diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta')
6 files changed, 3340 insertions, 0 deletions
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb new file mode 100644 index 0000000..e93d5d3 --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb @@ -0,0 +1,204 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Crystal Stucture Of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Density_Of_Copper_Crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"//atomic radius\n", +"r=1.278; //in Angstrum\n", +"//atomic weight\n", +"aw=63.5;\n", +"//Avogadro's number\n", +"an=6.023*10^23;\n", +"//copper has FCC structure for which\n", +"a=(4*r)/sqrt(2);// in Angstrum\n", +"a=a*10^-10;//in m\n", +"//Mass of one atom \n", +"m=aw/an;//in gm\n", +"m=m*10^-3;//in kg\n", +"//volume of one unit cell of copper crystal,\n", +"V=a^3;//in meter cube\n", +"//Number of atoms present in one unit cell of Cu(FCC Structure),\n", +"n=4;\n", +"//Density of crystal\n", +"rho=(m*n)/V;//in kg/m^3\n", +"disp('Density of crystal is : '+string(rho)+'kg/m^3');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Interplanar_Distance_in_a_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa4\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"//wavelength\n", +"lamda=1.539; //in Angstrum\n", +"//angle\n", +"theta=22.5; // in degree\n", +"n=1;//(first order)\n", +"\n", +"// Formula n*lamda=2*d*sin(theta) , so\n", +"// interplaner distance,\n", +"d=lamda/(2*sin(theta*%pi/180));\n", +"disp('Interplaner distance is : '+string(d)+' Angstrum')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Wavelength_of_X_rays.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa5\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"n=2;\n", +"d=0.4;// in nenometer\n", +"d=d*10^-9;// in meter\n", +"theta=16.8/2;// in degree\n", +"//using Bragg's equation we have n*lamda=2*d*sin(theta), so\n", +"lamda=(2*d*sin(8.4*%pi/180))/n;\n", +"disp('Wavelength of X-rays used is : '+string(lamda*10^10)+' Angstrum');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Wavelength_of_X_rays.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa6\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"a=3.15; //in Angstrum\n", +"a=a*10^-10;//in meter\n", +"//angle\n", +"theta=20.2;//in degree\n", +"n=1;//(first order)\n", +"//for BCC crystal\n", +"d110=a/sqrt(2);//in meter\n", +"//Formula n*lamda=2*d*sin(theta)\n", +"lamda=(2*d110*sin(theta*%pi/180))/n;//in meter\n", +"disp('Wavelength is : '+string(lamda*10^10)+' Angstrum')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Angle_of_incidence.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa7\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"lambda=0.842; //in Angstrum\n", +"lambda=lambda*10^-10; // in meter\n", +"//theta=8degree 35minutes\n", +"theta=8+35/60;//in degree\n", +"n=1;//(first order)\n", +"//Formula n*lamda=2*d*sin(theta)\n", +"d=n*lambda/(2*sind(theta))\n", +"//For third Order reflection :\n", +"//Formula n*lamda=2*d*sin(theta)\n", +"n=3;//order\n", +"theta=asind(n*lambda/(2*d));\n", +"disp(round(theta),'Angle of incidence for third order reflection in degree : ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb new file mode 100644 index 0000000..6c5e517 --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb @@ -0,0 +1,1354 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Conductivity of metals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: Resistivity_of_silico.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa10\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"miu_e=0.17;//in m^2/V-s\n", +"miu_h=0.035;//in m^2/V-s\n", +"nita_i=1.1*10^16; //in /m^3\n", +"e=1.6*10^-19;// in C (electron charge)\n", +"// Intrinsic conductivity,\n", +"sigma_i=(nita_i*e)*(miu_e+miu_h);\n", +"IntrinsicResistivity=1/sigma_i;\n", +"disp('Intrinsic resistivity is : '+string(IntrinsicResistivity)+' ohm-meter');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: Carrier_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa11\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"rho_i=2*10^-3; //in ohm-m (there is miss printed in this line in the book)\n", +"sigma_i=1/rho_i;\n", +"miu_e=0.3;// in m^2/V-s\n", +"miu_h=0.1;// in m^2/V-s\n", +"e=1.6*10^-19; // in C\n", +"// Formula sigma_i=nita_i*e*(miu_e+miu_h)\n", +"nita_i=sigma_i/(e*(miu_e+miu_h));\n", +"disp('Carrier density is : '+string(nita_i)+' /m^3');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: Temperature_of_coil.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"R_15=250;// in ohm\n", +"R_t2=300 ;// in ohm\n", +"alpha=0.0039;// in degree C\n", +"t1=15;\n", +"//Formula R_t2 = R_15 * [1 + alpha1*(t2 - t1)]\n", +"t2=((R_t2/R_15)-1)/alpha+t1;\n", +"disp('Temperature when its resistance is 300 ohms is : '+string(t2)+' degree C');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: Resistance_of_the_coil.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"alpha0=0.0038;// in ohm/ohm/degree C\n", +"t1=20; //in degree C\n", +"alpha20=1/(1/alpha0+t1);\n", +"R1=400;//in ohm\n", +"//Formula R2=R1*[1+alpha20*(t2-t1)]\n", +"R2=R1*[1+alpha20*(80-20)];\n", +"disp('Resistance of wire at 80 degree C si : '+string(R2)+' ohm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.16: Temperature_coefficient_of_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"disp('Let the temperature coefficient of resistance of material at 0 degree C be alpha0');\n", +"disp('Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)');\n", +"disp('Resistance at 70 degree C, R2 = R0 * (1+70*alpha0) (ii)');\n", +"disp('Dividing Eq.(ii) by Eq.(i), we get');\n", +"disp('R2/R1= (1+70*alpha0)/(1+25*alpha0)');\n", +"disp('or 57.2/50 = (1+70*alpha0)/(1+25*alpha0)');\n", +"disp('or alpha0 = 0.00348 ohm/ohm/degree C');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.17: Temperature_coefficient_of_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"disp('Let the temperature coefficient of resistance of material coil at 0 degree C be alpha0,then');\n", +"disp('Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)');\n", +"disp('Resistance at 75 degree C, R2 = R0 * (1+75*alpha0) (ii)');\n", +"disp('Dividing Eq.(ii) by Eq.(i), we get');\n", +"disp('R2/R1= (1+75*alpha0)/(1+25*alpha0)');\n", +"disp('or 49/45 = (1+75*alpha0)/(1+25*alpha0)');\n", +"disp('or alpha0 = 0.00736 ohm/ohm/degree C');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.18: Resistance_and_temperature_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"disp('Let the temperature coefficient of resistance of platinum at 0 degree C be alpha0 and resistance of platinum coil at 0 degree C be R0,then');\n", +"disp('Resistance at 40 degree C, R1 = R0 * (1+40*alpha0) (i)');\n", +"disp('Resistance at 100 degree C, R2 = R0 * (1+100*alpha0) (ii)');\n", +"disp('Dividing Eq.(ii) by Eq.(i), we have');\n", +"disp('R2/R1= (1+100*alpha0)/(1+40*alpha0)');\n", +"disp('or 3.767/3.146 = (1+100*alpha0)/(1+40*alpha0)');\n", +"disp('or alpha0 = 0.00379 ohm/ohm/degree C');\n", +"alpha0=0.00379;// in ohm/ohm/degree C\n", +"disp('Temperature coefficient of resistance at 40 degree C,')\n", +"alpha40=1/(1/alpha0+40);\n", +"disp(alpha40);\n", +"disp('Substituting R1=3.146 and alpha0=0.00379 in Eq. (i) we have')\n", +"R1=3.146;//in ohm\n", +"//Formula R1 = R0 * (1+40*alpha0)\n", +"R0=R1/(1+40*alpha0);\n", +"disp('Resistance of platinum coil at 0 degree C is : '+string(R0)+' ohm ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.19: Mean_temperature_rise.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"disp('Let R0 be the resistance of the coil at 0 degree C and alpha0 be its temperature coefficient of resistance at 0 degree C');\n", +"disp('Resistance at 20 degree C, 18 = R0 * (1+20*alpha0) (i)');\n", +"disp('Resistance at 50 degree C, 20 = R0 * (1+50*alpha0) (ii)');\n", +"disp('Dividing Eq.(ii) by Eq.(i), we have');\n", +"disp('20/18= (1+50*alpha0)/(1+20*alpha0)');\n", +"disp('or alpha0 = 1/250=0.004 ohm/ohm/degree C');\n", +"disp('If t degree C is the temperature of coil when its resistance is 21 ohm, then');\n", +"disp('21=R0*(1+0.004*t)');\n", +"disp('Dividing Eq.(iii) by Eq.(ii), we have');\n", +"disp('21/20=(1+0.004*t)/(1+50*0.004)');\n", +"disp('or t=65 degree C');\n", +"disp('Temperature rise = t-surrounding temperature = 65 - 15 = 50 degree C');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Drift_Velocity_of_Electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"J=2.4; //in A/mm^2\n", +"J=2.4*10^6; //in A/m^2\n", +"n=5*10^28; //unitless\n", +"e=1.6*10^-19; // in coulomb\n", +"//Formula : J=e*n*v\n", +"v=J/(e*n);//in m/s\n", +"disp('Drift velocity is : '+string(v)+' m/s or '+string(v*10^3)+' mm/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.20: Specific_resistance_and_resistance_temperature_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"alpha20=1/254.5;// in ohm/ohm/degree C\n", +"t2=60;//degree C\n", +"t1=20;//degree C\n", +"rho0=1.6*10^-6;\n", +"alpha60=1/(1/alpha20+(t2-t1));\n", +"disp('Temperature coefficient of resistance at 60 degree C is : '+string(alpha60)+' ohm/ohm/degree C');\n", +"//from alpha20=1/(1/alpha0+20)\n", +"alpha0=1/(1/alpha20-20);\n", +"//Formula rho60=rho0*(1+alpha0*t)\n", +"rho60=rho0*(1+alpha0*t2);\n", +"disp('Specific resistance at 60 degree C is : '+string(rho60)+' ohm-cm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21: Resistivity_of_the_wire_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"R=95.5;//in ohm\n", +"l=1;//in meter\n", +"d=0.08;//in mm\n", +"d=d*10^-3;//in meter\n", +"a=(%pi*d^2)/4;\n", +"//Formula R=rho*l/a\n", +"rho=R*a/l;\n", +"disp('Resistance of the wire material is : '+string(rho)+' ohm-meter')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22: Resistance_of_the_wire.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"R=4;//in ohm\n", +"d=0.0274;//in cm\n", +"d=0.000274;//in meter\n", +"rho=10.3;//in miu ohm-cm\n", +"rho=10.3*10^-8;//in ohm-m\n", +"a=(%pi*d^2)/4;\n", +"\n", +"//Formula R=rho*l/a\n", +"l=R*a/rho;\n", +"disp('Lenght of wire is : '+string(l)+' meters')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.23: Current_flowing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"V=220;// in V\n", +"W=100;//in watt\n", +"R100=V^2/W;//in ohm\n", +"alpha20=0.005;\n", +"t1=20;\n", +"t2=2000;\n", +"// since R100=R20*[1+alpha20*(t2-t1)]\n", +"R20=R100/(1+alpha20 * (t2-t1));\n", +"I20=V/R20;\n", +"disp('Current flowing at the instant of switching on a 100 W metal filament lamp is : '+string(I20)+' A')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.24: Resistance_and_temperature_coefficient_of_combination.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"t2=50;// in degree C\n", +"t1=20; // in degree C\n", +"R1=600;// in ohm\n", +"R2=300;// in ohm\n", +"\n", +"// Let resistance of 600 ohm resistance at 50 degree C = R_600\n", +"R_600=R1*(1+(t2-t1)*.001);// in ohm\n", +"// Let resistance of 300 ohm resistance at 50 degree C = R_300\n", +"R_300=R2*(1+(t2-t1)*.004);// in ohm\n", +"R_50=R_600+R_300;// in ohm\n", +"disp('Resistance of combination at 50degree C is : '+string(R_50)+ ' ohm')\n", +"R_20=R1+R2;// in ohm\n", +"alpha_20=(R_50/R_20-1)/(t2-t1);\n", +"alpha_50=1/(1/(alpha_20)+(t2-t1));\n", +"disp('Effective temperature coefficient of combination at 50 degree C is : '+string(alpha_50)+' or 1/530 per degree C')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.25: Impurity_percent.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"toh=1.73//in micro-ohm-cm\n", +"tohDesh=1.74;//in micro-ohm-cm\n", +"sigma=1/toh;// conductivities of pure metal\n", +"sigmaDesh=1/tohDesh;//conductivities metal with impurity\n", +"PercentImpurity=((sigma-sigmaDesh)/sigma)*100;\n", +"disp(' Percent impurity in the rod is : '+string(PercentImpurity)+' %')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.26: Electronic_contribution_of_thermal_conductivity_of_aluminium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.26\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"ElectricalResistivity=2.86*10^-6;//in ohm-cm\n", +"sigma=1/ElectricalResistivity;\n", +"T=273+20;// in Kelvin (Temperature)\n", +"//Formula K/(sigma*T)=2.44*10^-8\n", +"disp('Thermal conductivity of Al ')\n", +"K=(2.44*10^-8*T*sigma);\n", +"disp(K);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.27: EMP_developed_per_degree_centigrade.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.27\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"E_AC=16*10^-6;//in V per degree C\n", +"E_BC=-34*10^-6;//in V per degree C\n", +"//By law of successive contact (or intermediate metals)\n", +"E_AB=E_AC-E_BC;//in V/degree C\n", +"E_AB=E_AB*10^6;// in miu V/degree C\n", +"disp('EMF of iron with respect to constantan is : '+string(E_AB)+' micro V/degree C')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.28: EMF_developed_in_couple.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.28\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"E_AC=7.4;//in miu V per degree C\n", +"E_BC=-34.4;//in miu V per degree C\n", +"//By law of successive contact (or intermediate metals)\n", +"E_AB=E_AC-E_BC;//in miu V/degree C\n", +"E_AB=E_AB*10^-6;// in V/degree C\n", +"// Let Thermo-emf for a temperature difference of 250 degree C = EMF_250\n", +"EMF_250=E_AB*250;// in V\n", +"EMF_250=EMF_250*10^3;//in mV\n", +"disp('Termo-emf for a temperature difference of 250 degree C is '+string(EMF_250)+' mV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.29: Thermo_electric_emf_generated.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.29\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"//Take iron as metal A and copper as metal B with respect to lead\n", +"//For metal A:\n", +"p_A=16.2;\n", +"q_A=-0.02;\n", +"//For metal B:\n", +"p_B=2.78;\n", +"q_B=+0.009;\n", +"p_AB=p_A-p_B;\n", +"q_AB=q_A-q_B;\n", +"T2=210;//in degree C\n", +"T1=10;// in degree C\n", +"E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);\n", +"disp('Thermo-electric emf is : '+string(E)+' micro V');\n", +"Tn=-p_AB/q_AB;\n", +"disp('Neutral temperature is : '+string(Tn)+' degree C');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Magnitude_of_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"//Electron density\n", +"n=1*10^24;//unit less\n", +"//Electron charge\n", +"e=1.6*10^-19; // in coulomb\n", +"//Drift velocity\n", +"v=1.5*10^-2; // in meter per second\n", +"//cross-sectional area\n", +"A=1; // in centimeter square\n", +"A=1*10^-4; // in meter square\n", +"I=e*n*v*A;// in ampere\n", +"disp('Magnitude of current is :'+string(I)+' A')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.30: EX2_30.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.30\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"p_A=17.34;\n", +"q_A=-0.0487;\n", +"p_B=1.36;\n", +"q_B=+0.0095;\n", +"p_AB=p_A-p_B;\n", +"q_AB=q_A-q_B;\n", +"T2=210;//in degree C\n", +"T1=10;// in degree C\n", +"E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);//in miu V\n", +"E=E*10^-3;//in m V\n", +"disp('Thermo-electric emf is : '+string(ceil(E))+' m V');\n", +"Tn=-p_AB/q_AB;\n", +"disp('Neutral temperature is : '+string(ceil(Tn))+' degree C');\n", +"Tc=10;// in degree C\n", +"Ti=Tn+(Tn-Tc);\n", +"disp('Temperature of inversion is : '+string(ceil(Ti))+' degree C');\n", +"E_max=15.98*(275-10)-1/2*0.0582*[275^2-10^2];//in miu V\n", +"E_max=E_max*10^-3;// in mV\n", +"disp('Maximum possible thermo-electric emf at neutral temperature that is at 275 degree C is : '+string(E_max)+' mV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.31: Potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.31\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"rho=146*10^-6// in ohm-cm\n", +"a=1;//in cm^2\n", +"l=1;//in cm\n", +"// let current = i\n", +"i=0.06;//in amp \n", +"R=rho*l/a;//in ohm\n", +"// Let potential difference per degree centigrade = P\n", +"P=i*R;// By Ohm's law\n", +"disp('Potential difference per degree centigrade is : '+string(P)+' volt');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.32: EMF_for_a_copper_iron_thermo_couple.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.32\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"T_lower=10;// in degree C\n", +"T_upper=150;// in degree C\n", +"\n", +"// Thermo-electric power for iron at any temperature T degree C w.r.t. lead is given by (17.34-0.0487 T)*10^-6 and that for copper by (1.36-.0095 T)*10^-6\n", +"\n", +"// Thermo-electric power, P=dE/dT\n", +"// or dE=P*dT\n", +"// Thermo-emf for copper between temperature 10 degree C and 150 degree C,\n", +"E_c= integrate('(1.36-0.0095*T)*10^-6','T',T_lower,T_upper);\n", +"\n", +"// Thermo-emf for iron between temperature 10 degree C and 150 degree C,\n", +"E_i= integrate('(17.34-0.0487*T)*10^-6','T',T_lower,T_upper);\n", +"\n", +"// Thermo-emp for copper-iron thermo-couple\n", +"E=E_i-E_c;\n", +"\n", +"disp('Thermo-emf for iron between temperature 10 degree C and 150 degree C is : '+string(E*10^6)+' micro V');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.34: Critical_magnetic_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.34\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"Hc_0=8*10^5;//in A/m\n", +"Tc=7.26;//in K\n", +"T=4;//in K\n", +"Hc_T=Hc_0*[1-(T/Tc)^2]';\n", +"disp('The critical value of magnetic field at T=4 K is : '+string(Hc_T)+' A/m');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.35: Critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.35\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"Hc=7900;//in A/m\n", +"d=1;//in mm\n", +"r=d/2;//in mm\n", +"r=r*10^-3;//in m\n", +"Ic=2*%pi*r*Hc;\n", +"disp('Critical current is : '+string(Ic)+' A');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.36: Critical_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.36\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"Hc_0=8*10^4;//in A/m\n", +"Tc=7.2;//in K\n", +"T=4.5;//in K\n", +"d=1;//in mm\n", +"r=d/2;//in mm\n", +"r=r*10^-3;//in m\n", +"Hc=Hc_0*[1-(T/Tc)^2]';\n", +"disp('The critical field at T=4.5 K is : '+string(Hc)+' A/m');\n", +"Ic=2*%pi*r*Hc;\n", +"disp('Critical current is : '+string(Ic)+' A');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.37: Diameter_of_copper_wire.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.37\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',5)\n", +"// Formula R=rho*l/a\n", +"//putting value for copper wire\n", +"R=2;// in ohm\n", +"l=100;//in meter\n", +"rho=1.7*10^-8;// (for copper)\n", +"a=rho*l/R;//in meter\n", +"a=a*10^6;// in mm\n", +"// Formula a=%pi/4*d^2\n", +"d_copper=sqrt(a*4/%pi); // (d_copper is diameter for copper)\n", +"\n", +"// Formula R=rho*l/a\n", +"//putting value for Aluminium wire\n", +"R=2;// in ohm\n", +"l=100;//in meter\n", +"rho=2.8*10^-8;// (for aluminium)\n", +"a=rho*l/R;//in meter\n", +"a=a*10^6;// in mm\n", +"// Formula a=%pi/4*d^2\n", +"d_aluminium=sqrt(a*4/%pi); // (d_aluminium is diameter for aluminium)\n", +"DiaRatio=d_aluminium/d_copper; // (DiaRatio is ratio of diameter of aluminium and copper)\n", +"disp('The diameter of the aluminium wire is '+string(DiaRatio)+' times that of copper wire');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.38: Resistance_of_liquid_resistor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.38\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',7)\n", +"//given data\n", +"l=60;// in cm\n", +"l=l*10^-2;//in meter\n", +"d=20;// in cm \n", +"d=d*10^-2;//in meter\n", +"D=35;// in cm;\n", +"D=D*10^-2;//in meter\n", +"r1=d/2;\n", +"r2=D/2;\n", +"rho=8000;// in ohm-cm\n", +"rho=80;// in ohm-m\n", +"// Let Insulation resistance of the liquid resistor = Ir\n", +"Ir=[rho/(2*%pi*l)]*log(r2/r1);\n", +"disp(' Insulation resistance of the liquid resistor is : '+string(Ir)+' ohm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.39: Resistivity_of_dielectric_in_a_cable.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.39\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',11)\n", +"//given data\n", +"R_desh=1820;// in M ohm\n", +"R_desh=R_desh*10^6;// in ohm\n", +"d1=1.5;// in cm\n", +"d1=d1*10^-2;// in meter\n", +"d2=5;// in cm\n", +"d2=d2*10^-2;// in meter\n", +"l=3000;// in meter\n", +"r1=d1/2;\n", +"r2=d2/2;\n", +"\n", +"rho= (2*%pi*l*R_desh)/log(r2/r1);\n", +"disp('Resistivity of dielectric is : '+string(rho)+' ohm meter')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Relaxation_time_and_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"miu_e=7.04*10^-3; //in m^2/V-s\n", +"n=5.8*10^28 ; // in /m^3\n", +"e=1.6*10^-19; // in coulomb\n", +"m=9.1*10^-31;//in kg\n", +"//(i) Relaxation time,\n", +"tau=miu_e/e*m;\n", +"disp('Relaxation time is : '+string(tau)+' second');\n", +"sigma=(n*e*miu_e);\n", +"//(ii) Resistivity of conductor,\n", +"rho=1/sigma;\n", +"disp('Resistivity of conductor is : '+string(rho)+' ohm-meter');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.40: Insulation_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.40\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',9)\n", +"// given data\n", +"// First Case:\n", +"r1=1.5/2;// in cm\n", +"// let radius thickness of insulation = r1_t\n", +"r1_t=1.5;// in cm\n", +"r2=r1+r1_t;\n", +"R_desh=500;// in M ohm\n", +"R_desh=R_desh*10^6;// in ohm\n", +"// Second case:\n", +"r1_desh=r1;// in cm (as before)\n", +"// let radius thickness of insulation = r2_t\n", +"r2_t=2.5;// in cm\n", +"r2_desh=r1+r2_t;\n", +"// since Insulation resistance , R_desh= sigma/(2*%pi*l)*log(r2/r1) and\n", +"// R1_desh= sigma/(2*%pi*l)*log(r2_desh/r1_desh)\n", +"// Dividing R1_desh by R1, We get\n", +"// R1_desh/R_desh = log(r2_desh/r1_desh)/log(r2/r1)\n", +"// Let R = R1_desh/R_desh, Now\n", +"R= log(r2_desh/r1_desh)/log(r2/r1);\n", +"R1_desh=R*R_desh;\n", +"disp('New insulation resistance is : '+string(R1_desh*10^-6)+' M ohm');\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.41: Insulation_resistance_and_resistance_of_copper_conductor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.41\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"t1=20;// in degree C\n", +"t2=36;// in degree C\n", +"alpha_20=0.0043;// in per degree C (Temperature Coefficient)\n", +"InsulationResistance=480*10^6;// in ohm\n", +"copper_cond_res=0.7;// in ohm (copper conductor resistance)\n", +"l=500*10^-3;// in kilo meter (length)\n", +"R1_desh=InsulationResistance * l;// in ohm\n", +"\n", +"// From Formula log(R2_desh)= log(R1_desh-K*(t2-t1))\n", +"// K= 1/(t2-t1)*log(R1_desh/R2_desh)\n", +"// since when t2-t1=10 degree C and R1_desh/R2_desh= 2\n", +"\n", +"K=1/10*log(2);\n", +"\n", +"// (i) Insulation resistance at any temperature t2, R2_desh is given by\n", +" logR2_desh= log(R1_desh)-(t2-t1)/10* log(2);\n", +" R2_desh= %e^logR2_desh\n", +" \n", +" disp('(i) Insulation resistance at any temperature : '+string(R2_desh*10^-6)+' Mega ohm');\n", +" \n", +"// (ii) \n", +" R_20= copper_cond_res/l;// in ohm\n", +" R_36=R_20*[1+alpha_20*(t2-t1)];\n", +" \n", +" disp('Resistance at 36 degree C is : '+string(R_36)+' ohm')\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Valance_electron_and_mobility_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa4\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"rho=1.73*10^-8;//in ohm-meter\n", +"toh=2.42*10^-14 ; //in second\n", +"e=1.6*10^-19; //in C\n", +"m=9.1*10^-31;//in kg\n", +"sigma=1/rho;\n", +"//(i) Number of free electrons per m^3\n", +"n=(m*sigma)/(e^2*toh);\n", +"disp('Number of free electrons per cube meter is : '+string(n));\n", +"//(ii) Mobility of electrons,\n", +"miu_e=(e*toh)/m;\n", +"disp('Mobility of electrons is : '+string(miu_e)+' m^2/V-s');\n", +"//Note: Answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Mobility_and_relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa5\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"rho=1.54*10^-8; //in ohm-meter\n", +"//since sigma=1/roh\n", +"sigma=1/rho;\n", +"n=5.8*10^28 ; //unit less\n", +"e=1.6*10^-19; //in C (electron charge)\n", +"m=9.1*10^-31;//in kg (mass of electron)\n", +"//(i) Relaxation time\n", +"toh=(sigma*m)/(n*e^2);\n", +"disp('(i) Relaxation time of electrons is : '+string(toh)+' seconds');\n", +"//(ii) Mobility of electrons,\n", +"miu_e=(e*toh)/m;\n", +"disp('(ii) Mobility of electrons is : '+string(miu_e)+' m^2/V-s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"rho=1.7*10^-8; //in ohm-meter\n", +"//since sigma=1/roh\n", +"sigma=1/rho;\n", +"n=8.5*10^28 ; //unit less\n", +"e=1.6*10^-19; //in C (electron charge)\n", +"m=9.1*10^-31;//in kg\n", +"// Relaxation time\n", +"toh=(sigma*m)/(n*e^2);\n", +"disp(' Relaxation time of electrons is : '+string(toh)+' seconds');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Relaxation_time_of_conducting_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',11);\n", +"//given data :\n", +"E=100;//in V/m\n", +"rho=1.5*10^-8; //in ohm-meter\n", +"//since sigma=1/roh\n", +"sigma=1/rho;\n", +"n=6*10^28 ; //unit less\n", +"e=1.601*10^-19; //in C\n", +"m=9.107*10^-31;//in kg\n", +"// Relaxation time\n", +"toh=(sigma*m)/(n*e^2);\n", +"disp('(i) Relaxation time of electrons is : '+string(toh)+' seconds');\n", +"//Drift velocity\n", +"v=(e*E*toh)/m;\n", +"disp('(ii) Drift velocity is : '+string(v)+' m/s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Charge_density_current_density_and_drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"//Diameter of copper wire\n", +"d=2;//in milimeter\n", +"d=.002;//in meter\n", +"//conductivity of copper\n", +"nita=5.8*10^7;//in second per meter\n", +"//Electron mobility\n", +"miu_e=.0032;//in meter square per volt-second\n", +"//Applied electric field\n", +"E=20;//in mV/m\n", +"E=.02; //in V/m\n", +"e=1.6*10^-19;\n", +"//(i) From eq. (2.13)\n", +"//charge density\n", +"n=nita/(e*miu_e);//in per meter cube\n", +"disp('(i) Charge density is : '+string(n)+' /meter cube');\n", +"//(ii) from eq. (2.9)\n", +"//current density\n", +"J=nita*E;// in A/m^2\n", +"disp('(ii) Current density is : '+string(J)+' A/m^2');\n", +"//(iii) Current flowing in the wire I=J* Area of x-section of wire\n", +"// Area of x-section of wire= (%pi*d^2)/4\n", +"I=(J*%pi*d^2)/4;\n", +"disp('(iii) Current flowing in the wire is : '+string(I)+' A');\n", +"//(iv) form eq.2.14\n", +"//Electron drift velocity\n", +"v=miu_e*E;\n", +"disp('(iv) Electron drift velocity is :'+string(v)+' m/s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa2.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data\n", +"rho=0.5; // in ohm-meter\n", +"J=100; //in A/m^2\n", +"miu_e=0.4; //in m^2/V-s\n", +"E=J*rho; // since E=J/sigma\n", +"// Formula v=miu_e*E\n", +"v=miu_e*E;\n", +"disp(' Electron drift velocity is : '+string(v)+' m/s');\n", +"disp('Time taken by the electron to travel 10*10^-6 m in crystal')\n", +"// let Time taken by the electron to travel 10*10^-6 m in crystal = t\n", +"t=(10*10^-6)/v;\n", +"disp(string(t)+' second');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb new file mode 100644 index 0000000..1536f23 --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb @@ -0,0 +1,1019 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Semiconductor" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Electron_and_hole_drift_velocity_conductivity_of_intrinsic_Ge_and_total_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"e=1.6*10^-19;//in C\n", +"miu_e=.38;// in m^2/V-s\n", +"miu_h=.18;// in m^2/V-s\n", +"l=25;// in mm (length)\n", +"l=l*10^-3;// in m \n", +"w=4;// in mm (width)\n", +"w=w*10^-3;// in m\n", +"t=1.5;// in mm (thickness)\n", +"t=t*10^-3;// in m\n", +"V=10;// in V\n", +"l=25;// in mm\n", +"l=l*10^-3;//in m\n", +"E=V/l;\n", +"//(i) \n", +"v_e=miu_e*E;\n", +"v_h=miu_h*E;\n", +"disp('Electron drift velocity is : '+string(v_e)+' m/s');\n", +"disp('Hole drift velocity is : '+string(v_h)+' m/s');\n", +"n_i=2.5*10^19;//in /m^3\n", +"//(ii)\n", +"sigma_i=n_i*e*(miu_e+miu_h);\n", +"disp('Intrinsic conductiviry of Ge is : '+string(sigma_i)+' /ohm-cm');\n", +"//(iii)\n", +"a=w*t;\n", +"I=sigma_i*E*a;// in amp\n", +"I=I*10^3;// in m A\n", +"disp('Total current is : '+string(I)+' mA');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11: Diffusion_coefficient_of_electron_and_hole.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"k_desh=1.38*10^-23;// in J degree^-1\n", +"e=1.602*10^-19;// in C\n", +"miu_e=3600;// in cm^2/V-s\n", +"miu_h=1700;// in cm^2/V-s\n", +"T=300;// in K\n", +"D_e=miu_e*k_desh*T/e;\n", +"disp('Diffusion constant of electrons is : '+string(D_e)+' cm^2/s');\n", +"D_h=miu_h*k_desh*T/e;\n", +"disp('Diffusion constant of holes is : '+string(D_h)+' cm^2/s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: Hall_effect_in_semiconductor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"e=1.6*10^-19;// in coulomb\n", +"Resistivity=9*10^-3;// in ohm-m\n", +"R_H=3.6*10^-4;// in m^3 coulomb^-1 (Hall Coefficient)\n", +"sigma=1/Resistivity;\n", +"rho=1/R_H;\n", +"n=rho/e;\n", +"disp('Density of charge carriers is : '+string(n)+' /m^3');\n", +"miu=sigma*R_H;\n", +"disp('Mobility is : '+string(miu)+' m^2/V-s');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: Current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"E_x=100;// in V/m\n", +"e=1.6*10^-19;// in C\n", +"R_H=0.0145;// in m^3/coulomb\n", +"miu_n=0.36;// in m^2/volt-second\n", +"// Formula R_H=1/(n*e)\n", +"n=1/(R_H*e);\n", +"sigma=n*e*miu_n;\n", +"J=sigma*E_x;\n", +"disp('Current density is : '+string(J)+' A per m^2');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: Value_of_hall_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Resistivity=9;// in milli-ohm-m\n", +"Resistivity=9*10^-3;// in ohm-m\n", +"miu=0.03;// in m^2/V-s\n", +"sigma=1/Resistivity;\n", +"R_H=miu/sigma;\n", +"disp('Half coefficient is : '+string(R_H)+' m^3/C');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: Magnitude_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"E_x=5;// in V/cm\n", +"miu_e=3800;// in cm^2/V-s\n", +"B_z=0.1;// in Wb/m^2\n", +"d=4;// in mm\n", +"d=d*10^-3;// in m\n", +"v=miu_e*E_x;//in cm/second\n", +"v=v*10^-2;// in m/second\n", +"V_H=B_z*v*d;// in V\n", +"V_H=V_H*10^3;// in m V\n", +"disp('Hall voltage is : '+string(V_H)+' mV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: Mobility_of_holes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"rho=200;// in Kilo ohm-cm\n", +"rho=rho*10^-2;// in kilo ohm m\n", +"rho=rho*10^3;// in ohm meter\n", +"sigma=1/rho;\n", +"V_H=50;// in mV\n", +"V_H=V_H*10^-3;//in V\n", +"I=10;// in miu A\n", +"I=I*10^-6;//in A\n", +"B_z=0.1;// in Wb/m^2\n", +"w=3;//in mm\n", +"w=w*10^-3;//in meter\n", +"R_H=V_H*w/(B_z*I);\n", +"disp('Mobility of holes in p-type silicon bar is : ')\n", +"miu_h=sigma*R_H;\n", +"disp(string(miu_h)+' m^2/V-s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"N_D=1*10^21;// in /m^3\n", +"B_Z=0.2;// in T\n", +"J=600;// in A/m^2\n", +"n=N_D;\n", +"d=4;//in mm\n", +"d=d*10^-3;// in meterr\n", +"e=1.6*10^-19;// in C (electron charge)\n", +"// Formula V_H*w/(B_Z*I) = 1/(n*e) , hence V_H=B_Z*I/(n*e*w)\n", +"// where I=J*w*d\n", +"// putting I=J*w*d in V_H=B_Z*I/(n*e*w), we get\n", +"V_H=B_Z*J*d/(n*e);// in V\n", +"V_H=V_H*10^3;// in mV\n", +"disp('Hall Voltage is : '+string(V_H)+' mV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.18: Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"w=0.1;// in mm\n", +"B_Z=0.6;// in T\n", +"R_H=3.8*10^-4;// in m^3/C\n", +"I=10;// in mA\n", +"I=I*10^-3;//in A\n", +"V_H=R_H*B_Z*I/w;// in V\n", +"V_H=V_H*10^6;// in V\n", +"disp('Hall voltage is : '+string(V_H)+' micro volt');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19: Density_and_mobility_of_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Resistivity=9.23*10^-3;// in ohm-m\n", +"R_H=3.84*10^-4;//in m^3/C (Hall Coefficient)\n", +"sigma=1/Resistivity;\n", +"rho=1/R_H;\n", +"e=1.6*10^-19;// in C (electron charge)\n", +"n=rho/e;\n", +"disp('Density of charge carriers is : '+string(n)+' /m^2');\n", +"miu=sigma*R_H;\n", +"disp('Mobility is : '+string(miu)+' m^2/V-s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Velocity_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"E=2.1;//in eV\n", +"E=E*1.602*10^-19;// in J\n", +"m=9.107*10^-31;// in kg (mass of electron)\n", +"// Formula E=1/2*m*v^2\n", +"v=sqrt(2*E/m);\n", +"disp(' Velocity of electron at Fermi-level is : '+string(v)+' m/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.20: Hll_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"B=0.48;// in Wb/m^2\n", +"R_H=3.55*10^-4;// in m^3/C\n", +"Resistivity=.00912;// in ohm\n", +"sigma=1/Resistivity;\n", +"theta_H=atand(sigma*B*R_H);\n", +"disp('Hall angle is : '+string(theta_H)+' degree')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.21: New_position_of_fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"T=27;// in degree C\n", +"T=T+273;// in K\n", +"// Let E_C - E_F =E_CF\n", +"E_CF=0.3;// in eV\n", +"// Formula E_C - E_F = k*T*log(n_C/N_D)\n", +"// Let log(n_C/N_D) = L, so\n", +"L=E_CF/T;\n", +"T_desh=55;// in degree C\n", +"T_desh=T_desh+273;// in K\n", +"//At temperature T_desh\n", +"new_fermi_level= T_desh*L; // where L=log(n_C/N_D)\n", +"disp('The new position of Fermi Level is : '+string(new_fermi_level)+' V');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.22: Potential_barrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"N_A=8*10^14;// in /cm^3\n", +"N_D=N_A;\n", +"n_i=2*10^13;// in /cm^3\n", +"k=8.61*10^-5;// in eV/K\n", +"T=300;// in K\n", +"V_0=k*T*log(N_D*N_A/n_i^2);\n", +"disp('Potential barrier is : '+string(V_0)+' V');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.23: Resistance_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"// (i) when\n", +"I_D=2;// in mA\n", +"I_D=I_D*10^-3;// in A\n", +"V_D=0.5;// in V\n", +"R1=V_D/I_D;\n", +"disp('Resistace is : '+string(R1)+' ohm');\n", +"// (ii) when\n", +"I_D=20;// in mA\n", +"I_D=I_D*10^-3;// in A\n", +"V_D=0.8;// in V\n", +"R2=V_D/I_D;\n", +"disp('Resistace is : '+string(R2)+' ohm');\n", +"// (ii) when\n", +"I_D=-1;// in miu A\n", +"I_D=I_D*10^-6;// in A\n", +"V_D=-10;// in V\n", +"R3=V_D/I_D;// in ohm\n", +"R3=R3*10^-6;// in M ohm\n", +"disp('Resistace is : '+string(R3)+' M ohm');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.24: Fraction_of_the_total_number_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',12)\n", +"// given data\n", +"E_G=0.72;// in eV\n", +"E_F=E_G/2;// in eV\n", +"k=8.61*10^-5; // in eV/K\n", +"T=300;// in K\n", +"// Formula n_C/n = 1/1+%e^(E_G-E_F)/k*T\n", +"// Let n_C/n = N\n", +"N=1/(1+%e^((E_G-E_F)/(k*T)));\n", +"\n", +"disp('Fraction of the total number of electrons (conduction band as well as valence band) : '+string(N));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.25: Current_flowing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',3)\n", +"// given data\n", +"I_0=.15;// in micro amp\n", +"I_0=I_0*10^-6;// in A\n", +"V=0.12;// in V\n", +"V_T=26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"I=I_0*(%e^(V/V_T)-1);// in amp\n", +"I=I*10^6;// in micro amp\n", +"disp('Large reverse bias current is : '+string(I)+' micro amp');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.26: Forward_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.26\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',5)\n", +"// given data\n", +"I=.01;// in A\n", +"I_0=2.5*10^-6;// in amp\n", +"nita=2;// for silicon\n", +"V_T=26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"// Formula I=I_0*(%e^(V/(nita*V_T))-1);\n", +"V=nita*V_T*log(I/I_0+1);\n", +"disp('Forward voltage is : '+string(V)+' V') ;\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.27: Reverse_saturation_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.27\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"N_D=10^21;// in m^-3\n", +"N_A=10^22;// in m^-3\n", +"D_e=3.4*10^-3;// in m^2/s\n", +"D_h=1.2*10^-3;// in m^2/s\n", +"L_e=7.1*10^-4;// in m\n", +"L_h=3.5*10^-4;// in m\n", +"n_i=1.602*10^16;// in /m^3\n", +"e=1.6*10^-19;// in C (electron charge)\n", +"// Formula I_0=a*e*[D_h/(L_h*N_D) + D_e/(L_e*N_A)]*n_i^2\n", +"//and\n", +"// Reverse saturation current density = I_0/a = [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2 , So\n", +"CurrentDensity= [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2;// in A\n", +"CurrentDensity=CurrentDensity*10^6;// in micro A\n", +"disp('Reverse saturation current density is : '+string(CurrentDensity)+' micro amp');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.28: Junction_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.28\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data'\n", +"format('v',13)\n", +"N_D=10^17*10^6;// in m^-3\n", +"N_A=0.5*10^16*10^6;// in atoms/m^3\n", +"epsilon_r=10;// in F/m\n", +"epsilon_o=8.85*10^-12;// in F/m\n", +"epsilon=epsilon_r*epsilon_o;\n", +"e=1.602*10^-19;// in C (electron charge)\n", +"// (i) when no external voltage is applied i.e.\n", +"V=0;\n", +"V_B=0.7;// in V\n", +"W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));\n", +"disp('Junction width is : '+string(W)+' m');\n", +"// (ii) when external voltage of -10 V is applied i.e.\n", +"V=-10;// in V\n", +"V_o=0.7;// in V\n", +"V_B=V_o-V;\n", +"W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));\n", +"disp('Junction width is : '+string(W)+' m');\n", +"\n", +"// Note: Answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Relaxation_time_resistivity_of_conductor_and_velocity_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"E=5.5;// in eV; (Fermi energy)\n", +"E=E*1.6*10^-19;// in J \n", +"miu_e=7.04*10^-3; //in m^2/V-s (Mobility of electrons)\n", +"n=5.8*10^28 ; // in /m^3 (Number of conduction electrons/m^3)\n", +"e=1.6*10^-19; // in coulomb\n", +"m=9.1*10^-31;//in kg\n", +"//(i) Relaxation time,\n", +"tau=miu_e/e*m;\n", +"disp('(i) Relaxation time is : '+string(tau)+' second');\n", +"sigma=(n*e*miu_e);\n", +"//(ii) Resistivity of conductor,\n", +"rho=1/sigma;\n", +"disp('(ii) Resistivity of conductor is : '+string(rho)+' ohm-meter');\n", +"// (iii) Let Velocity of electrons with fermi energy = v\n", +"v=sqrt(2*E/m);\n", +"disp('(iii) Velocity of electron with Fermi-level is : '+string(v)+' m/s');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Electron_and_hole_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"n_i=2.5*10^13;// in /cm^3\n", +"rho=0.039;// in ohm-cm\n", +"sigma_n=1/rho;\n", +"e=1.602*10^-19;// in C\n", +"miu_e=3600;// in cm^2/V-s\n", +"//since sigma_n = n*e*miu_e = N_D*e*miu_e\n", +"N_D=sigma_n/(e*miu_e);\n", +"n=N_D;// (approx)\n", +"disp('Concentration of electrons is : '+string(n)+' /cm^3');\n", +"p=n_i^2/n;\n", +"disp('Concentration of holes is : '+string(p)+' /cm^3');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: EX3_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"SiliconAtom=5*10^22;// unit less (Number of silicon atom)\n", +"DonorImpurity=1/10^6;\n", +"n_i=1.45*10^10;// in cm^-3\n", +"e=1.602*10^-19;// in C\n", +"miu_e=1300;// taking miu_e for Si as 1300 cm^2/V-s\n", +"// (i) Donor atom concentraion\n", +"// Formula N_D= Number of silicon atoms/cm^3 * donor impurity\n", +"N_D=SiliconAtom*DonorImpurity;\n", +"disp('(i) Donor atom concentration is : '+string(N_D)+' per cm^3');\n", +"\n", +"// (ii) Mobile electron concentration\n", +"n=N_D; // (approx.)\n", +"disp('(ii) Mobile electron concentration is : '+string(n)+' per cm^3');\n", +"\n", +"// (iii) Hole concentration\n", +"p=n_i^2/N_D;\n", +"disp('(iii) Hole concentration is : '+string(p)+' /cm^3');\n", +"\n", +"//(iv) conductivity of doped silicon sample\n", +"sigma=n*e*miu_e;\n", +"disp('(iv) conductivity of doped silicon sample is : '+string(sigma)+' S/cm');\n", +"\n", +"rho=1/sigma;\n", +"//(v) resistance of given semiconductor\n", +"l=0.5;// in cm\n", +"a=(50*10^-4)^2\n", +"R=rho*l/a;\n", +"disp('Resistance of give semiconductor is : '+string(R)+' ohm');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Concentration_of_hole_in_si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"n_i=1.4*10^18;// in m^3\n", +"N_D=1.4*10^24;// in m^3\n", +"n=N_D;// (approx)\n", +"p=n_i^2/n;\n", +"// let Ratio of electron to hole concentration = r\n", +"r=n/p;\n", +"disp('Ratio of electron to hole concentration is : '+string(r));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Conductivity_and_resitivity_of_an_intrinsic_semiconductor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"n_i=2.5*10^13;// in cm^3\n", +"e=1.6*10^-19;// in coulomb\n", +"miu_h=1800;// in cm^2/V-s\n", +"miu_e=3800;// in cm^2/V-s\n", +"sigma_i=n_i*e*(miu_e+miu_h);\n", +"disp('Intrinsic conductivity is : '+string(sigma_i)+' /ohm-cm');\n", +"rho_i=1/sigma_i;\n", +"disp('Intrinsic resistiviry is : '+string(rho_i)+' ohm-cm')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Density_of_electron_and_drift_velocity_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"rho_i=0.47;// in ohm-meter\n", +"sigma_i=1/rho_i;\n", +"miu_e=0.39;// in m^2/V-s\n", +"miu_h=0.19;// in m^2/V-s\n", +"e=1.6*10^-19;// in C\n", +"\n", +"// since sigma_i=n_i*e*(miu_e+miu_h);\n", +"n_i=sigma_i/(e*(miu_e+miu_h));\n", +"// so Density of electrons = Intrinsic Concentration,n_i\n", +"disp('Density of electons is :'+string(n_i)+' /m^3');\n", +"E=10^4;// in V/m\n", +"v_n=miu_e*E;\n", +"disp('Drift velocity of electrons is : '+string(v_n)+' m/s');\n", +"v_h=miu_h*E;\n", +"disp('Drift velocity of holes is : '+string(v_h)+' m/s');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Conductivity_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"n_i=1.5*10^10;// in /cm^3\n", +"miu_e=1300;// in cm^2/V-s\n", +"miu_h=450;// in cm^2/V-s\n", +"e=1.6*10^-19;// in C (charge of electrons)\n", +"sigma_i=n_i*e*(miu_e+miu_h);\n", +"disp('Conductivity of silicon (intrinsic) is : '+string(sigma_i)+' /ohm-cm');\n", +"N_A=10^18;// in /cm^3\n", +"disp('conductivity of the resulting P-type silicon semiconductor')\n", +"sigma_p=e*N_A*miu_h;\n", +"disp(string(sigma_p)+' /ohm-cm');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Find_conductivity_of_intrinsic_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa3.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"n_i=2.5*10^13;// in /m^3\n", +"miu_e=3800;// in cm^2/V-s\n", +"miu_h=1800;// in cm^2/V-s\n", +"e=1.6*10^-19;// in C (charge of electrons)\n", +"sigma_i=n_i*e*(miu_e+miu_h);\n", +"disp('Intrinsic conductivity is : '+string(sigma_i)+' /ohm-cm');\n", +"// Let Number of germanium atoms/cm^3 = no_g\n", +"no_g=4.41*10^22;\n", +"// since Donor impurity = 1 donor atom / 10^7 germanium atoms, so \n", +"DonorImpurity=10^-7;\n", +"N_D=no_g*DonorImpurity;\n", +"n=N_D; // (approx)\n", +"p=n_i^2/N_D;\n", +"// so\n", +"sigma_n=e*N_D*miu_e;\n", +"disp('conductivity in N-type germanium semiconductor is : '+string(sigma_n)+' /ohm-cm');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb new file mode 100644 index 0000000..bc54fad --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb @@ -0,0 +1,391 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Bipolar Junction And Field Effect Transistors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: gm_at_IDS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"VP=-4.5;//in Volt\n", +"IDSS=9;//in mAmpere\n", +"IDSS=IDSS*10^-3;//in Ampere\n", +"IDS=3;//in mAmpere\n", +"IDS=IDS*10^-3;//in Ampere\n", +"//Formula : IDS=IDSS*[1-VGS/VP]^2\n", +"VGS=VP*(1-sqrt(IDS/IDSS));//in Volt\n", +"disp(VGS,'ID=3mA at VGS in Volt :');\n", +"gm=(-2*IDSS)*(1-VGS/VP)/VP;//in mA/V or mS\n", +"disp(gm*1000,'Transconductance in mA/V or mS: ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Drain_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"ID_on=5;//in mAmpere\n", +"VGS_on=8;//in Volt\n", +"VGS=6;//in Volt\n", +"VGST=4;//in Volt\n", +"k=ID_on/(VGS_on-VGST)^2;//in mA/V^2\n", +"ID=k*(VGS-VGST)^2;//in mA\n", +"disp(ID,'Drain current in mA : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Resistance_between_gate_and_source.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"format('v',11)\n", +"VGS=10;//in Volt\n", +"IG=0.001;//in uAmpere\n", +"IG=IG*10^-6;//in Ampere\n", +"RGS=VGS/IG;//in Ohm\n", +"disp(RGS*10^-6,'Resistance between gate and source in Mohm : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: AC_drain_resistance_of_the_JFET.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"delVDS=1.5;//in Volt\n", +"delID=120;//in uAmpere\n", +"delID=delID*10^-6;//in Ampere\n", +"rd=delVDS/delID;//in Ohm\n", +"disp(rd*10^-3,'AC drain Resistance of JFET in Kohm : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Transconductance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"ID2=1.5;//in mAmpere\n", +"ID1=1.2;//in mAmpere\n", +"delID=ID2-ID1;//in Ampere\n", +"VGS1=-4.25;//in Volt\n", +"VGS2=-4.10;//in Volt\n", +"delVGS=VGS2-VGS1;//in Volt\n", +"gm=delID/delVGS;//in Ohm\n", +"disp(gm,'Transconductance in mA/V : ');\n", +"disp(gm*10^3,'Transconductance in uS : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: AC_drain_resistance_transconductance_and_amplification_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"VDS1=5;//in Volt\n", +"VDS2=12;//in Volt\n", +"VDS3=12;//in Volt\n", +"VGS1=0;//in Volt\n", +"VGS2=0;//in Volt\n", +"VGS3=-0.25;//in Volt\n", +"ID1=8;//in mAmpere\n", +"ID2=8.2;//in mAmpere\n", +"ID3=7.5;//in mAmpere\n", +"//AC drain resistance\n", +"delVDS=VDS2-VDS1;//in Volt\n", +"delID=ID2-ID1;//in mAmpere\n", +"rd=delVDS/delID;//in Kohm\n", +"disp(rd,'AC Drain resistance in Kohm : ');\n", +"//Transconductance\n", +"delID=ID3-ID2;//in mAmpere\n", +"delVGS=VGS3-VGS2;//in Volt\n", +"gm=delID/delVGS;//in mA/V or mS\n", +"disp(gm,'Transconductance in mA/V : ');\n", +"//Amplification Factor\n", +"meu=rd*1000*gm*10^-3;//unitless\n", +"disp(meu,'Amplification Factor : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Transconductance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"VP=-4.5;//in Volt\n", +"IDSS=10;//in mAmpere\n", +"IDS=2.5;//in mAmpere\n", +"//Formula : IDS=IDSS*[1-VGS/VP]^2\n", +"VGS=VP*(1-sqrt(IDS/IDSS));//in Volt\n", +"gm=(-2*IDSS*10^-3)*(1-VGS/VP)/VP;//in mA/V or mS\n", +"disp(gm*1000,'Transconductance in mA/V : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Calculate_VGS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"gm=10;//in mS\n", +"gm=gm*10^-3;//in S\n", +"IDSS=10;//in uAmpere\n", +"IDSS=IDSS*10^-6;//in Ampere\n", +"//VGS(OFF):VGS=VP\n", +"//Formula : gm=gmo=-2*IDSS/VP=-2*IDSS/VG(Off)\n", +"VGS_OFF=-2*IDSS/gm;//in Volt\n", +"disp(VGS_OFF*1000,'VGS(OFF) in mV : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Minimum_value_of_VDS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"VP=-4;//in Volt\n", +"VGS=-2;//in Volt\n", +"IDSS=10;//in mAmpere\n", +"IDSS=IDSS*10^-3;//in Ampere\n", +"//Formula : ID=IDSS*[1-VGS/VP]^2\n", +"ID=IDSS*[1-VGS/VP]^2;//in Ampere\n", +"disp(ID*1000,'Drain Current in mA : ');\n", +"disp('The minimum value of VDS for pinch-off region is equal to VP. Thus the minimum value of VDS : VDS(min) = '+string(VP)+' Volt');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: ID_gmo_and_gm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"IDSS=8.7;//in mAmpere\n", +"IDSS=IDSS*10^-3;//in Ampere\n", +"VP=-3;//in Volt\n", +"VGS=-1;//in Volt\n", +"//ID\n", +"ID=IDSS*[1-VGS/VP]^2\n", +"disp(ID*1000,'Drain current ID in mA : ');\n", +"//gmo\n", +"gmo=-2*IDSS/VP;//in S\n", +"disp(gmo*1000,'Transconductance for VGS=0V in mA/V or mS : ');\n", +"//gm\n", +"gm=gmo*(1-VGS/VP);//in S\n", +"disp(gm*1000,'Transconductance in mA/V or mS : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Id_and_gm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"//given data :\n", +"IDSS=8.4;//in mAmpere\n", +"IDSS=IDSS*10^-3;//in Ampere\n", +"VP=-3;//in Volt\n", +"VGS=-1.5;//in Volt\n", +"//ID\n", +"ID=IDSS*[1-VGS/VP]^2\n", +"disp(ID*1000,'Drain current ID in mA : ');\n", +"//gmo\n", +"gmo=-2*IDSS/VP;//in S\n", +"disp(gmo*1000,'Transconductance for VGS=0V in mA/V or mS : ');\n", +"gm=gmo*(1-VGS/VP);//in S\n", +"disp(gm*1000,'Transconductance in mA/V or mS : ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb new file mode 100644 index 0000000..81abb4f --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb @@ -0,0 +1,203 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Magnetic Properties Of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Hysteresis_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Area_hysteresis_curve=9.3;//in cm^2\n", +"Cordinate1_1cm=1000;//in AT/m\n", +"Cordinate2_1cm=0.2;//in T\n", +"//Part (i)\n", +"hysteresis_loss=Area_hysteresis_curve*Cordinate1_1cm*Cordinate2_1cm;//in J/m^3/cycle\n", +"disp(hysteresis_loss,'Hysteresis loss/m^3/cycle in J/m^3/cycle: ');\n", +"//Part (ii)\n", +"f=50;//in Hz\n", +"H_LossPerCubicMeter=hysteresis_loss*f;//in Watts\n", +"disp(H_LossPerCubicMeter*10^-3,'Hysteresis loss Per Cubic Meter in KWatts :');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Hysteresis_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',11)\n", +"// given data\n", +"Area_hysteresis_loop=93;//in cm^2\n", +"scale1_1cm=0.1;//in Wb/m^2\n", +"scale2_1cm=50;//in AT/m\n", +"\n", +"hysteresis_loss=Area_hysteresis_loop*scale1_1cm*scale2_1cm;//in J/m^3/cycle\n", +"disp(hysteresis_loss,'Hysteresis loss/m^3/cycle in J/m^3/cycle: ');\n", +"\n", +"f=65;//unit less\n", +"V=1500*10^-6;// in m^3\n", +"P_h=hysteresis_loss*f*V;\n", +"disp('Hysteresis loss is : '+string(P_h)+' W');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Loss_of_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v', 11)\n", +"// given data\n", +"nita=628;// in J/m^3\n", +"B_max=1.3;// in Wb/m^2\n", +"f=25;// in Hz\n", +"ironMass=50;// in kg\n", +"densityOfIron=7.8*10^3;// in kg/m^3\n", +"V=ironMass/densityOfIron;\n", +"x=12.5;// in AT/m\n", +"y=0.1;// in T\n", +"// formula Hysteresis loss/second = nita*B_max^1.6*f*V\n", +"H_Loss_per_second = nita*B_max^1.6*f*V ;// in J/s\n", +"H_Loss_per_second=floor(H_Loss_per_second);\n", +"H_Loss_per_hour= H_Loss_per_second*60*60;// in J\n", +"disp('Hysteresis Loss per hour is : '+string(H_Loss_per_hour)+' J');\n", +"// Let Hysteresis Loss per m^3 per cycle = H1\n", +"H1=nita*B_max^1.6;\n", +"// formula hysteresis loss/m^3/cycle = x*y*area of B-H loop\n", +"Area_of_B_H_loop=H1/(x*y);\n", +"Area_of_B_H_loop=floor(Area_of_B_H_loop);\n", +"disp('Area of B-H loop is : '+string(Area_of_B_H_loop)+' cm^2');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Loss_per_kg_in_a_specimen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"H_L_per_M_Cube_per_C=380;// in W-S\n", +"f=50;// unit less\n", +"density=7800;// in kg/m^3\n", +"V=1/density;// in m^3\n", +"// formula Hysteresis loss = Hysteresis loss/m^3/cycle * f * V\n", +"P_h=H_L_per_M_Cube_per_C * f * V;\n", +"disp('Hysteresis loss is : '+string(P_h)+' W');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Eddy_current_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"P_e1=1600;// in watts\n", +"B_max1=1.2;// in T\n", +"f1=50;// in Hz\n", +"B_max2=1.5;// in T\n", +"f2=60;// in Hz\n", +"// P_e propotional to B_max^2*f^2, so\n", +"P_e2=P_e1*(B_max2/B_max1)^2*(f2/f1)^2\n", +"disp('Eddy current loss is : '+string(P_e2)+' watts');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb new file mode 100644 index 0000000..b887418 --- /dev/null +++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb @@ -0,0 +1,169 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Dielectric Properties Of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Element_of_parallel_RC_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 6.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"epsilon_r=2.5;\n", +"epsilon_o=8.854*10^-12;\n", +"d=.2*10^-3;// in m\n", +"A=20*10^-4;// in m^2\n", +"omega=2*%pi*10^6;// in radians/s\n", +"f=10^6;\n", +"tan_delta=4*10^-4;\n", +"C=epsilon_o*epsilon_r*A/d;// in F\n", +"disp('Capicitance is : '+string(C*10^12)+' miu miu F');\n", +"// Formula P=V^2/R, so\n", +"// R=V^2/P and P= V^2*2*%pi* f * C * tan delta, putting the value of P, we get\n", +"R=1/(2*%pi*f*C*tan_delta);// in ohm\n", +"disp('The element of parallel R-C circuit is : '+string(R*10^-6)+' M ohm');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Charge_sensitivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 6.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"g=0.055;// in V-m/N\n", +"t=2*10^-3;// in m\n", +"P=1.25*10^6;// in N/m^2\n", +"epsilon=40.6*10^-12;// in F/m\n", +"V_out=g*t*P;\n", +"disp('Output voltage is : '+string(V_out)+' V');\n", +"// Formula Charge Sensivity=epsilon_o*epsilon_r*g=epsilon*g\n", +"ChargeSensivity=epsilon*g;\n", +"disp('Charge Sensivity is : '+string(ChargeSensivity)+' C/N');\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Force_required_to_develop_a_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 6.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_out=150;// in V\n", +"t=2*10^-3;// in m\n", +"g=0.05;// in V-m/N\n", +"A=5*5*10^-6;// in m^2\n", +"F=V_out*A/(g*t);// in N\n", +"disp('Force applied is : '+string(F)+' N')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Charge_and_its_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 6.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"g=12*10^-3;// in V-m/N\n", +"t=1.25*10^-3;// in m\n", +"A=5*5*10^-6;// in m^2\n", +"F=3;// in N\n", +"ChargeSensitivity=150*10^-12;// in C/N\n", +"P=F/A;\n", +"V_out=g*t*P;// in V\n", +"Q=ChargeSensitivity*F;\n", +"disp('Total charge developed is : '+string(Q)+' C');\n", +"// Formula C=Q/V;\n", +"C=Q/V_out;\n", +"disp('Capacitance is : '+string(C*10^12)+' miu miu F');\n", +"\n", +"// Note: Answer in the Book is wrong" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |