in rpm)=');\n", +"E2=I_af*(5.5+R_a)-V;//in volts\n", +"N2=E2*N_f/E_f;\n", +"disp(N2,'Speed under plugging (in rpm)=');\n", +"E3=I_af*(2.6+R_a);//in volts\n", +"N3=E3*N_f/E_f;\n", +"disp(N3,'Speed under dynamic braking(in rpm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.38: Find_the_value_of_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.38\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=230;//in volts\n", +"I_a=100;//in amperes\n", +"R_a=0.05;//in ohms\n", +"E_b=V-I_a*R_a;//in volts\n", +"N=870;//in rpm\n", +"T=E_b*I_a/(2*%pi*N/60);//torque developed (in N-m)\n", +"T_l=400;//in N-m\n", +"I_an=I_a*T_l/T;//in amperes\n", +"E=V+I_an*R_a;//in volts\n", +"N1=N*E/230;\n", +"disp(N1,'Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.39: Find_the_reduction_in_flux_and_motor_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.39\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_a1=100;//in Amperes\n", +"V=230;//in volts\n", +"R_a=0.1;//in ohms\n", +"E_b1=V-I_a1*R_a;//in volts\n", +"N1=500;//in rpm\n", +"N2=800;//in rpm\n", +"x=(V-sqrt((V^2)-4*10*352))/(2*10);\n", +"disp('Flux is reduced by');\n", +"disp(x^-1,);\n", +"disp('times to get motor speed of 800 rpm');\n", +"I_a2=I_a1*x;//in amperes\n", +"E_b2=V-I_a2*R_a;//in volts\n", +"T_2=E_b2*I_a2*60/(2*%pi*N2);//in N-m\n", +"T_3=800;//in N-m\n", +"I_a3=I_a2*T_3/T_2;//in Amperes\n", +"E_b3=V+I_a3*R_a;//in amperes\n", +"N3=E_b3*N2/E_b2;\n", +"disp(ceil(N3),'Speed (in rpm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Find_the_value_of_moment_of_inertia_and_power_developed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:1.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"J_m=0.4;//motor inertia(in Kg-m2)\n", +"J_l=10;//load inertia(in Kg-m2)\n", +"a=0.1;//Teeth ratio of gear\n", +"i=1/a;\n", +"N=1400;\n", +"pi=22/7;\n", +"n=0.90;//efficency of motor\n", +"T_l=50;//Torque(N-m)\n", +"J=J_m+J_l/(i^2);//Total moment of inertia referred to the motor shaft\n", +"T_L=T_l/(i*n);//total equivalent torque referref to motor shaft\n", +"P=T_L*2*pi*N/60;//power developed by motor\n", +"disp(ceil(P),'power developed by motor(in Watt)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.40: Find_the_value_of_plugging_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.40\n", +"clc;\n", +"clear;\n", +"close;\n", +"f=50;//in hertz\n", +"P=4;//Number of poles\n", +"N_s=120*f/P;//Synchronous Speed (in rpm)\n", +"s_f=0.05;//Full load Slip\n", +"N_f=N_s*(1-s_f);//Full load speed (in rpm)\n", +"P_d=30*1000;//in watts\n", +"T_f=P_d/(2*%pi*N_f/60);//In N-m\n", +"s_2=2-s_f;//Slip at plugging\n", +"T_p=(s_2/s_f)*T_f*(1+16*s_f^2)/(1+16*s_2^2);\n", +"disp(T_p,'Plugging Torque (in N-m)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.41: EX1_41.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.41\n", +"clc;\n", +"clear;\n", +"close;\n", +"R2=0.5;//in ohms\n", +"X2=2.4;//in ohms\n", +"a=0.5;//ratio\n", +"s_f=0.05;//slip\n", +"f=50;//in hertz\n", +"P=8;//Number of Poles\n", +"R_2=R2*a^2;//in ohms\n", +"X_2=X2*a^2;//in ohms\n", +"s=2-s_f;//Slip during Plugging\n", +"N_s=120*f/P;//in rpm\n", +"V=400/sqrt(3);//in volts\n", +"R_L=2;//in ohms\n", +"R_1=0.1;//in ohms\n", +"X_1=0.6;//in ohms\n", +"I_2=V/sqrt(((R_1+(R_2+R_L)/s)^2)+(X_1+X_2)^2);//in amperes\n", +"T_b=3*60*I_2^2*(R_2+R_L)/(2*%pi*N_s*s);\n", +"disp(int(T_b),'Initial Braking Torque (in N-m)=');\n", +"E_2=V*sqrt(((R_2/s_f)^2+(X_2^2))/(((R_2/s_f)+R_1)^2)+1.2^2)/sqrt(3);\n", +"S=1-s_f;//Slip during breaking\n", +"I_2b=E_2/sqrt((X_2^2)+((R_L+R_2)/S)^2);\n", +"T_bn=3*60*I_2b^2*(R_2+R_L)/(2*%pi*N_s*S);\n", +"disp(T_bn,'Initial Braking Torque during dc dynamic braking(in N-m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.42: EX1_42.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.42\n", +"clc;\n", +"clear;\n", +"close;\n", +"J=630;//in kg-m^2\n", +"T_f=1.4*9.81;//in N-m\n", +"T_e=165*9.81;//in N-m\n", +"T_b=T_e+T_f;//in N-m\n", +"Beta=T_b/J;//in rad/sec^2\n", +"f=50;//in hertz\n", +"P=8;//no of poles\n", +"N_s=120*f/P;//in rpm\n", +"w_1=2*%pi*N_s/60;//in rad/sec\n", +"t=w_1/Beta;\n", +"disp(t,'Time taken to stop the motor (in seconds)=');\n", +"n=w_1^2/(2*%pi*Beta*2);\n", +"disp(n,'Number of revolutions made=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.43: Find_the_value_of_time_taken_and_number_of_revolutions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.43\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=37.5*1000;//in Watts\n", +"N=750;//in rpm\n", +"Eff=0.9;//Efficiency\n", +"V_L=400;//in Volts\n", +"pf=0.85;//Power Factor\n", +"R_b=2.5;//in ohms\n", +"T_f=P_o*60/(2*%pi*N);//in N-m\n", +"I_L=P_o/(sqrt(3)*V_L*pf*Eff);//in Amperes\n", +"I_b=V_L/(sqrt(3)*R_b);//in Amperes\n", +"T_E=T_f*I_b/I_L;//in N-m\n", +"T_i_total=T_f+T_E;//in N-m\n", +"w=2*%pi*N/60;//in rad/sec\n", +"K=T_E/w;\n", +"J=20;//kg-m^2\n", +"t=(J/K)*log((T_f+K*w)/T_f);\n", +"disp(t,'Time taken (in Seconds)=');\n", +"n=(1/(2*%pi*K))*(((J/K)*(T_f+K*w)*(1-exp(-K*t/J)))-T_f*t);\n", +"disp(n,'Number of Revolutions Made=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.44: Find_the_value_of_time_taken.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.44\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=240;//in volts\n", +"R=15;//in ohms\n", +"N=1500;//in rpm\n", +"P=E^2/R;//in Watts\n", +"T_b=P*60/(2*%pi*N);//in N-m\n", +"T_e=T_b;\n", +"w_1=2*%pi*N/60;//in rad/sec\n", +"K=T_e/w_1;\n", +"J=20;//kg-m^2\n", +"t=(J/K)*log(w_1/62.832);\n", +"disp(t,'Time taken to bring motor from 1500 rpm to 600 rpm (in seconds)=');\n", +"T_f=1.5*9.81;//in N-m\n", +"t_o=(J/K)*log((T_f+T_e)/(T_f+(T_e*600/1500)));\n", +"disp(t_o,'Time taken for fall of speed if there exist frictional torque (in seconds)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.45: Find_the_value_of_final_temperature_rise_and_heating_time_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.45\n", +"clc;\n", +"clear;\n", +"close;\n", +"d=0.65;//in meters\n", +"l=1;//in meters\n", +"P_o=12*735.5;//in watts\n", +"Eff=0.9;//Efficiency\n", +"P_in=P_o/Eff;//in watts\n", +"P_L=P_in-P_o;//in watts\n", +"m=400;//in kg\n", +"C_p=700;//in J/Kg/Celcius\n", +"alpha=12;//in watts/m^2/Celcius\n", +"S=%pi*d*l;//in m^2\n", +"Theta=P_L/(S*alpha);//in Celcius\n", +"t=m*C_p/(S*alpha);\n", +"disp(Theta,'Final temperatur rise (in degree celcius)=');\n", +"disp(ceil(t),'Heating time constant (in seconds)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.47: EX1_47.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.47\n", +"clc;\n", +"clear;\n", +"close;\n", +"theta_1=20;//in degree celcius\n", +"theta_2=34;//in degree celcius\n", +"t=-1/log((theta_2/theta_1)-1);//in hours\n", +"disp(t,'Heating time constant (in hours)=');\n", +"theta_F=theta_1/(1-exp(-1/t));\n", +"disp(theta_F,'Final steady temperature rise (in degree celcius)=');\n", +"theta_f=theta_F/(1-exp(-1/t));\n", +"x=sqrt(2*(theta_f/theta_F)-1);\n", +"disp('one hour rating of motor is');\n", +"disp(x,'times full load rating');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.48: Find_the_half_hour_rating_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.48\n", +"clc;\n", +"clear;\n", +"close;\n", +"P=25;//in KW\n", +"t=1.5;//in hours\n", +"P_L=sqrt((((1/(1-exp(-0.5/t)))*1.9)-0.9)*P^2);\n", +"disp(P_L,'Half hour rating of a 25KW Motor (in KW)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.49: Find_the_running_time_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.49\n", +"clc;\n", +"clear;\n", +"close;\n", +"t=60;//in minutes\n", +"theta_F=20;//in degree celcius\n", +"P_L1=2.5625;//Total losses at P KW\n", +"P_L2=7.25;//Total losses at 2P KW\n", +"theta_f=theta_F*P_L2/P_L1;//in degree celcius\n", +"t_o=t*log(1/(1-(theta_F/theta_f)));\n", +"disp(t_o,'Time of operation (in minutes)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Find_the_value_of_moment_of_inertia_and_power_developed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:1.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"J_m=0.4;//motor inertia(in Kg-m2)\n", +"J_l=10;//load inertia(in Kg-m2)\n", +"a=0.1;//Teeth ratio of gear\n", +"N=1500;\n", +"pi=22/7;\n", +"n_t=0.88;\n", +"m=600;//weight\n", +"g=9.81;\n", +"f_r=m*g;//force\n", +"w_m=fix(2*pi*N/60);//motor speed\n", +"w=2;//uniform speed of weight lifting\n", +"n=0.9;//efficency of motor\n", +"T_l=50;//Torque(N-m)\n", +"J=J_m+(a^2)*J_l+m*((w/w_m)^2);//Total moment of inertia referred to the motor shaft\n", +"T_L=(a*T_l/n)+f_r*w/(n_t*w_m) ;//total equivalent torque referred to motor shaft\n", +"p=T_L*w_m;//power developed by motor(in Watt)\n", +"P=p/1000;//power developed by motor(in kWatt)\n", +"disp(J,'Total torque referred to motor shaft(in kg-m2)=')\n", +"disp(T_L,'Total equivalent Torque referred to motor shaft(in N-m)=')\n", +"disp(P,'power developed by motor(in kWatt)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.51: Find_out_the_continuous_rating_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.51\n", +"clc;\n", +"clear;\n", +"close;\n", +"Eff=0.8;//Efficiency\n", +"P1=400;//in watts\n", +"t1=60;//in minutes\n", +"t2=15;//in minutes\n", +"P=sqrt((((2.5625/(1-exp(-t2/t1)))-1)^(-1))*(P1/Eff)^2);\n", +"disp(P,'Continuous Rating of Motor (in Watts)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.52: EX1_52.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.52\n", +"clc;\n", +"clear;\n", +"close;\n", +"theta_1=50;//in degree Celcius\n", +"theta_F=80;//in degree celcius\n", +"t=0.75;//in hours\n", +"theta=theta_F*(1-exp(-1/t));\n", +"disp(theta_F,'Temperature rise after 1 hour (in degree celcius)=');\n", +"theta_f=theta_F/(1-exp(-1/t));\n", +"disp(theta_f,'Steady state temperature rise at 1 hour rating (in degree celcius)=');\n", +"T=-t*log(1-(theta_1/theta_f));\n", +"disp(60-T*60,'Time taken to increase temperature from 50 to 80 degree celcius (in minutes)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.53: Find_the_value_of_load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.53\n", +"clc;\n", +"clear;\n", +"P_cont=100;//in KWs\n", +"Eff=0.8;//Efficiency\n", +"T_1=50;//in minutes\n", +"T_2=70;//in minutes\n", +"t_1=10;//in minutes\n", +"t_2=10;//in minutes\n", +"r=(1-exp(-((t_1/T_1)+(t_2/T_2))))/(1-exp(-t_1/T_1));// r=theta_f/theta_F\n", +"P_L=2.5625;//Losses at 100 KW Load \n", +"P_L1=Eff*P_cont;//in Kws\n", +"P=sqrt(((P_L*r)-1)*P_L1^2);\n", +"disp(P,'Value of Load in KW during load period=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.54: Find_the_value_of_final_temperature_rise_and_heating_time_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.54\n", +"clc;\n", +"clear;\n", +"close;\n", +"theta_1=20;//in degree celcius\n", +"theta_2=30;//in degree celcius\n", +"t_1=30;//in minutes\n", +"t_2=60;//in minutes\n", +"t=-(t_2-t_1)/log((theta_2/theta_1)-1);//in minutes\n", +"theta_F=theta_1/(1-exp(-t_1/t));\n", +"disp(t,'Heating Time Contant (in minutes)=');\n", +"disp(theta_F,'Final Temperature Rise (in Degree Celcius)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.55: Find_the_value_of_maximum_overload.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.55\n", +"clc;\n", +"clear;\n", +"close;\n", +"theta_1=30;//in degree celcius\n", +"theta_2=40;//in degree celcius\n", +"t_1=1;//in hours\n", +"t_2=2;//in hours\n", +"x=(theta_2/theta_1)-1;\n", +"theta_F=theta_1/(1-x);//in degree celcius\n", +"theta_f=50/(1-x);//in degree celcius\n", +"P_L=25;//in KWs\n", +"P=P_L*sqrt(theta_f/theta_F);\n", +"disp(P,'Maximum Overload (in KWs)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.56: Find_the_value_of_temperature_rise.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.56\n", +"clc;\n", +"clear;\n", +"close;\n", +"theta_1=20;//in degree celcius\n", +"theta_2=35;//in degree celcius\n", +"t_1=1/2;//in hours\n", +"t_2=1;//in hours\n", +"t=-(t_2-t_1)/log((theta_2/theta_1)-1);//in minutes\n", +"theta_F=theta_1/(1-exp(-t_1/t));\n", +"theta=theta_F*(1-exp(-2/t));\n", +"disp(theta,'Temperature Rise After 2 hrs (in Degree Celcius)=');\n", +"theta_F1=theta_F*0.8;//in Degree Celcius\n", +"t_o=0.8*t;//in hours\n", +"theta_o=theta_F1*(1-exp(-1/t_o));\n", +"disp(theta_o,'Temperature Rise from cold After 1 hr at full load (in Degree Celcius)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.57: Determine_the_suitable_size_of_continuously_rated_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.57\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_1=100;//in KWs\n", +"P_2=50;//in KWs\n", +"t_1=10;//in minutes\n", +"t_2=8;//in minutes\n", +"t_3=5;//in minutes\n", +"t_4=4;//in minutes\n", +"P=sqrt(((t_1*P_1^2)+(t_2*P_2^2))/(t_1+t_2+t_3+t_4));\n", +"disp(P,'Rating Of Continuously Rated Motor (in KWs)=');\n", +"disp('Adequate rating of motor=70 Kws');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.58: Find_the_power_rating_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.58\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_1=240;//in N_m\n", +"T_2=140;//in N-m\n", +"T_3=300;//in N-m\n", +"T_4=200;//in N-m\n", +"t_1=20;//in minutes\n", +"t_2=10;//in minutes\n", +"t_3=10;//in minutes\n", +"t_4=20;//in minutes\n", +"T=sqrt(((t_1*T_1^2)+(t_2*T_2^2)+(t_3*T_3^2)+(t_4*T_4^2))/(t_1+t_2+t_3+t_4));\n", +"N=720;//in rpm\n", +"P=T*2*%pi*N/60;\n", +"disp(P,'Power rating of Motor(in KWs)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.59: Determine_the_kW_rating_of_the_motor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.59\n", +"clc;\n", +"clear;\n", +"close;\n", +"t=90;//in seconds\n", +"T_eq=sqrt(40750/t);//in Kg-m\n", +"N=750;//in rpm\n", +"P=T_eq*9.81*2*%pi*N/60;\n", +"disp(P,'Power Rating Of Motor (in Kws)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Find_the_value_of_motor_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=220;//in volts\n", +"V_1=200;//in volts\n", +"N=1000;//in rpm\n", +"I=100;//in amperes\n", +"R_a=0.1;//in ohms\n", +"E_b=V-I*R_a;//in volts\n", +"I_1=I;//in amperes\n", +"E_b1=V_1-I_1*R_a;//in volts\n", +"N_1=N*E_b1/E_b;\n", +"disp(ceil(N_1),'Motor Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.61: Find_the_value_of_speed_at_the_end_of_deceleration_period.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.61\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_l=100*9.81;//in N-m\n", +"t=10;//in seconds\n", +"J=1000;//kg-m^2\n", +"f=50;//in hertz\n", +"P=4;//no.of poles\n", +"N_s=120*f/P;//synchronous speed (in rpm);\n", +"s=0.06;//slip\n", +"w_s=s*N_s*2*%pi/60;//slip speed (in rad/sec)\n", +"K=w_s/(50*9.81);\n", +"T_m=T_l-T_l*exp(-t/(K*J));\n", +"N_sn=K*T_m*60/(2*%pi);//in rpm\n", +"N=N_s-N_sn;\n", +"disp(N,'Speed at the end of deceleration period (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.62: Determine_the_value_of_inertia_of_the_flywheel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.62\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=500*735.5;//in watts\n", +"N_o=40;//in rpm\n", +"s_f=0.12;\n", +"N_f=N_o*(1-s_f);//full load speed (in rpm)\n", +"T_f=P_o/(2*%pi*N_f/60);//Full load torque (N-m)\n", +"T_m=2*T_f;//Motor torque (in N-m)\n", +"T_l=41500*9.81;//Load torque (in N-m)\n", +"t=10;//seconds\n", +"w_s=s_f*N_o*2*%pi/60;//slip speed (in rad/sec)\n", +"K=w_s/T_f;\n", +"J=-t/(K*log(1-(T_m/T_l)));\n", +"disp(J,'Moment of Inertia (in Kg-m^2)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.63: Find_the_value_of_weight_of_flywheel_and_time_taken.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.63\n", +"clc;\n", +"clear;\n", +"close;\n", +"P_o=50*1000;//in watts\n", +"f=50;//in hertz\n", +"s_f=0.04;//slip\n", +"P=6;//no.of poles\n", +"N_s=120*f/P;//Synchronous Speed (in rpm)\n", +"N_f=N_s*(1-s_f);\n", +"T_f=P_o/(2*%pi*N_f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.64: Find_the_value_of_moment_of_inertia.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.64\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_L=600;//in N-m\n", +"T_m=450;//in N-m\n", +"N=600;//in rpm\n", +"w_o=2*%pi*N/60;//in rad/sec\n", +"s=0.08;//slip\n", +"w=s*w_o;//in rad/sec\n", +"K=w/T_m;//Torque constant\n", +"J=(-10/K)/log(0.25);//in Kg-m^2\n", +"J_m=10;//in Kg-m^2\n", +"J_F=J-J_m;\n", +"disp(J_F,'Moment Of Inertia Of Flywheel (in Kg-m^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.65: Find_the_value_of_moment_of_inertia.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.45\n", +"clc;\n", +"clear;\n", +"close;" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Find_the_value_of_full_load_speed_and_full_load_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=230;//in volts\n", +"R_sh=230;//in ohms\n", +"R_a=0.5;//in ohms\n", +"I_sh=V/R_sh;//in amperes\n", +"I_lo=3;//in amperes\n", +"I_ao=I_lo-I_sh;//in amperes\n", +"E_bo=V-I_ao*R_a;//in volts\n", +"N_o=1000;//in rpm\n", +"I_lf=23;//in amperes\n", +"I_af=I_lf-I_sh;//in amperes\n", +"E_bf=V-I_af*R_a;//in volts\n", +"Phy_ratio=0.98;\n", +"N_f=N_o*(E_bf/E_bo)/Phy_ratio;\n", +"disp(ceil(N_f),'Full Load Speed (in rpm)=');\n", +"T_f=9.55*E_bf*I_af/N_f;\n", +"disp(T_f,'Full load Torque (in Newton-meter)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Find_the_value_of_armature_voltage_drop_at_full_load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=440;//in volts\n", +"N_o=2000;//in rpm\n", +"E_bo=440;//in volts\n", +"N_f=1000;//in rpm\n", +"N_h=1050;//in rpm\n", +"E_bf=E_bo*N_f/N_o//in volts\n", +"E_b=E_bo*N_h/N_o;//in volts\n", +"v=(E_b-E_bf)*2;\n", +"disp(v,'Armature voltage drop at full load (in volts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Find_the_value_of_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=230;//in volts\n", +"N1=750;//in rpm\n", +"R=10;//in ohms\n", +"I_a=30;//in amperes\n", +"N2=N1*((V+I_a*R)/V)^-1;\n", +"disp(int(N2),'Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Find_the_value_of_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:1.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=200;//in volts\n", +"I_1=20//in amperes\n", +"R_a=0.5;//in ohms\n", +"E_b1=V-I_1*R_a;//in volts\n", +"N1=700;//in rpm\n", +"I_2=sqrt(1.44)*I_1;//in amperes\n", +"E_b2=V-I_2*R_a;//in volts\n", +"N2=N1*(E_b2/E_b1)*(I_1/I_2);\n", +"disp(int(N2),'(a) Speed (in rpm)=');\n", +"I_3=10;//in amperes\n", +"E_b3=V-I_3*R_a;//in volts\n", +"N3=N1*(E_b3/E_b1)*(I_1/I_3);\n", +"disp(ceil(N3),'(b) Speed (in rpm)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_of_Electric_Drives_by_J_B_Gupta/3-Thyristor_Control_Of_Electric_Motors.ipynb b/Elements_of_Electric_Drives_by_J_B_Gupta/3-Thyristor_Control_Of_Electric_Motors.ipynb new file mode 100644 index 0000000..068add6 --- /dev/null +++ b/Elements_of_Electric_Drives_by_J_B_Gupta/3-Thyristor_Control_Of_Electric_Motors.ipynb @@ -0,0 +1,833 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Thyristor Control Of Electric Motors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Find_the_value_of_no_load_speed_and_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha_a=45;//in degrees\n", +"R_a=0.2;//in ohms\n", +"K=0.25;//in volts/rpm\n", +"V=400;//in volts\n", +"I_ao=5;//in amperes (no load armature current)\n", +"N=1500;//in rpm\n", +"I_a=100;//in amperes\n", +"V_ao=3*sqrt(3)*V*sqrt(2)*(1+cosd(alpha_a))/(sqrt(3)*%pi*2);//in volts\n", +"E_bo=V_ao-(I_ao*R_a);//in volts\n", +"N_o=E_bo/K;\n", +"disp(int(N_o),'No-Load Speed (in rpm)=');\n", +"E_b=N*K;//in volts\n", +"V_a=E_b+(I_a*R_a);//in volts\n", +"alpha_ao=acosd(((V_a*%pi*2)/(3*V*sqrt(2)))-1);\n", +"disp(alpha_ao,'Firing Angle (in degrees)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: EX3_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=0.4;//duty cycle\n", +"V_dc=200;//in volts\n", +"R=10;//in ohms\n", +"V_a=alpha*V_dc;\n", +"disp(V_a,'(a) Average Load Voltage (in volts)=');\n", +"I=V_a/R;\n", +"disp(I,'(b) Average thyristor current (in amperes)=');\n", +"I_d=0;\n", +"disp(I_d,'(c) Diode Current (in amperes)=');\n", +"R_eff=R/alpha;\n", +"disp(R_eff,'(d) Effective input resistance (in ohms)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: Find_the_value_of_average_load_current_and_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"V_dc=220;//in volts\n", +"V_a=250;//average load voltage (in volts)\n", +"R=10;//in ohms\n", +"alpha=1-(V_dc/V_a);\n", +"I=V_a/R;\n", +"disp(I,'Average Load Current (in amperes)=')\n", +"disp(alpha,'Firing Angle (in degrees)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: Find_the_value_of_frequency_of_switching_pulse.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"V_dc=125;//in volts\n", +"V_a=200;//average output voltage (in volts)\n", +"T_on=1*10^-3;//in seconds\n", +"alpha=V_a/(V_a+V_dc);//duty cycle\n", +"f=alpha/T_on;\n", +"disp(f,'Frequency Of Switching pulse (in hertz)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: Find_the_value_of_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=0.25;//duty cycle\n", +"V=400;//in volts\n", +"L=0.5;//in henery\n", +"I=10;//ripple current (in amperes)\n", +"V_a=alpha*V;//in volts\n", +"T_on=L*I/(V-V_a);//in seconds\n", +"T=T_on/alpha;//in seconds\n", +"f=1/T;\n", +"disp(f,'Frequency (in hertzs)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: Find_the_range_of_speed_control_and_duty_cycle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"V_a=120;//in volts\n", +"I_a=20;//in amperes\n", +"R_a=0.5;//in ohms\n", +"K=0.05;//Motor constant (in volts/rpm)\n", +"E_b=V_a-(I_a*R_a);//in volts\n", +"N=E_b/K;//in rpm\n", +"disp('Range of Speed Control is :');\n", +"disp('Lowest Speed (in rpm) = 0');\n", +"disp(N,'Highest Speed (in rpm)=');\n", +"E_bo=0;//in volts\n", +"V_a1=E_bo+(I_a*R_a);//in volts\n", +"alpha=V_a1/V_a;\n", +"disp('Range of duty cycle is :');\n", +"disp(alpha,'lowest value of duty cycle=');\n", +"disp('Highest value of duty cycle= 1')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: Find_the_value_of_duty_cycle_of_the_chopper.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=200;//in volts\n", +"I_a=100;//in amperes\n", +"R_a=0.02;//in ohms\n", +"N1=940;//in rpm\n", +"N2=500;//in rpm\n", +"E_b1=V-(I_a*R_a);//in volts\n", +"E_b2=E_b1*N2/N1;//in volts\n", +"V_a=E_b2+(I_a*R_a);//in volts\n", +"alpha=V_a/V;\n", +"disp(alpha,'Duty Cycle Of The Chopper=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.18: Find_the_value_of_power_input_and_speed_and_torque_and_maximum_and_minimum_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=0.6;//duty cycle\n", +"alpha1=0.1;//duty cycle\n", +"alpha2=0.9;//duty cycle\n", +"V=400;//in volts\n", +"R_a=0.1;//in ohms\n", +"K=4;//Motor Constant (in Volts/radians)\n", +"I_a=150;//in Amperes\n", +"P_in=alpha*V*I_a/1000;\n", +"disp(P_in,'(a) Power input (in Kilo-Watts)=');\n", +"V_a=alpha*V;//in volts\n", +"E_b=V_a-(I_a*R_a);//in volts\n", +"N=60*E_b/(2*%pi*K);\n", +"disp(int(N),'(b) Motor Speed (in rpm)=');\n", +"T=E_b*I_a*60/(2*%pi*N);\n", +"disp(T,'(c) Torque developed (in Newton-meter)=');\n", +"E_b1=(alpha1*V)-(I_a*R_a);//in volts\n", +"N1=60*E_b1/(2*%pi*K);\n", +"disp(ceil(N1),'(d) Minimum Speed (in rpm)=')\n", +"E_b2=(alpha2*V)-(I_a*R_a);//in volts\n", +"N2=60*E_b2/(2*%pi*K);\n", +"disp(ceil(N2),' Maximum Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19: Find_the_value_of_Average_voltage_and_power_dissipated_and_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=0.4;//duty cycle\n", +"R_b=7.5;//in ohms\n", +"R_a=0.1;//in ohms\n", +"I_f=1.5;//in amperes\n", +"K=1.6;//Voltage Constant (in V/A-rad/sec)\n", +"I_a=150;//in amperes\n", +"V_b=(1-alpha)*R_b*I_a;\n", +"disp(V_b,'(a) Average Voltage (in volts)=');\n", +"P_b=I_a^2*R_b*(1-alpha);\n", +"disp(P_b/1000,'(b) Power Dissipated (in kilo-watts)=');\n", +"E_g=V_b+(I_a*R_a);//in volts\n", +"N=60*E_g/(K*I_f*2*%pi);\n", +"disp(int(N),'(c) Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: EX3_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=120;//in Volts\n", +"V_dc=40.5;//in volts\n", +"V_rms=76.1;//in volts\n", +"R=10;//in ohms\n", +"I_dc=V_dc/R;//in Amperes\n", +"I_rms=V_rms/R;//in Amperes\n", +"P_dc=V_dc*I_dc;//in watts\n", +"P_ac=V_rms*I_rms;//in watts\n", +"Eff=P_dc/P_ac;//in per unit\n", +"disp(Eff,'(a) Efficiency (in Per Unit=)');\n", +"K_f=V_rms/V_dc;//in per unit\n", +"disp(K_f,'(b) Form Factor (in Per Unit=)');\n", +"Y=sqrt(K_f^2-1);\n", +"disp(Y,'(c) Ripple Factor (in Per Unit=)');\n", +"T_f=P_dc/(V*I_rms);\n", +"disp(T_f,'(d) Transformer Utilisation Factor=');\n", +"P_iv=sqrt(2)*V;\n", +"disp(P_iv,'(e) Peak Inverse Voltage (in volts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.20: Find_the_value_of_firing_angle_and_power_supplied.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_g=-163.53;//in volts\n", +"I_a=40;//in amperes\n", +"R_a=0.2;//in ohms\n", +"V=220;//in volts\n", +"V_a=E_g+(I_a*R_a);//in volts\n", +"alpha_a=acosd(V_a*%pi/(2*V*sqrt(2)));\n", +"disp(alpha_a,'Firing Angle (in degrees)=');\n", +"P=V_a*I_a*(-1);\n", +"disp(P/1000,'Power Supplied (in Kilo-Watts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.21: Find_the_value_of_pulse_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_b=100;//in volts\n", +"I_a=25;//in amperes\n", +"R=0.2;//(R_a+R_se) in ohms\n", +"V=220;//in volts\n", +"f=200;//in hertz\n", +"V_a=E_b+(I_a*R);//in volts\n", +"T_on=V_a/(V*f);\n", +"disp(T_on*1000,' Pulse Width (in mili-seconds)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.22: Find_the_value_of_motor_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"N=1000;//in rpm\n", +"V=240;//in volts\n", +"w=2*%pi*N/60;//in rad/sec\n", +"alpha=30;//in degrees\n", +"R=0.25;//in ohms\n", +"K=0.025;//in Nm/A^2\n", +"disp('When controlled through semiconverter');\n", +"V_a1=sqrt(2)*V*(1+cosd(alpha))/%pi;//in volts\n", +"I_a1=V_a1/(R+(K*w));\n", +"disp(I_a1,'Armature Current (in Amperes)=');\n", +"T_1=K*I_a1^2;\n", +"disp(T_1,'Motor Torque (in N-m)=');\n", +"disp('When controlled through full converter');\n", +"V_a2=2*sqrt(2)*V*cosd(alpha)/%pi;//in volts\n", +"I_a2=V_a2/(R+(K*w));\n", +"disp(I_a2,'Armature Current (in Amperes)=');\n", +"T_2=K*I_a2^2;\n", +"disp(T_2,'Motor Torque (in N-m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.23: Find_average_motor_current_and_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=230;//in volts\n", +"V_dc=sqrt(2)*V*2/%pi;//in volts\n", +"T_L=30;//in N-m\n", +"K_t=0.3;//torque constant (in N-m/A^2)\n", +"I_a=sqrt(T_L/K_t);\n", +"disp(I_a,'Average Motor Current (in Amperes)=');\n", +"w=(207-I_a)/(K_t*I_a);// in rad/sec\n", +"N=w*60/(2*%pi);\n", +"disp(N,'Speed (in rpm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.24: Find_the_value_of_armature_current_and_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"I_a1=36;//in amperes\n", +"N1=400;//in amperes\n", +"N2=600;//in amperes\n", +"alpha_1=100;//in degrees\n", +"V=675;//in volts\n", +"R=0.4;//in ohms\n", +"V_a1=sqrt(2)*V*(1+cosd(alpha_1))/%pi;//in volts\n", +"E_b1=V_a1-I_a1*R;//in volts\n", +"I_a2=I_a1*N2/N1;//in amperes\n", +"E_b2=E_b1*I_a2*N2/(I_a1*N1);//in volts\n", +"V_a2=E_b2+21.6;///in volts\n", +"alpha=acosd((V_a2*%pi/(sqrt(2)*V))-1);\n", +"disp(I_a2,'Armature current (in Amperes)=');\n", +"disp(alpha,'Firing angle (in degrees)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Find_the_value_of_feild_current_and_firing_angle_and_input_power_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha_f=0;\n", +"R_f=250;//in ohms\n", +"K_f=0.8;//torque constant\n", +"R_a=0.2;//in ohms\n", +"V_const=0.8;//in volt/Amperes-radian/sec\n", +"N=1000;// in rpm\n", +"T_d=50;//In Newton-meter\n", +"V_rms=220;//in volts\n", +"V_f=int(V_rms*sqrt(2)*(1+cosd(alpha_f))/%pi);// Feild Circuit Voltage (in volts)\n", +"I_f=V_f/R_f;//in Amperes\n", +"disp(I_f,'(a) Feild Current (in Amperes)=');\n", +"I_a=T_d/(K_f*I_f);//in amperes\n", +"w=2*N*%pi/60;// in radian/sec\n", +"E_b=V_const*w*I_f;//Back emf (in volts)\n", +"V_a=E_b+(I_a*R_a);//armature voltage (in volts)\n", +"alpha_a=acosd(((V_a*%pi/(V_rms*sqrt(2))))-1);\n", +"disp(alpha_a,'(b) Firing angle of the converter (in degrees)=');\n", +"P_o=int(V_a*I_a);//in watts\n", +"I=52.66;//in amperes\n", +"pf=P_o/(V_rms*I);\n", +"disp(pf,'(c) Power factor of the converter=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Find_the_value_of_speed_of_motor_and_motor_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha_a=45;//in degrees\n", +"V=230;//in volts\n", +"K=1.668;//K_a*Phy (in volt/radian/second)\n", +"R_a=0.2;//in ohms\n", +"I_a=30;//in amperes\n", +"V_a=2*V*sqrt(2)*cosd(alpha_a)/%pi;//in volts\n", +"E_b=V_a-(I_a*R_a);// in volts\n", +"w=E_b/K;//in radian/seconds\n", +"N=ceil(w*60/(2*%pi));\n", +"disp(N,'(a) Speed Of Motor (in rpm)=')\n", +"T=K*I_a;\n", +"disp(T,'(b) Motor Torque (in Newton-meter)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Find_the_value_of_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"R_a=0.06;//in ohms\n", +"N1=875;// in rpm\n", +"N2=750;//in rpm\n", +"V_rms=220;//in volts\n", +"V_dc=200;//in volts\n", +"I_a=150;//in amperes\n", +"E_b1=V_dc-(I_a*R_a);//Back emf (in volts)\n", +"E_b2=E_b1*(N2/N1);// in volts\n", +"V_a=E_b2+(I_a*R_a);//armature voltage (in volts)\n", +"alpha_a=acosd((V_a*%pi/(2*V_rms*sqrt(2))));\n", +"disp(alpha_a,'Firing angle (in degrees)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Find_the_value_of_average_load_voltage_and_load_current_and_input_paower_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=30;//in degrees\n", +"V=230;//in volts\n", +"R=2;//in ohms\n", +"V_avg=2*V*sqrt(2)*cosd(alpha)/%pi;//in volts\n", +"I_avg=V_avg/R;//in amperes\n", +"disp(V_avg,'(a) Average Load Voltage (in Volts)=');\n", +"disp(I_avg,'(b) Average Load Current (in Amperes)=')\n", +"I_rms=I_avg;//in amperes (as ripple free)\n", +"P=V_avg*I_avg;//in watts\n", +"Q=2*V*sqrt(2)*I_avg*sind(alpha)/%pi;// in VAR\n", +"pf=cosd(atand(Q/P));\n", +"disp(pf,'(c) Input Power Factor (lagging)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Find_the_value_of_motor_armature_current_and_motor_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha=60;//in degrees\n", +"V=250;//in volts\n", +"T=140;//in Newton-Meter\n", +"K_a=2.5;//motor voltage constant (in Volt/radian/sec)\n", +"R_a=0.2;//in ohms\n", +"V_a=2*V*sqrt(2)*cosd(alpha)/%pi;//in volts\n", +"I_a=T/K_a;//in amperes\n", +"disp(I_a,'(a) Motor Armature Current (in amperes)=');\n", +"E_b=V_a-(I_a*R_a);//in volts\n", +"w=E_b*I_a/T;\n", +"disp(w,'(b) Motor Speed (in radian/sec)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Find_the_value_of_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"V_dc=220;//in volts\n", +"V=230;//in volts\n", +"I_a1=10;//in amperes\n", +"N1=1500;//in rpm\n", +"N2=500;//in rpm\n", +"N3=-1000;//in rpm\n", +"R_a=2;//in ohms\n", +"E_b1=V_dc-(I_a1*R_a);//in volts\n", +"E_b2=E_b1*(N2/N1);//in volts\n", +"I_a2=I_a1/2;//in amperes\n", +"V_a1=E_b2+(I_a2*R_a);//in volts\n", +"alpha_a1=acosd((V_a1*%pi/(2*V*sqrt(2))));\n", +"disp(alpha_a1,'(a) Firing angle (in degrees) at half the rated torque=');\n", +"E_b3=E_b1*(N3/N1);//in volts\n", +"I_a3=I_a1;//in amperes\n", +"V_a2=E_b3+(I_a3*R_a);//in volts\n", +"alpha_a2=acosd((V_a2*%pi/(2*V*sqrt(2))));\n", +"disp(alpha_a2,'(b) Firing angle (in degrees) at rated motor torque=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Find_the_value_of_torque_developed_and_motor_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"alpha_f=0;//in degrees\n", +"alpha_a=30;//in degrees\n", +"V=220;//in volts\n", +"I_a=40;//in amperes\n", +"R_a=0.2;//in amperes\n", +"K_t=1.12;//motor voltage constant (in Volt/radian/sec)\n", +"R_f=200;//in ohms\n", +"V_f=2*V*sqrt(2)*cosd(alpha_f)/%pi;//in volts\n", +"I_f=V_f/R_f;//in amperes\n", +"V_a=2*V*sqrt(2)*cosd(alpha_a)/%pi;//in volts\n", +"E_b=V_a-(I_a*R_a);//in volts\n", +"T_d=K_t*I_a*I_f;\n", +"disp(T_d,'(a) Torque developed (in N-m)=');\n", +"N=E_b*60/(2*%pi*K_t*I_f);\n", +"disp(ceil(N),'(b) Motor Speed (in rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Find_the_value_of_firing_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa:3.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"R_a=0.2;//in ohms\n", +"alpha_f=0;//in degrees\n", +"V=400;//in volts\n", +"R_f=250;//in ohms\n", +"K=1.3;//Volts/Ampere-radian/second\n", +"N=1200;//in rpm\n", +"I_a=60;//in amperes\n", +"V_f=3*sqrt(3)*V*sqrt(2)/(sqrt(3)*%pi);//in volts\n", +"I_f=V_f/R_f;//in amperes\n", +"E_b=K*I_f*2*%pi*N/60;//in volts\n", +"V_a=E_b+(I_a*R_a);//in volts\n", +"alpha_a=acosd((V_a*%pi)/(3*V*sqrt(2)));\n", +"disp(alpha_a,'Firing Angle (in degrees)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |