diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Elements_Of_Electrical_Science_by_P_Mukhopadhyay | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Elements_Of_Electrical_Science_by_P_Mukhopadhyay')
6 files changed, 2381 insertions, 0 deletions
diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/2-ELECTRIC_CIRCUITS.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/2-ELECTRIC_CIRCUITS.ipynb new file mode 100644 index 0000000..6840f8b --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/2-ELECTRIC_CIRCUITS.ipynb @@ -0,0 +1,623 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: ELECTRIC CIRCUITS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.10 :current equation\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',5)\n", +"v=100;//volts\n", +"r=50;//in ohms\n", +"l=0.1;//henry\n", +"c=50;//mf\n", +"d=poly(0,'d')\n", +"p=2*10^5+500*d+d^2;\n", +"x=roots(p)\n", +"c1=0;//at t=0 i=0\n", +"c2=1000/imag(x(1,1));//\n", +"disp('it= '+string(c2)+'*e^'+string(real(x(1,1)))+'t*sin'+string(imag(x(1,1)))+'t A')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: average_and_rms_value_of_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.11 :average & rms value\n", +"clc;\n", +"close;\n", +"format('v',6)\n", +"clear;\n", +"// given :\n", +"vm=10;//voltage in volts\n", +"e=vm/2;//voltage in volts\n", +"t=0:2;//time range\n", +"x=intsplin(t,(5*t)^2);//variab;e\n", +"rms=sqrt(x/2);//rms value of voltage in volts\n", +"av=vm/2;//average value of voltage in volts\n", +"disp('parts (a) saw tooth wave')\n", +"disp(rms,'rms value of e is ,(V)=')\n", +"disp(av,'average value of e is ,(V)=')\n", +"t1=0;//initial time in seconds\n", +"t2=%pi;//final time in seconds\n", +"t3=2*%pi;//time interval\n", +"x=integrate('(sin(t))^2','t',t1,t2);//variable\n", +"rms=sqrt((1/(2*%pi))*x*vm^2);//rms value of voltage in volts\n", +"av=(10/(2*%pi))*integrate('sin(t)','t',t1,t2);//average value of voltage in volts\n", +"disp('parts (b) half wave rectified sine wave form')\n", +"disp(rms,'rms value of e is ,(V)=')\n", +"disp(av,'average value of e is ,(V)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: circuit_elements.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.12 :Circuit constants\n", +"clc;\n", +"close;\n", +"format('v',6)\n", +"clear;\n", +"// given :\n", +"//v=194*cos(800*t+150)V Voltage equation\n", +"//I=11.6*cos(800*t+140)A Current equation\n", +"vm=194/sqrt(2);//voltage in volts\n", +"va=150;//angle in degree\n", +"im=11.6/sqrt(2);//current in amperes\n", +"ia=140;//angle in degree\n", +"zm=vm/im;//resistance in ohms\n", +"za=va-ia;//resistance in ohms\n", +"z1=zm*cosd(za);//reactance in ohms\n", +"z2=zm*sind(za);//reactance in ohms\n", +"z=z1+%i*z2;//resistance in ohms\n", +"disp('part (a)')\n", +"disp(z,'Impedance is ,(Ohm)=')\n", +"disp('part (b)')\n", +"//v=6*sin(1000*t+45)V Voltage equation\n", +"//I=12*cos(1000t-90)A current equation\n", +"vm1=60/sqrt(2);//voltage in volts\n", +"va1=45;//angle in degree\n", +"im1=12/sqrt(2);//current in amperes\n", +"ia1=0;//angle in degree\n", +"zm1=vm1/im1;//resistance in ohms\n", +"za1=va1-ia1;//resistance in ohms\n", +"z11=zm1*cosd(za1);//reactance in ohms\n", +"z21=zm1*sind(za1);//reactance in ohms\n", +"z22=z11+%i*z21;//impedance in ohms\n", +"disp(z22,'Impedance is ,(Ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: voltmeter_reading.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.13 :reading\n", +"clc;\n", +"close;\n", +"format('v',8)\n", +"clear;\n", +"// given :\n", +"v1=230;//voltage in volts\n", +"v2=100;//voltage in volts\n", +"v2=sqrt(v1^2-v2^2);//voltage in volts\n", +"v3=300;//voltage in volts\n", +"disp(v2,'reading V2 is,(V)')\n", +"disp('reading V4 is '+string(v3+v2)+' V or '+string(v3-v2)+' V')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: circuit_elements.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.14 :circuit elements\n", +"clc;\n", +"close;\n", +"format('v',6)\n", +"// given :\n", +"//v=311*sin(2500*t+170) V voltage equation\n", +"//I=15.5*sin(2500*t-145)A current equation\n", +"vm=311/sqrt(2);//voltage in volts\n", +"va=170;//angle in degree\n", +"im=15.5/sqrt(2);//current in amperes\n", +"ia=-145;//angle in degree\n", +"zm=vm/im;//resistance in ohms\n", +"za=(va-ia)-360;//resistance ohms\n", +"z1=zm*cosd(za);//resistance in ohms\n", +"z2=zm*sind(za);//resistance in ohms\n", +"z=z1+%i*z2;//resistance in ohms\n", +"t=2500;//time in seconds\n", +"c=(1/(real(z)*t));//capacitance in farads\n", +"disp(z,'Impedance is ,(Ohm)=')\n", +"disp(c*10^6,'capacitance is ,(micro-farads)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: circuit_constants.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.15 :parameters\n", +"clc;\n", +"close;\n", +"format('v',6)\n", +"// given :\n", +"z=40+%i*30;//resistance in ohms\n", +"zph=sqrt(real(z)^2+imag(z)^2);//resistance in ohms\n", +"pf=real(z)/zph;//power factor\n", +"v=400;//voltage in volts\n", +"vp=v/(sqrt(3));//voltage in volts\n", +"pc=vp/zph;//current in amperes\n", +"lv=v;//voltage in volts\n", +"lc=pc;//current om amperes\n", +"p=sqrt(3)*v*lc*pf;//power in watts\n", +"disp('part (a) Star')\n", +"disp(round(vp),'phase voltage,(V)=')\n", +"disp(round(pc),'phase current,(A)=')\n", +"disp(lv,'line voltage ,(V)=')\n", +"disp(lc,'line current,(A)=')\n", +"disp(p,'power ,(W)=')\n", +"z1=40+%i*30;//ohms\n", +"zph1=sqrt(real(z1)^2+imag(z1)^2);//ohms\n", +"pf1=real(z1)/zph1;//power factor\n", +"v1=400;//volts\n", +"vp1=v1;//volts\n", +"pc1=vp1/zph1;//amperes\n", +"lv1=v1;//volts\n", +"lc1=pc1*sqrt(3);//amperes\n", +"p1=sqrt(3)*v1*lc1*pf1;//watts\n", +"disp('part (b) Delta')\n", +"disp(round(vp1),'phase voltage,(V)=')\n", +"disp(round(pc1),'phase current,(A)=')\n", +"disp(lv1,'line voltage ,(V)=')\n", +"disp(lc1,'line current,(A)=')\n", +"disp(p1,'power ,(W)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.1 :current\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',7)\n", +"// given :\n", +"//15*I1-5*I2=10 loop 1 equation\n", +"//20*I2-5*I1-5*I3=0 loop 2 equation\n", +"//10*I3-5*I2=0 loop 3 equation\n", +"vs=10;//voltage in volts\n", +"R1=10;//resistance in ohm\n", +"R2=5;//resistance in ohm\n", +"R3=10;//resistance in ohm\n", +"R4=5;//resistance in ohm\n", +"R5=4;//resistance in ohm\n", +"Ra=1;//resistance in ohm\n", +"A=[R1+R2 R2-R1 0;R2-R1 R2+R3+R4 -R4;R4-(R5+Ra) -R4 R4+R5+Ra];//making equations\n", +"nb=7;//number of branches\n", +"nn=5;//number of nodes\n", +"nl=nb-(nn-1);//number of loops\n", +"nvs=1;//number of voltage sources\n", +"nivs=nn-1-nvs;//number of independent voltage variables\n", +"B=[vs;0;0];//making equations\n", +"X=A\B;//solving equations\n", +"I3=X(3,1);//calculating currrent\n", +"disp(I3,'current in resistance Ra=1.0 ohm is ,(A)=')\n", +"//directions of the current are 2 to 3 and 3 to 4 respectively" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.2 :current\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"vs1=72;//voltage in volts\n", +"vs2=40;//voltage in volts\n", +"R1=36;//resistance in ohm\n", +"R2=10;//resistance in ohm\n", +"ig=2;//current in amperes\n", +"Rx=8;//resistance in ohm\n", +"//(va-72)/36+(va-40)/10 -2 +va/8=0 node equation at 1\n", +"va=((R2*Rx*vs1)+(R1*Rx*vs2)+(R1*R2*Rx*ig))/((R2*Rx)+(R1*Rx)+(R1*R2));//voltage in volts\n", +"ix1=va/Rx;//current in amperes\n", +"//(R1+R2)*I1-R2*I2+vs2=vs1 loop equation 1\n", +"//R2*I2-R2*I1+Ix*Rx=vs2 loop equation 2\n", +"//Ix=I2+2\n", +"A=[R1+R2 -R2;-R2 R2+Rx];//making equations\n", +"B=[vs1-vs2;vs2-2*Rx];//making equations\n", +"X=A\B;//solving equations\n", +"ix2=X(2,1)+ig;//current in amperes\n", +"disp(ix1,'current through Rx is(by node voltage method), (A)=')\n", +"disp(ix2,'current through Rx is (by loop current method),(A) =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.3 :current\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',7)\n", +"// given :\n", +"vs1=10;//voltage in volts\n", +"i5=2;//current in amperes\n", +"i2=i5;//current\n", +"r1=1;//resistance in ohms\n", +"r2=5;//resistance in ohms\n", +"r3=5;//resistance in ohms\n", +"rl=10;//resistance in ohms\n", +"r4=5;//resistance ohms\n", +"//(r1+r2+r3)*i1-r2*i2-r3*i3=vs1 loop equaion 1\n", +"//-r2*i1-(r1+r2)*i2+(rl+r2+r3)*i3=0 loop equation 2\n", +"A=[4*(r1+r2+r3) -r2*4;-r2 (rl+r2+r3)];//making equations\n", +"B=[4*(vs1+r2*i2) ; i2*(r2+r3)];//making equations\n", +"X=A\B;//solving equations\n", +"il=i2-X(2,1);//calculating current\n", +"disp(il,'current through Rl is (from b to a),(A)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.4 :current\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',7)\n", +"// given :\n", +"vs1=72;//voltage in volts\n", +"vs2=40;//voltage in volts\n", +"R1=36;//resistance in ohms\n", +"R2=10;//resistance in ohms\n", +"ig=2;//current in amperes\n", +"Rx=8;//resistance in ohms\n", +"disp('Applying Thevenins Theorem ')\n", +"//(vs1-voc)/R1+(v40-voc)/R2 +2 =0 node equation at 1\n", +"voc=(R2*vs1+R1*vs2+R1*R2*ig)/(R1+R2);//voltage in volts\n", +"req=(R1*R2)/(R1+R2);//resistance in ohms\n", +"ix1=(voc)/(req+Rx);//resistance in ohms\n", +"disp(ix1,'current through Rx is, (A)')\n", +"disp('Applying Nortons Theorem ')\n", +"Is=(vs1/R1)+(vs2/R2)+ig;//current in amperes\n", +"ix2=(req*(Is/(Rx+req)));//current in amperes\n", +"disp(ix2,'current through Rx is, (A) =')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Norton_and_Thevenine_Euivalent_Components.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.5 :Thevenin's and Norton's Equivalent\n", +"clc;\n", +"close;\n", +"format('v',7)\n", +"clear;\n", +"// given :\n", +"vs1=10;//voltage in volts\n", +"R1=50;//resistance in ohms\n", +"R2=50;//resistance in ohms\n", +"R3=25;//resistance in ohms\n", +"disp('(a) Applying Thevenins Theorem ')\n", +"voc=(R1/(R1+R2))*vs1;//voltage in volts\n", +"req=((R1*R2)/(R1+R2))+R3;//resistance in ohms\n", +"disp(voc,'Thevenin equivalent open circuit voltage is, (V)=')\n", +"disp(t=req,'Thevenin equivalent resistance is,(Ohm)=')\n", +"disp('(b) Applying Nortons Theorem ')\n", +"Isc=((vs1)/(R1+(R1*R3)/(R1+R3)))*(R1/(R1+R3));//\n", +"req=((R1*R2)/(R1+R2))+R3;//resistance in ohms\n", +"disp(Isc,'Norton short circuit current is,(A)=')\n", +"disp(t=req,'Norton equivalent resistance is,(Ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.6 :current\n", +"clc;\n", +"close;\n", +"format('v',7)\n", +"clear;\n", +"// given :\n", +"vs1=10;//voltage volts\n", +"r1=100;//resistance in ohms\n", +"r2=600;//resistance in ohms\n", +"r3=150;//resistance in ohms\n", +"r4=850;//resistance in ohms\n", +"rx=50;//resistance in ohms\n", +"voc=vs1*((r3/(r1+r3))-(r4/(r2+r4)));//open circuit voltage in volts\n", +"req=((r1*r3)/(r1+r3))+((r2*r4)/(r2+r4));//equivalent resistance in ohms\n", +"ix=voc/(req+rx)*10^3;//current in amperes\n", +"disp(ix,'current through Rx is (from A to B),(mA)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Nortoan_Euivalent_Components.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.7 :Norton's Equivalent\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"vs1=40;//volts\n", +"vs2=20;//volts\n", +"r1=2;//resistance in ohms\n", +"r2=6;//resistance in ohms\n", +"r3=2;//resistance in ohms\n", +"r4=2;//resistance in ohms\n", +"iab=((r1*vs1)/(r2+(r1/2))*((r1+(r3/2))/(r1+r3)));//current in amperes\n", +"iab1=-vs2/r1;//current amperes\n", +"it=iab+iab1;//current amperes\n", +"req1=r1+((r1*r2)/(r1+r2));//equivalent resistance in ohms\n", +"req=(req1*r3)/(req1+r3);//equivalent resistance in ohms\n", +"disp(it,'current is,(A)')\n", +"disp(req,'equivalent resistance is,(ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: current_equation_and_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.8:equation of current and time\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',6)\n", +"// given :\n", +"v=100;//voltage in volts\n", +"r=100;//resistance in ohms\n", +"l=0.2;//inductance in henrty\n", +"T=1/(l/r);//calculating time in seconds\n", +"t=500;//time in micro seconds\n", +"i1=1-exp(-T*t*10^-6);//current in amperes\n", +"disp(i1,'current is (when t=500 micro seconds),(A)=')\n", +"v2=50;//voltage in volts\n", +"x=v2/r;//variab;e\n", +"x1=x*((v2/r)+i1);//variable \n", +"t1=t+(10^6*(x1/500));//time in seconds\n", +"disp(ceil(t1),'time at which current will be zero is,(micro-seconds)=')\n", +"//time is caluclated wrong in the textbook as they had not added the values" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.9 :time\n", +"clc;\n", +"close;\n", +"format('v',6)\n", +"clear;\n", +"// given :\n", +"v=10;//voltage in volts\n", +"r1=500;//resistance in ohms\n", +"is=0;//current in amperes\n", +"r=700;//resistance in ohms\n", +"c=100;//capacitance in micro farads\n", +"x=1/(r*c*10^-6);//variable\n", +"i=30;//current in mA\n", +"y=(i*10^-3)-(v/r1);//variable\n", +"t=-((log(y*(r/v))));//time in seconds\n", +"t1=t/x;//time in seconds\n", +"disp(t1,'time is ,(seconds)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/3-MAGNETIC_CIRCUITS.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/3-MAGNETIC_CIRCUITS.ipynb new file mode 100644 index 0000000..4d6d670 --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/3-MAGNETIC_CIRCUITS.ipynb @@ -0,0 +1,193 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: MAGNETIC CIRCUITS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: ampere_turns.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 3.1;amper-turns\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"bt=[2;2.5;3.0];//making equations from Table\n", +"H=[400 ;600;800];//making equations from Tble\n", +"fsl=10^-3;//Flux in Wb\n", +"cal=4*10^-4;//area in m^2\n", +"fdl=fsl/cal;//magnetic field in Tesla\n", +"hl=H(2);//AT/m \n", +"pll=0.57;//lenth in meter (path length 2345)\n", +"at2345=pll*hl;//ampere turns\n", +"fcl=2*10^-3;//magnetic field in Wb\n", +"fdcl=fcl/cal;//in Tesla\n", +"hcl=H(1);//in AT/m\n", +"lcl=169;//length in mm\n", +"atcl=(lcl*10^-3)*hcl;//ampere turns\n", +"l=1;//length mm\n", +"Hl=((4*%pi))*10^-7;//AT/m\n", +"atrg=fcl/Hl;//AT\n", +"tat=at2345+atcl+atrg;//total ampere turns\n", +"disp(tat,'total ampere-turns required is, (AT)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: kb_and_ke_and_hysteresis_and_eddy_current_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 3.2;Kb , Ke and hystresis and eddy current loss\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"f1=50;//frequency in Hz\n", +"f2=25;//frequency in Hz\n", +"p1=30.1;//power in W\n", +"p2=12.4;//power in W\n", +"A=[f1 f1^2;f2 f2^2];//making equations\n", +"B=[p1;p2];////making equations\n", +"X=A\B;//calculating parameters\n", +"disp('part (a) Kb and Ke')\n", +"disp(X(1,1),'Kh is')\n", +"disp(X(2,1),'Ke is')\n", +"h25=X(1,1)*f2;//calculating parameters\n", +"e25=X(2,1)*f2^2;//calculating parameters\n", +"h50=X(1,1)*f1;//calculating parameters\n", +"e50=X(2,1)*f1^2;//calculating parameters\n", +"disp('part (b) hystresis and eddy current loss ')\n", +"disp(h25,'hysteresis loss at 25 Hz is , (W)=')\n", +"disp(e25,'eddy current loss at 25 Hz is ,(W)=')\n", +"disp(h50,'hysteresis loss at 50 Hz is ,(W)=')\n", +"disp(e50,'eddy current loss at 50 Hz is ,(W)=')\n", +"W=40;//kg\n", +"h50=X(1,1)*f1;//calculating parameters\n", +"e50=X(2,1)*f1^2;//calculating parameters\n", +"disp('part (c) hystresis and eddy current loss ')\n", +"disp(h50/W,'hysteresis loss per kg at 50 Hz is ,(W)=')\n", +"disp(e50/W,'eddy current loss per kg at 50 Hz is ,(W)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: hysteresis_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 3.3;hystresis loss per Kg\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"l=10;//lengh in mm\n", +"atm=200;//AT/m\n", +"a=4800;//area in m^2\n", +"loss=atm*(l*10^-2)*(a/100);//loss in J/m^3/cycle\n", +"d=7.8*10^3;//kg/m^3\n", +"vikg=1/d;//m^3\n", +"loss1=loss*vikg;//J/cycle\n", +"f=50;//Hz\n", +"tl=loss1*f;//J/s\n", +"disp(tl,'hystersis loss is ,(W/kg)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: ampere_turns.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 3.4;amper-turns\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"r=150;//length in mm\n", +"t=12;//torque in N-m\n", +"f=t/(r*10^-3);//force in N\n", +"np=2;//no. of poles\n", +"fp=f/np;//force per pole in N\n", +"A=400;//area mm^2\n", +"mu=4*%pi*10^-7;//\n", +"b=sqrt((fp*2*mu)/(A*10^-6));//magnetic field in Tesla\n", +"H=b/mu;//in AT/m\n", +"tar=2*0.6*10^-3;//length in meter\n", +"atr=H*tar;//AT\n", +"disp(atr,'ampere turn required is, (AT)=')\n", +"//answer is wrong in the textbook" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/4-TRANSFORMERS.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/4-TRANSFORMERS.ipynb new file mode 100644 index 0000000..971747a --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/4-TRANSFORMERS.ipynb @@ -0,0 +1,428 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: TRANSFORMERS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: number_of_turns.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.1;NUMBER OF TURNS\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"e1=2200;//voltage in volts\n", +"f=50;//frequency in Hz\n", +"e2=220;//voltage in volts\n", +"fd=1.6;//magnetic field in Tesla\n", +"a=3600;//area in mm^2\n", +"n1=(e1/(4.44*f*fd*a*10^-6));//number of turns\n", +"n2=(e2/(4.44*f*fd*a*10^-6));//number of turns\n", +"disp(round(n1),'number of primary winding turns are')\n", +"disp(round(n2),'number of secondary winding turns are')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: EX4_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.2;components of no load currents,magnetising and working components of exciting current\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given \n", +"format('v',6)\n", +"disp('part (a)')\n", +"nlw=2000;//no load input watts\n", +"pv=11000;//primary voltage\n", +"Iw=nlw/pv;//current in amperes\n", +"Io=0.6;//current in amperes\n", +"Imu=sqrt(Io^2-Iw^2);//current in amperes\n", +"disp(Iw,'iron loss current is, (A)=')\n", +"disp(Imu,'magnetising component is, (A)=')\n", +"pf=0.2;//power factpr\n", +"Io=0.5;//current in amperes\n", +"Iw=Io*(pf);//current in amperes\n", +"Imu=Io*sqrt(1-pf^2);//magnetising component in amperes\n", +"disp(' part (b)')\n", +"disp(Iw,'iron loss current is, (A)=')\n", +"disp(Imu,'magnetising component is, (A)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.3;current\n", +"clc;\n", +"close;\n", +"clear;\n", +"// given \n", +"format('v',6)\n", +"pf1=0.866;//power factor\n", +"pf2=0.1736;//power factor\n", +"ph1=acosd(pf1);//phase angle in degree\n", +"ph2=acosd(pf2);//phase angle in degree\n", +"ir=120;//current in amperes\n", +"n2=110;//number of turns\n", +"n1=440;//number of turns\n", +"i2d=(n2/n1)*ir;//current in amperes\n", +"io=5;//current in amperes\n", +"aioi2=ph2-ph1;//change in angle in degree\n", +"i1=sqrt(io^2+i2d^2+(2*io*i2d*cosd(aioi2)));//current in amperes\n", +"disp(i1,'current is, (A)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: core_losses.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.4;core losses\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',6)\n", +"// given \n", +"f=50;//frquency in Hz\n", +"hl=650;//hystresis loss\n", +"edl=400;//eddy current loss\n", +"A=hl/f;//parameter\n", +"B=edl/f^2;//parameter\n", +"Ph=A*2*f;//loss in watts\n", +"Pe=B*(2*f)^2;//loss in watts\n", +"pt=Ph+Pe;//total loss in watts\n", +"disp(pt,'total core losses is,(W)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: efficiency_and_percentage_of_full_load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.5;efficiency and load for maximum efficiency\n", +"clc;\n", +"close;\n", +"clear;\n", +"format('v',5)\n", +"// given \n", +"cl=125;//copper losses\n", +"fcl=2^2*cl;//full load copper losses\n", +"il=457;//iron losses\n", +"pf=0.8;//power factor\n", +"kba=30;//loss\n", +"disp('part (a)')\n", +"fle=((kba*pf)/((kba*pf)+(fcl+il)*10^-3))*100;//full load efficiency in %\n", +"disp(fle,'full load efficiency at 0.8 pf is,(%)=')\n", +"lme=kba*sqrt(il/fcl);//variable\n", +"pfl=(lme/kba)*100;//percentage of full load on which efficiency will be maximum \n", +"disp('part (b)')\n", +"disp(pfl,'percentage of full load on which efficiency will be maximum is,(%)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: all_day_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.6;all day efficiency\n", +"clc;\n", +"close;\n", +"clear;\n", +"//given\n", +"format('v',5)\n", +"ef=0.98;//efficiency in %\n", +"kva=15;//kVA\n", +"pf=1;//power factor\n", +"op=kva*pf;//output power in kW\n", +"ip=op/ef;//input power in kW\n", +"loss=ip-op;//loss in kW\n", +"cl=(loss*10^3)/2;//copper loss in W\n", +"il=cl;//iron loss in W\n", +"t1=12;//time in hours\n", +"p1=2;//power in kW\n", +"pf1=0.5;//power factor\n", +"y1=(p1)/pf1;//kVA\n", +"il1=il*t1;//loss in Wh\n", +"cl1=cl*((y1)/kva)^2*t1;//copper loss in Wh\n", +"top1=p1*t1;//kWht1=12;//time in hours\n", +"t2=6;//time in hours\n", +"p2=12;//power in kW\n", +"pf2=0.8;//power factor\n", +"y2=(p2)/pf2;//kVA\n", +"il2=il*t2;//iron loss in Wh\n", +"cl2=cl*((y2/kva)^2)*t2;//copper loss in Wh\n", +"top2=p2*t2;//kWh\n", +"t3=6;//time in hours\n", +"il3=il*t3;//iron loss Wh\n", +"tol=top1+top2;//iron loss kWh\n", +"til=(il1+il2+il3)*10^-3;//total iron loss in kWh\n", +"tcl=(cl1+cl2)*10^-3;//total copper loss in kWh\n", +"ade=((tol)/(tol+til+tcl))*100;//efficiency in %\n", +"disp(ade,'all day efficiency is,(%)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: iron_losses.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.7;iron losses\n", +"clc;\n", +"close;\n", +"clear;\n", +"//given\n", +"format('v',6)\n", +"kva=200;//kVA\n", +"pf=0.8;//power factor\n", +"rflo=kva*pf;//kW\n", +"ef=0.96;//efficiency\n", +"ip=rflo/ef;//kW\n", +"tl=ip-rflo;//kW\n", +"e2=800;//volts\n", +"e1=6600;//volts\n", +"n21=((e2/sqrt(3))/e1);//turn ratiom\n", +"r1=4;//ohms\n", +"r2=0.05;//ohms\n", +"roe=(r1)*n21^2+r2;//ohms\n", +"fli=((kva*10^3)/(sqrt(3)*e2));//amperes\n", +"fcl=3*fli^2*roe;//kW\n", +"il=tl-(fcl)*10^-3;//kW\n", +"disp(il,'iron losses is,(kW)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: EX4_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.8;resistance,reactances and impedances and copper losses\n", +"clc;\n", +"close;\n", +"clear;\n", +"//given\n", +"r1=3.45;//ohms\n", +"r2=0.009;//ohms\n", +"x1=5.2;//ohms\n", +"x2=0.015;//ohms\n", +"kva=100;//kVA\n", +"e1=8800;//volts\n", +"e2=440;//volts\n", +"i1=(kva*10^3)/e1;//in amperes\n", +"i2=(kva*10^3)/e2;//in amperes\n", +"k=e2/e1;//transformation ratio\n", +"ro1=r1+(r2/k^2);//ohms\n", +"xo1=x1+(x2/k^2);//ohms\n", +"ro2=r2+(k^2*r1);//ohms\n", +"xo2=k^2*xo1;//ohms\n", +"zo1=sqrt(ro1^2+xo1^2);//ohms\n", +"zo2=sqrt(ro2^2+xo2^2);//ohms\n", +"disp('part (a) ')\n", +"disp(ro1,'equivalent resistance referred to the primary is,(Ohm)=')\n", +"disp(xo1,'equivalent reactance referred to the primary is,(Ohm)=')\n", +"disp(ro2,'equivalent resistance referred to the secondary is,(Ohm)=')\n", +"disp(xo2,'equivalent reactance referred to the secondary is,(Ohm)=')\n", +"disp(zo1,'equivalent impedance referred to the primary is,(Ohm)=')\n", +"disp(zo2,'equivalent impedance referred to the secondary is,(Ohm)=')\n", +"disp('part (b) ')\n", +"tcl=i1^2*r1+i2^2*r2;//in watts\n", +"tcl1=i1^2*ro1;//in watts\n", +"tcl2=i2^2*ro2;//in watts\n", +"disp(tcl,'total copper losses considering individual resistance is,(W)=')\n", +"disp(tcl1,'total copper losses consdering equivalent resistance (for primary) is,(W)=')\n", +"disp(tcl2,'total copper losses consdering equivalent resistance (for secondary) is,(W)=')\n", +"//copper losses are caculated wrong in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: equivalent_circuit_components_regulation_of_transformer_and_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 4.9;parameter of primary side ,regulation and efficiency\n", +"clc;\n", +"close;\n", +"clear;\n", +"//given\n", +"format('v',6)\n", +"po=100;//watts\n", +"v1=200;//volts\n", +"io=1;//amperes\n", +"ocpf=po/(v1*io);//open circuit power factor\n", +"sinpf=sqrt(1-ocpf^2);//\n", +"im=io*sinpf;//in amperes\n", +"iw=io*ocpf;//current in amperes\n", +"rm=v1/iw;//ohms\n", +"xm=v1/im;//in ohms\n", +"vs=15;//volts\n", +"ia=10;//amperes\n", +"zo2=vs/ia;//in ohms\n", +"wa=85;//watts\n", +"ro2=wa/(ia)^2;//ohms\n", +"e2=400;//volts\n", +"e1=200;//volts\n", +"k=e2/e1;//transformation ratio\n", +"zo1=zo2/k^2;//ohms\n", +"ro1=ro2/k^2;//ohms\n", +"xo1=sqrt(zo1^2-ro1^2);//ohms\n", +"disp(' part (a)')\n", +"disp(im,'magnetising component of no load current (Im) is,(A)=')\n", +"disp(iw,'working component of no load current (Iw) is,(A)=')\n", +"disp(rm,'resistance for primary side (Rm) is,(Ohm)=')\n", +"disp(xm,'reactance for primary ohms (Xm) is,(Ohm)=')\n", +"disp(xo1,'impedence for primary side (X01) is,(Ohm)=')\n", +"disp('part (b)')\n", +"kva=4000;//kVA\n", +"i2=kva/e2;//in amperes\n", +"xo2=sqrt(zo2^2-ro2^2);//ohms\n", +"pf=0.8;// power factor\n", +"vlag=i2*(ro2*pf+xo2*sqrt(1-pf^2));//in volts\n", +"prld=(vlag*po)/e2;//\n", +"vlag1=i2*(ro2*pf-xo2*sqrt(1-pf^2));//in volts\n", +"prld1=(vlag1*po)/e2;//\n", +"disp(prld,'percentage regulation on lagging load is,(%)=')\n", +"disp(prld1,'percentage regulation on leading load is,(%)=')\n", +"disp('part (c)')\n", +"cl=85;//copper losses\n", +"nloss=100;//no load losses\n", +"fll=cl+nloss;//full load losses\n", +"pf=0.8;//power factor\n", +"flo=kva*pf;//efficiency \n", +"effl=flo/(flo+fll);//efficiency \n", +"hll=(1/2)^2*cl+nloss;//loss in watts\n", +"op=(1/2)*kva*pf;//ouput power in watts\n", +"efhl=op/(hll+op);//efficiency at half load\n", +"disp(effl*100,'efficiency at full load is,(%)=')\n", +"disp(efhl*100,'efficiency at half load is,(%)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/5-ELECTRICAL_MEASUREMENTS.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/5-ELECTRICAL_MEASUREMENTS.ipynb new file mode 100644 index 0000000..4c3fd73 --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/5-ELECTRICAL_MEASUREMENTS.ipynb @@ -0,0 +1,456 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: ELECTRICAL MEASUREMENTS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: true_resistance_of_the_unknown_resistor_percentage_error_and_reading_voltmeter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.10;true resistance of the unknown resistor , percentage error and reading voltmeter\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"disp('part (i)')\n", +"ra=0.1;//ohms\n", +"vr=18;//voltage in volts\n", +"am=0.2;//current in amperes\n", +"apr=vr/am;//in ohms\n", +"rv=5000;//ohms\n", +"im=vr/rv;//amperes\n", +"rxi=am-(im);//in amperes\n", +"rx=vr/rxi;//ohms\n", +"disp(rx,'true value of resistance is,(Ohm)=')\n", +"per=((rx-apr)/rx)*100;//percentage error\n", +"disp('part (ii)')\n", +"disp(per,'percentage error is,(%)=')\n", +"rvv=am*(ra+rx);//reading of voltmeter\n", +"disp('part (iii)')\n", +"disp(rvv,'reading of voltmeter is,(V)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.11;resistance\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',6)\n", +"im=10;//mA\n", +"i=100;//mA\n", +"m=i/im;//multiplying factor\n", +"rm=50;//ohms\n", +"rsh=rm/(m-1);//in ohms\n", +"disp('part (i)')\n", +"disp(rsh,'resistance of shunt (range 0-100mA) Rsh1 is,(Ohm)=')\n", +"i1=500;//mA\n", +"m1=i1/im;//multiplying factor\n", +"rm1=50;//ohms\n", +"rsh1=rm1/(m1-1);//in ohms\n", +"disp('part (ii)')\n", +"disp(rsh1,'resistance of shunt (range 0-500mA) Rsh2 is,(Ohm)=')\n", +"im2=1;//A\n", +"i2=100;//A\n", +"m2=i2/im2;//multiplying factor\n", +"rm2=50;//ohms\n", +"rsh2=rm2/(m2-1);//in ohms\n", +"disp('part (iii)')\n", +"disp(rsh2,'resistance of shunt (range 0-1A) Rsh2 is,(Ohm)=')\n", +"im3=1;//A\n", +"i3=500;//A\n", +"m3=i3/im3;//multiplying factor\n", +"rm3=50;//ohms\n", +"rsh3=rm3/(m3-1);//in ohms\n", +"disp('part (iv)')\n", +"disp(rsh3,'resistance of shunt (range 0-5A) Rsh2 is,(Ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.12: load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.12;load power\n", +"clc;\n", +"clear;\n", +"format('v',6)\n", +"// given :\n", +"k=600;//in rev./kwh.\n", +"nr=5;//number of revolutions\n", +"t=20;//time in seconds\n", +"lp=(1/k)*nr*((60*60)/t);//power in kW\n", +"disp(lp,'load power is,(kW)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.1 : resistance\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',9)\n", +"n=50;//number of turns\n", +"B=1;//magnetic field in tesla\n", +"I=1;//current in amperes\n", +"L=4;//length in cm\n", +"d=3;//dia in cm\n", +"Td=n*B*I*L*d*10^-4;//torque in N-m\n", +"cd1=2.4*10^-4;//controlling torque\n", +"id=cd1/Td;//current in amperes\n", +"fsv=100;//full scale voltage\n", +"trv=fsv/id;//ohms\n", +"adr=10000;//ohms\n", +"r=trv-adr;//ohms\n", +"disp(r,'required resistance is,(ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.2 : resistance\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',9)\n", +"fsf=20;//full scale deflection current in mA\n", +"v=200;//voltage in mV\n", +"ri=v/fsf;//resistance in ohms\n", +"x=199.98;//current in amperes\n", +"rsh=(v*10^-3)/x;//ohms\n", +"fs2=1000;//volts\n", +"trv=fs2/(fsf*10^-3);//ohms\n", +"rse=trv-ri;//reqquired resistance in ohms\n", +"disp(rse,'total resistance of the voltmeter is,(ohm)=')\n", +"//in the text book approximately value of resistance is taken as 50000 ohm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: power_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.3 : power factor\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',6)\n", +"w1=2000;//power in watts\n", +"w2=500;//power in watts\n", +"an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree\n", +"disp('part (a)')\n", +"pf=cosd(an);//power factor\n", +"disp(pf,'power factor is ,=')\n", +"disp('part (b)')\n", +"w1=2000;//power in watts\n", +"w2=-500;//power in watts\n", +"an=atand(sqrt(3)*(((w1-w2)/(w1+w2))));//angle in degree\n", +"pf=cosd(an);//power factor\n", +"disp(pf,'power factor is ,=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.4;reading\n", +"clc;\n", +"clear;\n", +"disp('part (i)')\n", +"// given :\n", +"format('v',6)\n", +"vm=100;//volts\n", +"rc=10;//ohms\n", +"im=vm/rc;//amperes\n", +"t=0:2*%pi;//time rane\n", +"x=intsplin(t,(sin(t))^2);//variable\n", +"Irms=sqrt((1/(2*%pi))*im^2*x);//current in amperes\n", +"disp(Irms,'indication of moving iron instrument is,(A)=')\n", +"disp('part (ii)')\n", +"t1=0;//time interval\n", +"t2=%pi;//time inerval\n", +"x=integrate('sin(t)','t',t1,t2);//variable\n", +"Iav=(1/%pi)*x*(im/2);//current in amperes\n", +"disp(Iav,'indication of moving coil instrument is,(A)=')\n", +"//answer of part a is calculated wrong in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: resistance_and_readings.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.5;reading\n", +"clc;\n", +"clear;\n", +"format('v',5)\n", +"// given :\n", +"fsd=100;//full scale division in amperes\n", +"fsd1=100;//full scale division in mA\n", +"csh=fsd-(fsd*10^-3);//difference in currents in amperes\n", +"rx=0.8;//resistance in ohms\n", +"r1=((fsd1*10^-3*rx)/csh);//resistance in ohms\n", +"rx1=1;//resistance in ohms\n", +"r2=((fsd1*10^-3*rx1)/csh);//resistance in ohms\n", +"em1=((rx*r1)/(rx+r1));//resistance in ohms\n", +"em2=((rx1*r2)/(rx1+r2));//resistance in ohms\n", +"crm1=((em2*10^4*fsd)/((em2*10^4)+(em1*10^4)));//current in amperes\n", +"crm2=((em1*10^4*fsd)/((em1*10^4)+(em2*10^4)));//current in amperes\n", +"disp(crm1,'current read by meter 1 is,(A)=')\n", +"disp(crm2,'current read by meter 2 is,(A)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: multiplier_resistance_and_voltmeter_sensivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.6;multiplier and sensivity\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',6)\n", +"rm=50;//resistance in ohms\n", +"rsh=rm;//shunt resistance in ohms\n", +"it=2;//current in mA\n", +"erms=10;//rms voltage in volts\n", +"ede=0.45*erms;//voltage in volts\n", +"rd1=400;//resistance in ohms\n", +"x=(rm*rsh)/(rm+rsh);//resistance in ohms\n", +"r1=ede/(it*10^-3);//resistance in ohms\n", +"rs=r1-x-rd1;//resistance in ohms\n", +"disp('part (a)')\n", +"disp(rs,'multiplier resistance Rs is,(Ohm)=')\n", +"S=r1/erms;//sensivity in ohms/V\n", +"disp('part (b)')\n", +"disp(S,'sensivity is,(Ohm/V)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: apparent_resistance_actual_resistance_and_error.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.7;apparent resistance of the unknown resistor,actual resistance of the unknown resistor and percentage error\n", +"clc;\n", +"clear;\n", +"// given :\n", +"format('v',7)\n", +"v=200;//voltage in volts\n", +"i=5;//current in mA\n", +"tr=v/i;//resistance in kilo ohms\n", +"disp('part (a)')\n", +"disp(tr,'apparent resistance of unknown resistor is,(kilo-Ohm)=')\n", +"S=1000;//sensivity in ohms/V\n", +"V1=250;//voltage in volts\n", +"rv=V1*S*10^-3;//resistance in kilo ohms\n", +"rx=(V1*tr)/(V1-tr);//resistance in kilo ohms\n", +"disp('part (b)')\n", +"disp(rx,'actual resistance of unknown resistor is,(kilo-Ohm)=')\n", +"per=(rx-tr)/rx;//percentage error\n", +"disp('part (c)')\n", +"disp(per*100,'percentage error is,(%)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: resolutio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.8;resolution\n", +"clc;\n", +"clear;\n", +"format('v',6)\n", +"// given :\n", +"fsr=200;//full scale reading in volts\n", +"d=100;//number of divisions\n", +"sc=1/10;//scale\n", +"sd1=fsr/d;//one sccale divisions\n", +"R=sc*sd1;//resolution\n", +"disp(R,'resolution is, (V)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: resolutio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 5.9;resolution\n", +"clc;\n", +"clear;\n", +"format('v',6)\n", +"// given :\n", +"fsr=9.999;//full scale reading in volts\n", +"d=9999;//number of divisions\n", +"R=(1/d)*fsr*10^3;//resolution\n", +"disp(R,'resolution is ,(mV)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/6-ROTATING_ELECTRICAL_MACHINE.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/6-ROTATING_ELECTRICAL_MACHINE.ipynb new file mode 100644 index 0000000..eb07dea --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/6-ROTATING_ELECTRICAL_MACHINE.ipynb @@ -0,0 +1,530 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: ROTATING ELECTRICAL MACHINE" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: speed_and_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.10// Speed ,motor speed,and frequency \n", +"clc;\n", +"clear;\n", +"close;\n", +"format ('v',8)\n", +"//given data :\n", +"disp('part (a)')\n", +"f=50;//frquency in Hz\n", +"P=4;// number of pole\n", +"Ns=(120*f)/P;//speed in rom\n", +"disp(Ns,' The speed of rotating magnetic field,(rpm) = ')\n", +"disp('part (b)')\n", +"S=0.035;// slip\n", +"N=Ns*(1-S);//motor speed in rpm\n", +"disp(N,'Motor speed,(rpm) = ')\n", +"disp('part (c)')\n", +"S=0.04;// slip\n", +"F=S*f;//frequency in Hz\n", +"disp('Frequency '+string (F)+' Hz or '+string(120)+' rpm ')\n", +"disp('part (d)')\n", +"f=50;// in Hz\n", +"F=f;//frequency in Hz\n", +"disp(F,'Frequency of rotor current,(Hz) = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: current_per_phase_and_power_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.11// current per phase and power factor\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"v1=100;//emf in volts\n", +"vi=v1/sqrt(3);//induced emf in volts\n", +"r1=1;//rotor resistance ohms per phase\n", +"r2=4;//rotor reactance ohms per phase\n", +"r=sqrt(r1^2+r2^2);//rotor impedence per phase\n", +"rcp=(vi/r);//rotor current per phase\n", +"pf=(1/r);//power factor\n", +"disp('part (a)')\n", +"disp(rcp,'rotor current per phase is,(A)=')\n", +"disp(pf,'power factor is,=')\n", +"r3=3;//ohms\n", +"r4=r1+r3;//rotor resistance ohms per phase\n", +"r2=4;//rotor reactance ohms per phase\n", +"r=sqrt(r4^2+r2^2);//rotor impedence per phase\n", +"rcp=(vi/r);//rotor current per phase\n", +"pf=(r4/r);//power factor\n", +"disp('part (b)')\n", +"disp(rcp,'rotor current per phase is,(A)=')\n", +"disp(pf,'power factor is,=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: emf.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.12// emf\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',7)\n", +"disp('part (a) generator ')\n", +"kva=4;//kVA\n", +"v=110;//volts\n", +"re=3;//syncronous reacrance in ohms\n", +"ip=((kva*10^3)/(sqrt(3)*v));//phase current in Amperes\n", +"ep=v/(sqrt(3));//phase voltage in volts\n", +"e1=ep+%i*(ip*3);//line voltage in volts\n", +"e11=sqrt((real(e1)^2)+imag(e1)^2);//line voltage per phase in volts\n", +"pf=0.8;//power factor\n", +"e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+imag(e1)))^2));//\n", +"e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-imag(e1)))^2));//\n", +"disp(e11,'emf when the armature current is full load unit pf is,(V)=')\n", +"disp(e12,'emf when the armature current is full load 0.8 pf (lag) is,(V)=')\n", +"disp(e13,'emf when the armature current is full load 0.8 pf (lead) is,(V)=')\n", +"disp('part (b) motor')\n", +"kva=4;//kVa\n", +"v=110;//volts\n", +"re=3;//syncronous reacrance in ohms\n", +"ip=((kva*10^3)/(sqrt(3)*v));//phase current in Amperes\n", +"ep=v/(sqrt(3));//phase voltage in volts\n", +"e1=ep-%i*(ip*3);//line voltage in volts\n", +"e11=sqrt((real(e1)^2)+imag(e1)^2);//line voltage per phase in volts\n", +"pf=0.8;//power factor\n", +"e12=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))-imag(e1)))^2));//\n", +"e13=(sqrt((real(e1)*pf)^2+(((imag(e1)*sqrt(1-pf^2))+imag(e1)))^2));//\n", +"disp(e11,'emf when the armature current is full load unit pf is,(V)=')\n", +"disp(e12,'emf when the armature current is full load 0.8 pf (lag) is,(V)=')\n", +"disp(e13,'emf when the armature current is full load 0.8 pf (lead) is,(V)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: terminal_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.1// Terminal voltage \n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"format('v',7)\n", +"Z=440;// number of lap\n", +"N=900;// revolutions in rpm\n", +"fi=0.07;//fluxin Wb\n", +"P=4;// number of pole\n", +"A=4;//constant\n", +"Ia=50;// armature current in Amperes\n", +"E=462;//voltage in V\n", +"E=(P*fi*Z*N)/(60*A);//general voltage in volts\n", +"R=0.002;// resistance in ohm\n", +"C=110;// conductors\n", +"Re=C*R;//resistance of each path in ohm\n", +"Ra=Re/A;//armature resistance in ohm\n", +"V=E-(Ia*Ra);//terminal voltage in volts\n", +"disp(V,'Terminal voltage,(V) = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: induced_emf.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.2// e.m.f \n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"//given data :\n", +"V=200;//voltage\n", +"Ra=0.1;//resistance in ohm\n", +"Ia=50;//armature current in Amperes\n", +"E=V+(Ia*Ra);//generator voltage in volts\n", +"Eb=V-(Ia*Ra);//motor voltage in volts\n", +"disp(E,'emf when machine acts as generator,(V) = ')\n", +"disp(Eb,'emf when machine acts as motor,(V) = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: speed_torque_and_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.3// spped ,torque and efficiency\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"v=200;//voltage in volts\n", +"r=100;//resistance in ohms\n", +"ish=v/r;//shunt current in amperes\n", +"i=4;//current in amperes\n", +"nla=i-ish;//no load armature current in amperes\n", +"w=8;//powerin kW\n", +"ifl=(w*10^3)/v;//full load current in amperes\n", +"fla=ifl-ish;//full load armature current in amperes\n", +"r1=0.6;//internal resistance in ohms\n", +"ebo=(v-(ish*r1));//voltage in volts\n", +"eb=(v-(fla*r1));//voltage in volts\n", +"no=700;//number of rpm\n", +"n=no*(eb/ebo);//number of rpm\n", +"ta=((eb*fla*60)/(2*n));//armature torque in N-m\n", +"nlpi=v*i;//no load power input in watts\n", +"cl=(ish^2*r1);//copper losses in watts\n", +"cl=nlpi-cl;//total copper lossses in Watts\n", +"flacl=(fla^2*r1);//full load armmature copper losses in Watts\n", +"tfll=flacl+cl;//total full load losses in Watts\n", +"flo=(w*10^3)-tfll;//full load output in Watts\n", +"ef=((flo)/(w*10^3))*100;//efficiency\n", +"disp(n,'speed is,(rpm)=')\n", +"disp(ta,'armature torque is, (N-m)=')\n", +"disp(ef,'full load motor efficiency is ,(%)=')\n", +"//armature torque is calculated wrong in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.4// speed\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"format('v',6)\n", +"fi=0.02// flux in Wb\n", +"P=4;// number of poles\n", +"A=2;//constant\n", +"Z=151*A;//turns\n", +"V=200;// in volts\n", +"Rsh=50;//shunt resistance in ohm\n", +"Ra=0.01;// armature resistance in ohm\n", +"Pr=40000;//power required in Watts\n", +"Il=Pr/V;//load current in amperes\n", +"Ish=V/Rsh;//shunt current in amperes\n", +"Ia=Il+Ish;//armature current in amperes\n", +"E=V+(Ia*Ra);//generated voltage\n", +"N=(60*A*E)/(fi*P*Z);//rpm\n", +"disp(N,'The speed of the machine,(rpm) = ')\n", +"//answer is wrong in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: power_absorbed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.5// Power\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"format('v',6)\n", +"fp=0.024;// flux per pole\n", +"lf=1.2;// leakage factor\n", +"fi=fp/lf;// in Wb\n", +"Z=756;//turns\n", +"P=4;// number of pole\n", +"N=1000;// in rpm\n", +"A=4;//constant\n", +"E=(fi*Z*N*P)/(60*A);//generated voltage\n", +"il=1/10;//load current in amperes\n", +"ish=1/100;//shunt current in amperes\n", +"ra=1;//armature resistance in ohms\n", +"is=il+ish;//current in amperes\n", +"v=((E)/(1+(ra*is)));//volts\n", +"r2=10;//ohms\n", +"il=v/r2;//amperes\n", +"pc=il*v;//Watts\n", +"disp(pc,'Power consumed is,(W)=')\n", +"//answer is wrong in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: EX6_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.6: e.m.f ,copper losses ,output of the prime mover ,commercial, mechanical and electrical efficiencies\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"//given data :\n", +"Il=190;//load current in Amperes\n", +"V=250;// voltage in volts\n", +"Ra=0.02;//armature resistance in ohm\n", +"Rsh=25;//shunt resistance in ohm\n", +"Ish=V/Rsh;//shunt current in amperes\n", +"Ia=Ish+Il;//armature current in amperes\n", +"E=V+(Ia*Ra);//generated voltage\n", +"disp('part (a)')\n", +"disp(E,'emf genereted,(V) = ')\n", +"Cl=(Ia^2*Ra);// armeture copper losses\n", +"Sl=Ish*V;// shunt copper losses\n", +"T=(Cl+Sl)*10^-3;//copper losses in k-Watt\n", +"disp('part (b)')\n", +"disp(T,'Total copper losses,(kW) = ')\n", +"Eo=V*Il;//output voltage in volts\n", +"I_l=950;//iron loss in watt\n", +"O=Eo+I_l+(T*10^3);//output in watt\n", +"disp(O,'Output of the prime mover,(W) = ')\n", +"Ep=O-I_l;// electrical power in W\n", +"Me=(Ep/O)*100;//Mechanical efficiency\n", +"disp('part (c)')\n", +"disp(Me,'Mechanical efficiency,(%) = ')\n", +"Ee=(Eo/Ep)*100;//Electrical efficiency\n", +"disp(Ee,'Electrical efficiency,(%) = ')\n", +"Ce=(Eo/O)*100;//Commercial efficiency\n", +"disp(Ce,'Commercial efficiency,(%) = ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.7// resistance \n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"n=1000;//turns in rpm\n", +"ra=0.3;//armature resistance in ohms\n", +"rf=40;//field resistance in ohms\n", +"it=5;//field current in amperes\n", +"if1=4;//field current in amperes\n", +"e1=220;//emf in volts\n", +"e2=200;//emf in volts\n", +"ia=35;//armature current in amperes\n", +"eb=(e1-(ia*ra));//emf in volts\n", +"x=((eb-e2)/(it*if1));//additional field current in amperes\n", +"ce=e1-e2;//change in emf in volts\n", +"ix=if1+x;//total current in amperes\n", +"rt=(e1/ix);//total resistance in ohms\n", +"adr=rt-rf;//additional resistance required in ohms\n", +"disp(adr,'additional resistance required is,(Ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: resistance_and_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.8// resistance and speed\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',7)\n", +"v1=240;//primary voltage\n", +"r1=0.2;//primary resistance in ohm\n", +"i1=40;//primary current in volts\n", +"eb1=(v1-i1*r1);//primary emf\n", +"n11=1800;//number of turns on primary side in rpm\n", +"n21=1600;//number of turns on secondary side in rpm\n", +"i2=10;//secondary current in amperes\n", +"x=((n21/n11)*(i2/i1)*eb1);//variable\n", +"r=((v1-(i2*r1))-x)/i2;//resistance in ohm\n", +"disp('part (a)')\n", +"disp(r,'resistance to be added is,(Ohm)=')\n", +"disp('part (b)')\n", +"n11=1800;//number of turns on primary side\n", +"n21=900;//number of turns on secondary side in rpm\n", +"i2=60;//secondary current in amperes\n", +"x=((n21/n11)*(1.18)*eb1);//variable\n", +"r=((v1-(i2*r1))-x)/i2;//resistance in ohms\n", +"disp(r,'resistance to be added is,(Ohm)=')\n", +"eb2=228;//secondary emf in volts\n", +"eb1=232;//primary emf in volts\n", +"p1=100;//primary power in watt\n", +"p2=118;//secondary power in watt\n", +"n2=((eb2/eb1)*(p1/p2)*n11);//speed in rpm\n", +"disp(ceil(n2),'speed is,(rpm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.9// speed\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"i1=50;//primary current in amperes\n", +"i2=i1/(sqrt(2));//secondary current in amperes\n", +"r1=0.2;//primary resistance in ohms\n", +"v1=220;//primary voltage in volts\n", +"eb1=((v1-(i1*r1)));//primary emf in volts\n", +"eb2=((v1-(i2*r1)));//secondary emf in volts\n", +"n1=1000//primary speed in rpm\n", +"n2=(n1*(eb2/eb1)*(i1/i2));//seconadry speed in rpm\n", +"disp(n2,'speed is,(rpm)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/7-ELECTROTHERMAL_ENERGY_CONVERSION.ipynb b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/7-ELECTROTHERMAL_ENERGY_CONVERSION.ipynb new file mode 100644 index 0000000..15adcec --- /dev/null +++ b/Elements_Of_Electrical_Science_by_P_Mukhopadhyay/7-ELECTROTHERMAL_ENERGY_CONVERSION.ipynb @@ -0,0 +1,151 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: ELECTROTHERMAL ENERGY CONVERSION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: length_and_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 7.1// width and length\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"vph=400;//phase voltage in volts\n", +"n=3;//number of phase\n", +"kw=36;//power in kW\n", +"r=((vph^2)/(n*((kw*10^3)/n)));//resistance in ohms\n", +"p=1.016*10^-6;//resitivity\n", +"t=0.3;//thickness in mm\n", +"x=(((r*t*10^-3)/(p)));//variable\n", +"t1=1000;//initial temperature in degree celsius\n", +"t1k=273+t1;//initial temperature in kelvin\n", +"t2=650;//final temperature in degree celsius\n", +"t2k=273+t2;//final temperature in kelvin\n", +"h=((3*10^4)*((t1k/1000)^4-(t2k/1000)^4));//W/m^2\n", +"y=((kw*10^3)/(3*2*h));//variable\n", +"l=sqrt(x*y);//length in meter\n", +"w=y/l;//width in meter\n", +"disp(l,'length is,(m)=')\n", +"disp(w*10^3,'width is,(mm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 7.2// power required\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"l=0.2;//length in meter\n", +"w=0.1;//width in meter\n", +"th=25;//thickness in mm\n", +"vw=l*w*th*10^-3;//volume in m^3\n", +"ww=600;//weight of wood in kg/m^3\n", +"ww1=vw*ww;//weight of wood kg\n", +"shw=1500;//specific heat of wood in J/kg/degree celsius\n", +"t=200;//temperature in degree celsius\n", +"rg=t*shw*ww1;//energy in joules\n", +"h=(rg/(3.6*10^3));//Wh\n", +"t=15;//time in minutes\n", +"pr=h*(60/t);//power required in Watt\n", +"disp(pr,'power required is,(W)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: voltage_and_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 7.3// voltage and current\n", +"clc;\n", +"clear;\n", +"close;\n", +"l=0.2;//length meter\n", +"w=0.1;//width in meter\n", +"th=25;//thickness in mm\n", +"vw=l*w*th*10^-3;//volume of wood in m^3\n", +"ww=600;//weight of wood in kg/m^3\n", +"ww1=vw*ww;//weight of wood kg\n", +"shw=1500;//specific heat of wood in J/kg/degree celsius\n", +"t=200;//temperature in degree celsius\n", +"rg=t*shw*ww1;//energy in joules\n", +"h=(rg/(3.6*10^3));//Wh\n", +"t=15;//time in minutes\n", +"pr=h*(60/t);//power required in Watt\n", +"eo=8.854*10^-12;//permittivity constant\n", +"er=5;//permittivity of wood\n", +"c=((eo*er*l*w)/(th*10^-3));//capacitance in Farads\n", +"f=50;//frequency in MHz\n", +"pf=0.5;//power factor \n", +"ph=acosd(pf);//phase angle degree\n", +"v=sqrt((pr)/(c*2*%pi*f*10^6*0.05));//voltage in volts\n", +"disp(round(v),'voltage is ,(V)=')\n", +"ic=v*2*%pi*f*10^6*c;//current in amperes\n", +"disp(ic,'current is,(A)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |