summaryrefslogtreecommitdiff
path: root/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta')
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb204
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb1354
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb1019
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb391
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb203
-rw-r--r--Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb169
6 files changed, 3340 insertions, 0 deletions
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb
new file mode 100644
index 0000000..e93d5d3
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/1-Crystal_Stucture_Of_Materials.ipynb
@@ -0,0 +1,204 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Crystal Stucture Of Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Density_Of_Copper_Crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"//atomic radius\n",
+"r=1.278; //in Angstrum\n",
+"//atomic weight\n",
+"aw=63.5;\n",
+"//Avogadro's number\n",
+"an=6.023*10^23;\n",
+"//copper has FCC structure for which\n",
+"a=(4*r)/sqrt(2);// in Angstrum\n",
+"a=a*10^-10;//in m\n",
+"//Mass of one atom \n",
+"m=aw/an;//in gm\n",
+"m=m*10^-3;//in kg\n",
+"//volume of one unit cell of copper crystal,\n",
+"V=a^3;//in meter cube\n",
+"//Number of atoms present in one unit cell of Cu(FCC Structure),\n",
+"n=4;\n",
+"//Density of crystal\n",
+"rho=(m*n)/V;//in kg/m^3\n",
+"disp('Density of crystal is : '+string(rho)+'kg/m^3');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Interplanar_Distance_in_a_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"//wavelength\n",
+"lamda=1.539; //in Angstrum\n",
+"//angle\n",
+"theta=22.5; // in degree\n",
+"n=1;//(first order)\n",
+"\n",
+"// Formula n*lamda=2*d*sin(theta) , so\n",
+"// interplaner distance,\n",
+"d=lamda/(2*sin(theta*%pi/180));\n",
+"disp('Interplaner distance is : '+string(d)+' Angstrum')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Wavelength_of_X_rays.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"n=2;\n",
+"d=0.4;// in nenometer\n",
+"d=d*10^-9;// in meter\n",
+"theta=16.8/2;// in degree\n",
+"//using Bragg's equation we have n*lamda=2*d*sin(theta), so\n",
+"lamda=(2*d*sin(8.4*%pi/180))/n;\n",
+"disp('Wavelength of X-rays used is : '+string(lamda*10^10)+' Angstrum');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Wavelength_of_X_rays.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"a=3.15; //in Angstrum\n",
+"a=a*10^-10;//in meter\n",
+"//angle\n",
+"theta=20.2;//in degree\n",
+"n=1;//(first order)\n",
+"//for BCC crystal\n",
+"d110=a/sqrt(2);//in meter\n",
+"//Formula n*lamda=2*d*sin(theta)\n",
+"lamda=(2*d110*sin(theta*%pi/180))/n;//in meter\n",
+"disp('Wavelength is : '+string(lamda*10^10)+' Angstrum')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Angle_of_incidence.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"lambda=0.842; //in Angstrum\n",
+"lambda=lambda*10^-10; // in meter\n",
+"//theta=8degree 35minutes\n",
+"theta=8+35/60;//in degree\n",
+"n=1;//(first order)\n",
+"//Formula n*lamda=2*d*sin(theta)\n",
+"d=n*lambda/(2*sind(theta))\n",
+"//For third Order reflection :\n",
+"//Formula n*lamda=2*d*sin(theta)\n",
+"n=3;//order\n",
+"theta=asind(n*lambda/(2*d));\n",
+"disp(round(theta),'Angle of incidence for third order reflection in degree : ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb
new file mode 100644
index 0000000..6c5e517
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/2-Conductivity_of_metals.ipynb
@@ -0,0 +1,1354 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Conductivity of metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Resistivity_of_silico.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"miu_e=0.17;//in m^2/V-s\n",
+"miu_h=0.035;//in m^2/V-s\n",
+"nita_i=1.1*10^16; //in /m^3\n",
+"e=1.6*10^-19;// in C (electron charge)\n",
+"// Intrinsic conductivity,\n",
+"sigma_i=(nita_i*e)*(miu_e+miu_h);\n",
+"IntrinsicResistivity=1/sigma_i;\n",
+"disp('Intrinsic resistivity is : '+string(IntrinsicResistivity)+' ohm-meter');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Carrier_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"rho_i=2*10^-3; //in ohm-m (there is miss printed in this line in the book)\n",
+"sigma_i=1/rho_i;\n",
+"miu_e=0.3;// in m^2/V-s\n",
+"miu_h=0.1;// in m^2/V-s\n",
+"e=1.6*10^-19; // in C\n",
+"// Formula sigma_i=nita_i*e*(miu_e+miu_h)\n",
+"nita_i=sigma_i/(e*(miu_e+miu_h));\n",
+"disp('Carrier density is : '+string(nita_i)+' /m^3');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Temperature_of_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"R_15=250;// in ohm\n",
+"R_t2=300 ;// in ohm\n",
+"alpha=0.0039;// in degree C\n",
+"t1=15;\n",
+"//Formula R_t2 = R_15 * [1 + alpha1*(t2 - t1)]\n",
+"t2=((R_t2/R_15)-1)/alpha+t1;\n",
+"disp('Temperature when its resistance is 300 ohms is : '+string(t2)+' degree C');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Resistance_of_the_coil.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"alpha0=0.0038;// in ohm/ohm/degree C\n",
+"t1=20; //in degree C\n",
+"alpha20=1/(1/alpha0+t1);\n",
+"R1=400;//in ohm\n",
+"//Formula R2=R1*[1+alpha20*(t2-t1)]\n",
+"R2=R1*[1+alpha20*(80-20)];\n",
+"disp('Resistance of wire at 80 degree C si : '+string(R2)+' ohm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Temperature_coefficient_of_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"disp('Let the temperature coefficient of resistance of material at 0 degree C be alpha0');\n",
+"disp('Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)');\n",
+"disp('Resistance at 70 degree C, R2 = R0 * (1+70*alpha0) (ii)');\n",
+"disp('Dividing Eq.(ii) by Eq.(i), we get');\n",
+"disp('R2/R1= (1+70*alpha0)/(1+25*alpha0)');\n",
+"disp('or 57.2/50 = (1+70*alpha0)/(1+25*alpha0)');\n",
+"disp('or alpha0 = 0.00348 ohm/ohm/degree C');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: Temperature_coefficient_of_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"disp('Let the temperature coefficient of resistance of material coil at 0 degree C be alpha0,then');\n",
+"disp('Resistance at 25 degree C, R1 = R0 * (1+25*alpha0) (i)');\n",
+"disp('Resistance at 75 degree C, R2 = R0 * (1+75*alpha0) (ii)');\n",
+"disp('Dividing Eq.(ii) by Eq.(i), we get');\n",
+"disp('R2/R1= (1+75*alpha0)/(1+25*alpha0)');\n",
+"disp('or 49/45 = (1+75*alpha0)/(1+25*alpha0)');\n",
+"disp('or alpha0 = 0.00736 ohm/ohm/degree C');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: Resistance_and_temperature_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"disp('Let the temperature coefficient of resistance of platinum at 0 degree C be alpha0 and resistance of platinum coil at 0 degree C be R0,then');\n",
+"disp('Resistance at 40 degree C, R1 = R0 * (1+40*alpha0) (i)');\n",
+"disp('Resistance at 100 degree C, R2 = R0 * (1+100*alpha0) (ii)');\n",
+"disp('Dividing Eq.(ii) by Eq.(i), we have');\n",
+"disp('R2/R1= (1+100*alpha0)/(1+40*alpha0)');\n",
+"disp('or 3.767/3.146 = (1+100*alpha0)/(1+40*alpha0)');\n",
+"disp('or alpha0 = 0.00379 ohm/ohm/degree C');\n",
+"alpha0=0.00379;// in ohm/ohm/degree C\n",
+"disp('Temperature coefficient of resistance at 40 degree C,')\n",
+"alpha40=1/(1/alpha0+40);\n",
+"disp(alpha40);\n",
+"disp('Substituting R1=3.146 and alpha0=0.00379 in Eq. (i) we have')\n",
+"R1=3.146;//in ohm\n",
+"//Formula R1 = R0 * (1+40*alpha0)\n",
+"R0=R1/(1+40*alpha0);\n",
+"disp('Resistance of platinum coil at 0 degree C is : '+string(R0)+' ohm ');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: Mean_temperature_rise.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"disp('Let R0 be the resistance of the coil at 0 degree C and alpha0 be its temperature coefficient of resistance at 0 degree C');\n",
+"disp('Resistance at 20 degree C, 18 = R0 * (1+20*alpha0) (i)');\n",
+"disp('Resistance at 50 degree C, 20 = R0 * (1+50*alpha0) (ii)');\n",
+"disp('Dividing Eq.(ii) by Eq.(i), we have');\n",
+"disp('20/18= (1+50*alpha0)/(1+20*alpha0)');\n",
+"disp('or alpha0 = 1/250=0.004 ohm/ohm/degree C');\n",
+"disp('If t degree C is the temperature of coil when its resistance is 21 ohm, then');\n",
+"disp('21=R0*(1+0.004*t)');\n",
+"disp('Dividing Eq.(iii) by Eq.(ii), we have');\n",
+"disp('21/20=(1+0.004*t)/(1+50*0.004)');\n",
+"disp('or t=65 degree C');\n",
+"disp('Temperature rise = t-surrounding temperature = 65 - 15 = 50 degree C');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Drift_Velocity_of_Electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"J=2.4; //in A/mm^2\n",
+"J=2.4*10^6; //in A/m^2\n",
+"n=5*10^28; //unitless\n",
+"e=1.6*10^-19; // in coulomb\n",
+"//Formula : J=e*n*v\n",
+"v=J/(e*n);//in m/s\n",
+"disp('Drift velocity is : '+string(v)+' m/s or '+string(v*10^3)+' mm/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: Specific_resistance_and_resistance_temperature_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"alpha20=1/254.5;// in ohm/ohm/degree C\n",
+"t2=60;//degree C\n",
+"t1=20;//degree C\n",
+"rho0=1.6*10^-6;\n",
+"alpha60=1/(1/alpha20+(t2-t1));\n",
+"disp('Temperature coefficient of resistance at 60 degree C is : '+string(alpha60)+' ohm/ohm/degree C');\n",
+"//from alpha20=1/(1/alpha0+20)\n",
+"alpha0=1/(1/alpha20-20);\n",
+"//Formula rho60=rho0*(1+alpha0*t)\n",
+"rho60=rho0*(1+alpha0*t2);\n",
+"disp('Specific resistance at 60 degree C is : '+string(rho60)+' ohm-cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: Resistivity_of_the_wire_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"R=95.5;//in ohm\n",
+"l=1;//in meter\n",
+"d=0.08;//in mm\n",
+"d=d*10^-3;//in meter\n",
+"a=(%pi*d^2)/4;\n",
+"//Formula R=rho*l/a\n",
+"rho=R*a/l;\n",
+"disp('Resistance of the wire material is : '+string(rho)+' ohm-meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: Resistance_of_the_wire.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"R=4;//in ohm\n",
+"d=0.0274;//in cm\n",
+"d=0.000274;//in meter\n",
+"rho=10.3;//in miu ohm-cm\n",
+"rho=10.3*10^-8;//in ohm-m\n",
+"a=(%pi*d^2)/4;\n",
+"\n",
+"//Formula R=rho*l/a\n",
+"l=R*a/rho;\n",
+"disp('Lenght of wire is : '+string(l)+' meters')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23: Current_flowing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"V=220;// in V\n",
+"W=100;//in watt\n",
+"R100=V^2/W;//in ohm\n",
+"alpha20=0.005;\n",
+"t1=20;\n",
+"t2=2000;\n",
+"// since R100=R20*[1+alpha20*(t2-t1)]\n",
+"R20=R100/(1+alpha20 * (t2-t1));\n",
+"I20=V/R20;\n",
+"disp('Current flowing at the instant of switching on a 100 W metal filament lamp is : '+string(I20)+' A')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24: Resistance_and_temperature_coefficient_of_combination.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"t2=50;// in degree C\n",
+"t1=20; // in degree C\n",
+"R1=600;// in ohm\n",
+"R2=300;// in ohm\n",
+"\n",
+"// Let resistance of 600 ohm resistance at 50 degree C = R_600\n",
+"R_600=R1*(1+(t2-t1)*.001);// in ohm\n",
+"// Let resistance of 300 ohm resistance at 50 degree C = R_300\n",
+"R_300=R2*(1+(t2-t1)*.004);// in ohm\n",
+"R_50=R_600+R_300;// in ohm\n",
+"disp('Resistance of combination at 50degree C is : '+string(R_50)+ ' ohm')\n",
+"R_20=R1+R2;// in ohm\n",
+"alpha_20=(R_50/R_20-1)/(t2-t1);\n",
+"alpha_50=1/(1/(alpha_20)+(t2-t1));\n",
+"disp('Effective temperature coefficient of combination at 50 degree C is : '+string(alpha_50)+' or 1/530 per degree C')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.25: Impurity_percent.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.25\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"toh=1.73//in micro-ohm-cm\n",
+"tohDesh=1.74;//in micro-ohm-cm\n",
+"sigma=1/toh;// conductivities of pure metal\n",
+"sigmaDesh=1/tohDesh;//conductivities metal with impurity\n",
+"PercentImpurity=((sigma-sigmaDesh)/sigma)*100;\n",
+"disp(' Percent impurity in the rod is : '+string(PercentImpurity)+' %')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.26: Electronic_contribution_of_thermal_conductivity_of_aluminium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.26\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"ElectricalResistivity=2.86*10^-6;//in ohm-cm\n",
+"sigma=1/ElectricalResistivity;\n",
+"T=273+20;// in Kelvin (Temperature)\n",
+"//Formula K/(sigma*T)=2.44*10^-8\n",
+"disp('Thermal conductivity of Al ')\n",
+"K=(2.44*10^-8*T*sigma);\n",
+"disp(K);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.27: EMP_developed_per_degree_centigrade.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.27\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"E_AC=16*10^-6;//in V per degree C\n",
+"E_BC=-34*10^-6;//in V per degree C\n",
+"//By law of successive contact (or intermediate metals)\n",
+"E_AB=E_AC-E_BC;//in V/degree C\n",
+"E_AB=E_AB*10^6;// in miu V/degree C\n",
+"disp('EMF of iron with respect to constantan is : '+string(E_AB)+' micro V/degree C')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.28: EMF_developed_in_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.28\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"E_AC=7.4;//in miu V per degree C\n",
+"E_BC=-34.4;//in miu V per degree C\n",
+"//By law of successive contact (or intermediate metals)\n",
+"E_AB=E_AC-E_BC;//in miu V/degree C\n",
+"E_AB=E_AB*10^-6;// in V/degree C\n",
+"// Let Thermo-emf for a temperature difference of 250 degree C = EMF_250\n",
+"EMF_250=E_AB*250;// in V\n",
+"EMF_250=EMF_250*10^3;//in mV\n",
+"disp('Termo-emf for a temperature difference of 250 degree C is '+string(EMF_250)+' mV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.29: Thermo_electric_emf_generated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.29\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"//Take iron as metal A and copper as metal B with respect to lead\n",
+"//For metal A:\n",
+"p_A=16.2;\n",
+"q_A=-0.02;\n",
+"//For metal B:\n",
+"p_B=2.78;\n",
+"q_B=+0.009;\n",
+"p_AB=p_A-p_B;\n",
+"q_AB=q_A-q_B;\n",
+"T2=210;//in degree C\n",
+"T1=10;// in degree C\n",
+"E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);\n",
+"disp('Thermo-electric emf is : '+string(E)+' micro V');\n",
+"Tn=-p_AB/q_AB;\n",
+"disp('Neutral temperature is : '+string(Tn)+' degree C');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Magnitude_of_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"//Electron density\n",
+"n=1*10^24;//unit less\n",
+"//Electron charge\n",
+"e=1.6*10^-19; // in coulomb\n",
+"//Drift velocity\n",
+"v=1.5*10^-2; // in meter per second\n",
+"//cross-sectional area\n",
+"A=1; // in centimeter square\n",
+"A=1*10^-4; // in meter square\n",
+"I=e*n*v*A;// in ampere\n",
+"disp('Magnitude of current is :'+string(I)+' A')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.30: EX2_30.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.30\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"p_A=17.34;\n",
+"q_A=-0.0487;\n",
+"p_B=1.36;\n",
+"q_B=+0.0095;\n",
+"p_AB=p_A-p_B;\n",
+"q_AB=q_A-q_B;\n",
+"T2=210;//in degree C\n",
+"T1=10;// in degree C\n",
+"E=p_AB*(T2-T1)+q_AB/2*(T2^2-T1^2);//in miu V\n",
+"E=E*10^-3;//in m V\n",
+"disp('Thermo-electric emf is : '+string(ceil(E))+' m V');\n",
+"Tn=-p_AB/q_AB;\n",
+"disp('Neutral temperature is : '+string(ceil(Tn))+' degree C');\n",
+"Tc=10;// in degree C\n",
+"Ti=Tn+(Tn-Tc);\n",
+"disp('Temperature of inversion is : '+string(ceil(Ti))+' degree C');\n",
+"E_max=15.98*(275-10)-1/2*0.0582*[275^2-10^2];//in miu V\n",
+"E_max=E_max*10^-3;// in mV\n",
+"disp('Maximum possible thermo-electric emf at neutral temperature that is at 275 degree C is : '+string(E_max)+' mV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.31: Potential_difference.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.31\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"rho=146*10^-6// in ohm-cm\n",
+"a=1;//in cm^2\n",
+"l=1;//in cm\n",
+"// let current = i\n",
+"i=0.06;//in amp \n",
+"R=rho*l/a;//in ohm\n",
+"// Let potential difference per degree centigrade = P\n",
+"P=i*R;// By Ohm's law\n",
+"disp('Potential difference per degree centigrade is : '+string(P)+' volt');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.32: EMF_for_a_copper_iron_thermo_couple.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.32\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"T_lower=10;// in degree C\n",
+"T_upper=150;// in degree C\n",
+"\n",
+"// Thermo-electric power for iron at any temperature T degree C w.r.t. lead is given by (17.34-0.0487 T)*10^-6 and that for copper by (1.36-.0095 T)*10^-6\n",
+"\n",
+"// Thermo-electric power, P=dE/dT\n",
+"// or dE=P*dT\n",
+"// Thermo-emf for copper between temperature 10 degree C and 150 degree C,\n",
+"E_c= integrate('(1.36-0.0095*T)*10^-6','T',T_lower,T_upper);\n",
+"\n",
+"// Thermo-emf for iron between temperature 10 degree C and 150 degree C,\n",
+"E_i= integrate('(17.34-0.0487*T)*10^-6','T',T_lower,T_upper);\n",
+"\n",
+"// Thermo-emp for copper-iron thermo-couple\n",
+"E=E_i-E_c;\n",
+"\n",
+"disp('Thermo-emf for iron between temperature 10 degree C and 150 degree C is : '+string(E*10^6)+' micro V');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.34: Critical_magnetic_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.34\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"Hc_0=8*10^5;//in A/m\n",
+"Tc=7.26;//in K\n",
+"T=4;//in K\n",
+"Hc_T=Hc_0*[1-(T/Tc)^2]';\n",
+"disp('The critical value of magnetic field at T=4 K is : '+string(Hc_T)+' A/m');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.35: Critical_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.35\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"Hc=7900;//in A/m\n",
+"d=1;//in mm\n",
+"r=d/2;//in mm\n",
+"r=r*10^-3;//in m\n",
+"Ic=2*%pi*r*Hc;\n",
+"disp('Critical current is : '+string(Ic)+' A');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.36: Critical_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.36\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"Hc_0=8*10^4;//in A/m\n",
+"Tc=7.2;//in K\n",
+"T=4.5;//in K\n",
+"d=1;//in mm\n",
+"r=d/2;//in mm\n",
+"r=r*10^-3;//in m\n",
+"Hc=Hc_0*[1-(T/Tc)^2]';\n",
+"disp('The critical field at T=4.5 K is : '+string(Hc)+' A/m');\n",
+"Ic=2*%pi*r*Hc;\n",
+"disp('Critical current is : '+string(Ic)+' A');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.37: Diameter_of_copper_wire.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.37\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',5)\n",
+"// Formula R=rho*l/a\n",
+"//putting value for copper wire\n",
+"R=2;// in ohm\n",
+"l=100;//in meter\n",
+"rho=1.7*10^-8;// (for copper)\n",
+"a=rho*l/R;//in meter\n",
+"a=a*10^6;// in mm\n",
+"// Formula a=%pi/4*d^2\n",
+"d_copper=sqrt(a*4/%pi); // (d_copper is diameter for copper)\n",
+"\n",
+"// Formula R=rho*l/a\n",
+"//putting value for Aluminium wire\n",
+"R=2;// in ohm\n",
+"l=100;//in meter\n",
+"rho=2.8*10^-8;// (for aluminium)\n",
+"a=rho*l/R;//in meter\n",
+"a=a*10^6;// in mm\n",
+"// Formula a=%pi/4*d^2\n",
+"d_aluminium=sqrt(a*4/%pi); // (d_aluminium is diameter for aluminium)\n",
+"DiaRatio=d_aluminium/d_copper; // (DiaRatio is ratio of diameter of aluminium and copper)\n",
+"disp('The diameter of the aluminium wire is '+string(DiaRatio)+' times that of copper wire');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.38: Resistance_of_liquid_resistor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.38\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',7)\n",
+"//given data\n",
+"l=60;// in cm\n",
+"l=l*10^-2;//in meter\n",
+"d=20;// in cm \n",
+"d=d*10^-2;//in meter\n",
+"D=35;// in cm;\n",
+"D=D*10^-2;//in meter\n",
+"r1=d/2;\n",
+"r2=D/2;\n",
+"rho=8000;// in ohm-cm\n",
+"rho=80;// in ohm-m\n",
+"// Let Insulation resistance of the liquid resistor = Ir\n",
+"Ir=[rho/(2*%pi*l)]*log(r2/r1);\n",
+"disp(' Insulation resistance of the liquid resistor is : '+string(Ir)+' ohm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.39: Resistivity_of_dielectric_in_a_cable.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.39\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',11)\n",
+"//given data\n",
+"R_desh=1820;// in M ohm\n",
+"R_desh=R_desh*10^6;// in ohm\n",
+"d1=1.5;// in cm\n",
+"d1=d1*10^-2;// in meter\n",
+"d2=5;// in cm\n",
+"d2=d2*10^-2;// in meter\n",
+"l=3000;// in meter\n",
+"r1=d1/2;\n",
+"r2=d2/2;\n",
+"\n",
+"rho= (2*%pi*l*R_desh)/log(r2/r1);\n",
+"disp('Resistivity of dielectric is : '+string(rho)+' ohm meter')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Relaxation_time_and_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"miu_e=7.04*10^-3; //in m^2/V-s\n",
+"n=5.8*10^28 ; // in /m^3\n",
+"e=1.6*10^-19; // in coulomb\n",
+"m=9.1*10^-31;//in kg\n",
+"//(i) Relaxation time,\n",
+"tau=miu_e/e*m;\n",
+"disp('Relaxation time is : '+string(tau)+' second');\n",
+"sigma=(n*e*miu_e);\n",
+"//(ii) Resistivity of conductor,\n",
+"rho=1/sigma;\n",
+"disp('Resistivity of conductor is : '+string(rho)+' ohm-meter');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.40: Insulation_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.40\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',9)\n",
+"// given data\n",
+"// First Case:\n",
+"r1=1.5/2;// in cm\n",
+"// let radius thickness of insulation = r1_t\n",
+"r1_t=1.5;// in cm\n",
+"r2=r1+r1_t;\n",
+"R_desh=500;// in M ohm\n",
+"R_desh=R_desh*10^6;// in ohm\n",
+"// Second case:\n",
+"r1_desh=r1;// in cm (as before)\n",
+"// let radius thickness of insulation = r2_t\n",
+"r2_t=2.5;// in cm\n",
+"r2_desh=r1+r2_t;\n",
+"// since Insulation resistance , R_desh= sigma/(2*%pi*l)*log(r2/r1) and\n",
+"// R1_desh= sigma/(2*%pi*l)*log(r2_desh/r1_desh)\n",
+"// Dividing R1_desh by R1, We get\n",
+"// R1_desh/R_desh = log(r2_desh/r1_desh)/log(r2/r1)\n",
+"// Let R = R1_desh/R_desh, Now\n",
+"R= log(r2_desh/r1_desh)/log(r2/r1);\n",
+"R1_desh=R*R_desh;\n",
+"disp('New insulation resistance is : '+string(R1_desh*10^-6)+' M ohm');\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.41: Insulation_resistance_and_resistance_of_copper_conductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.41\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"t1=20;// in degree C\n",
+"t2=36;// in degree C\n",
+"alpha_20=0.0043;// in per degree C (Temperature Coefficient)\n",
+"InsulationResistance=480*10^6;// in ohm\n",
+"copper_cond_res=0.7;// in ohm (copper conductor resistance)\n",
+"l=500*10^-3;// in kilo meter (length)\n",
+"R1_desh=InsulationResistance * l;// in ohm\n",
+"\n",
+"// From Formula log(R2_desh)= log(R1_desh-K*(t2-t1))\n",
+"// K= 1/(t2-t1)*log(R1_desh/R2_desh)\n",
+"// since when t2-t1=10 degree C and R1_desh/R2_desh= 2\n",
+"\n",
+"K=1/10*log(2);\n",
+"\n",
+"// (i) Insulation resistance at any temperature t2, R2_desh is given by\n",
+" logR2_desh= log(R1_desh)-(t2-t1)/10* log(2);\n",
+" R2_desh= %e^logR2_desh\n",
+" \n",
+" disp('(i) Insulation resistance at any temperature : '+string(R2_desh*10^-6)+' Mega ohm');\n",
+" \n",
+"// (ii) \n",
+" R_20= copper_cond_res/l;// in ohm\n",
+" R_36=R_20*[1+alpha_20*(t2-t1)];\n",
+" \n",
+" disp('Resistance at 36 degree C is : '+string(R_36)+' ohm')\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Valance_electron_and_mobility_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"rho=1.73*10^-8;//in ohm-meter\n",
+"toh=2.42*10^-14 ; //in second\n",
+"e=1.6*10^-19; //in C\n",
+"m=9.1*10^-31;//in kg\n",
+"sigma=1/rho;\n",
+"//(i) Number of free electrons per m^3\n",
+"n=(m*sigma)/(e^2*toh);\n",
+"disp('Number of free electrons per cube meter is : '+string(n));\n",
+"//(ii) Mobility of electrons,\n",
+"miu_e=(e*toh)/m;\n",
+"disp('Mobility of electrons is : '+string(miu_e)+' m^2/V-s');\n",
+"//Note: Answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Mobility_and_relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"rho=1.54*10^-8; //in ohm-meter\n",
+"//since sigma=1/roh\n",
+"sigma=1/rho;\n",
+"n=5.8*10^28 ; //unit less\n",
+"e=1.6*10^-19; //in C (electron charge)\n",
+"m=9.1*10^-31;//in kg (mass of electron)\n",
+"//(i) Relaxation time\n",
+"toh=(sigma*m)/(n*e^2);\n",
+"disp('(i) Relaxation time of electrons is : '+string(toh)+' seconds');\n",
+"//(ii) Mobility of electrons,\n",
+"miu_e=(e*toh)/m;\n",
+"disp('(ii) Mobility of electrons is : '+string(miu_e)+' m^2/V-s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"rho=1.7*10^-8; //in ohm-meter\n",
+"//since sigma=1/roh\n",
+"sigma=1/rho;\n",
+"n=8.5*10^28 ; //unit less\n",
+"e=1.6*10^-19; //in C (electron charge)\n",
+"m=9.1*10^-31;//in kg\n",
+"// Relaxation time\n",
+"toh=(sigma*m)/(n*e^2);\n",
+"disp(' Relaxation time of electrons is : '+string(toh)+' seconds');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Relaxation_time_of_conducting_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',11);\n",
+"//given data :\n",
+"E=100;//in V/m\n",
+"rho=1.5*10^-8; //in ohm-meter\n",
+"//since sigma=1/roh\n",
+"sigma=1/rho;\n",
+"n=6*10^28 ; //unit less\n",
+"e=1.601*10^-19; //in C\n",
+"m=9.107*10^-31;//in kg\n",
+"// Relaxation time\n",
+"toh=(sigma*m)/(n*e^2);\n",
+"disp('(i) Relaxation time of electrons is : '+string(toh)+' seconds');\n",
+"//Drift velocity\n",
+"v=(e*E*toh)/m;\n",
+"disp('(ii) Drift velocity is : '+string(v)+' m/s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Charge_density_current_density_and_drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"//Diameter of copper wire\n",
+"d=2;//in milimeter\n",
+"d=.002;//in meter\n",
+"//conductivity of copper\n",
+"nita=5.8*10^7;//in second per meter\n",
+"//Electron mobility\n",
+"miu_e=.0032;//in meter square per volt-second\n",
+"//Applied electric field\n",
+"E=20;//in mV/m\n",
+"E=.02; //in V/m\n",
+"e=1.6*10^-19;\n",
+"//(i) From eq. (2.13)\n",
+"//charge density\n",
+"n=nita/(e*miu_e);//in per meter cube\n",
+"disp('(i) Charge density is : '+string(n)+' /meter cube');\n",
+"//(ii) from eq. (2.9)\n",
+"//current density\n",
+"J=nita*E;// in A/m^2\n",
+"disp('(ii) Current density is : '+string(J)+' A/m^2');\n",
+"//(iii) Current flowing in the wire I=J* Area of x-section of wire\n",
+"// Area of x-section of wire= (%pi*d^2)/4\n",
+"I=(J*%pi*d^2)/4;\n",
+"disp('(iii) Current flowing in the wire is : '+string(I)+' A');\n",
+"//(iv) form eq.2.14\n",
+"//Electron drift velocity\n",
+"v=miu_e*E;\n",
+"disp('(iv) Electron drift velocity is :'+string(v)+' m/s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa2.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data\n",
+"rho=0.5; // in ohm-meter\n",
+"J=100; //in A/m^2\n",
+"miu_e=0.4; //in m^2/V-s\n",
+"E=J*rho; // since E=J/sigma\n",
+"// Formula v=miu_e*E\n",
+"v=miu_e*E;\n",
+"disp(' Electron drift velocity is : '+string(v)+' m/s');\n",
+"disp('Time taken by the electron to travel 10*10^-6 m in crystal')\n",
+"// let Time taken by the electron to travel 10*10^-6 m in crystal = t\n",
+"t=(10*10^-6)/v;\n",
+"disp(string(t)+' second');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb
new file mode 100644
index 0000000..1536f23
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/3-Semiconductor.ipynb
@@ -0,0 +1,1019 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Semiconductor"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Electron_and_hole_drift_velocity_conductivity_of_intrinsic_Ge_and_total_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"e=1.6*10^-19;//in C\n",
+"miu_e=.38;// in m^2/V-s\n",
+"miu_h=.18;// in m^2/V-s\n",
+"l=25;// in mm (length)\n",
+"l=l*10^-3;// in m \n",
+"w=4;// in mm (width)\n",
+"w=w*10^-3;// in m\n",
+"t=1.5;// in mm (thickness)\n",
+"t=t*10^-3;// in m\n",
+"V=10;// in V\n",
+"l=25;// in mm\n",
+"l=l*10^-3;//in m\n",
+"E=V/l;\n",
+"//(i) \n",
+"v_e=miu_e*E;\n",
+"v_h=miu_h*E;\n",
+"disp('Electron drift velocity is : '+string(v_e)+' m/s');\n",
+"disp('Hole drift velocity is : '+string(v_h)+' m/s');\n",
+"n_i=2.5*10^19;//in /m^3\n",
+"//(ii)\n",
+"sigma_i=n_i*e*(miu_e+miu_h);\n",
+"disp('Intrinsic conductiviry of Ge is : '+string(sigma_i)+' /ohm-cm');\n",
+"//(iii)\n",
+"a=w*t;\n",
+"I=sigma_i*E*a;// in amp\n",
+"I=I*10^3;// in m A\n",
+"disp('Total current is : '+string(I)+' mA');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: Diffusion_coefficient_of_electron_and_hole.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"k_desh=1.38*10^-23;// in J degree^-1\n",
+"e=1.602*10^-19;// in C\n",
+"miu_e=3600;// in cm^2/V-s\n",
+"miu_h=1700;// in cm^2/V-s\n",
+"T=300;// in K\n",
+"D_e=miu_e*k_desh*T/e;\n",
+"disp('Diffusion constant of electrons is : '+string(D_e)+' cm^2/s');\n",
+"D_h=miu_h*k_desh*T/e;\n",
+"disp('Diffusion constant of holes is : '+string(D_h)+' cm^2/s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: Hall_effect_in_semiconductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"e=1.6*10^-19;// in coulomb\n",
+"Resistivity=9*10^-3;// in ohm-m\n",
+"R_H=3.6*10^-4;// in m^3 coulomb^-1 (Hall Coefficient)\n",
+"sigma=1/Resistivity;\n",
+"rho=1/R_H;\n",
+"n=rho/e;\n",
+"disp('Density of charge carriers is : '+string(n)+' /m^3');\n",
+"miu=sigma*R_H;\n",
+"disp('Mobility is : '+string(miu)+' m^2/V-s');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: Current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"E_x=100;// in V/m\n",
+"e=1.6*10^-19;// in C\n",
+"R_H=0.0145;// in m^3/coulomb\n",
+"miu_n=0.36;// in m^2/volt-second\n",
+"// Formula R_H=1/(n*e)\n",
+"n=1/(R_H*e);\n",
+"sigma=n*e*miu_n;\n",
+"J=sigma*E_x;\n",
+"disp('Current density is : '+string(J)+' A per m^2');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: Value_of_hall_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Resistivity=9;// in milli-ohm-m\n",
+"Resistivity=9*10^-3;// in ohm-m\n",
+"miu=0.03;// in m^2/V-s\n",
+"sigma=1/Resistivity;\n",
+"R_H=miu/sigma;\n",
+"disp('Half coefficient is : '+string(R_H)+' m^3/C');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Magnitude_of_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"E_x=5;// in V/cm\n",
+"miu_e=3800;// in cm^2/V-s\n",
+"B_z=0.1;// in Wb/m^2\n",
+"d=4;// in mm\n",
+"d=d*10^-3;// in m\n",
+"v=miu_e*E_x;//in cm/second\n",
+"v=v*10^-2;// in m/second\n",
+"V_H=B_z*v*d;// in V\n",
+"V_H=V_H*10^3;// in m V\n",
+"disp('Hall voltage is : '+string(V_H)+' mV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: Mobility_of_holes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"rho=200;// in Kilo ohm-cm\n",
+"rho=rho*10^-2;// in kilo ohm m\n",
+"rho=rho*10^3;// in ohm meter\n",
+"sigma=1/rho;\n",
+"V_H=50;// in mV\n",
+"V_H=V_H*10^-3;//in V\n",
+"I=10;// in miu A\n",
+"I=I*10^-6;//in A\n",
+"B_z=0.1;// in Wb/m^2\n",
+"w=3;//in mm\n",
+"w=w*10^-3;//in meter\n",
+"R_H=V_H*w/(B_z*I);\n",
+"disp('Mobility of holes in p-type silicon bar is : ')\n",
+"miu_h=sigma*R_H;\n",
+"disp(string(miu_h)+' m^2/V-s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"N_D=1*10^21;// in /m^3\n",
+"B_Z=0.2;// in T\n",
+"J=600;// in A/m^2\n",
+"n=N_D;\n",
+"d=4;//in mm\n",
+"d=d*10^-3;// in meterr\n",
+"e=1.6*10^-19;// in C (electron charge)\n",
+"// Formula V_H*w/(B_Z*I) = 1/(n*e) , hence V_H=B_Z*I/(n*e*w)\n",
+"// where I=J*w*d\n",
+"// putting I=J*w*d in V_H=B_Z*I/(n*e*w), we get\n",
+"V_H=B_Z*J*d/(n*e);// in V\n",
+"V_H=V_H*10^3;// in mV\n",
+"disp('Hall Voltage is : '+string(V_H)+' mV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"w=0.1;// in mm\n",
+"B_Z=0.6;// in T\n",
+"R_H=3.8*10^-4;// in m^3/C\n",
+"I=10;// in mA\n",
+"I=I*10^-3;//in A\n",
+"V_H=R_H*B_Z*I/w;// in V\n",
+"V_H=V_H*10^6;// in V\n",
+"disp('Hall voltage is : '+string(V_H)+' micro volt');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: Density_and_mobility_of_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Resistivity=9.23*10^-3;// in ohm-m\n",
+"R_H=3.84*10^-4;//in m^3/C (Hall Coefficient)\n",
+"sigma=1/Resistivity;\n",
+"rho=1/R_H;\n",
+"e=1.6*10^-19;// in C (electron charge)\n",
+"n=rho/e;\n",
+"disp('Density of charge carriers is : '+string(n)+' /m^2');\n",
+"miu=sigma*R_H;\n",
+"disp('Mobility is : '+string(miu)+' m^2/V-s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Velocity_of_electro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"E=2.1;//in eV\n",
+"E=E*1.602*10^-19;// in J\n",
+"m=9.107*10^-31;// in kg (mass of electron)\n",
+"// Formula E=1/2*m*v^2\n",
+"v=sqrt(2*E/m);\n",
+"disp(' Velocity of electron at Fermi-level is : '+string(v)+' m/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: Hll_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"B=0.48;// in Wb/m^2\n",
+"R_H=3.55*10^-4;// in m^3/C\n",
+"Resistivity=.00912;// in ohm\n",
+"sigma=1/Resistivity;\n",
+"theta_H=atand(sigma*B*R_H);\n",
+"disp('Hall angle is : '+string(theta_H)+' degree')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: New_position_of_fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"T=27;// in degree C\n",
+"T=T+273;// in K\n",
+"// Let E_C - E_F =E_CF\n",
+"E_CF=0.3;// in eV\n",
+"// Formula E_C - E_F = k*T*log(n_C/N_D)\n",
+"// Let log(n_C/N_D) = L, so\n",
+"L=E_CF/T;\n",
+"T_desh=55;// in degree C\n",
+"T_desh=T_desh+273;// in K\n",
+"//At temperature T_desh\n",
+"new_fermi_level= T_desh*L; // where L=log(n_C/N_D)\n",
+"disp('The new position of Fermi Level is : '+string(new_fermi_level)+' V');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22: Potential_barrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"N_A=8*10^14;// in /cm^3\n",
+"N_D=N_A;\n",
+"n_i=2*10^13;// in /cm^3\n",
+"k=8.61*10^-5;// in eV/K\n",
+"T=300;// in K\n",
+"V_0=k*T*log(N_D*N_A/n_i^2);\n",
+"disp('Potential barrier is : '+string(V_0)+' V');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23: Resistance_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"// (i) when\n",
+"I_D=2;// in mA\n",
+"I_D=I_D*10^-3;// in A\n",
+"V_D=0.5;// in V\n",
+"R1=V_D/I_D;\n",
+"disp('Resistace is : '+string(R1)+' ohm');\n",
+"// (ii) when\n",
+"I_D=20;// in mA\n",
+"I_D=I_D*10^-3;// in A\n",
+"V_D=0.8;// in V\n",
+"R2=V_D/I_D;\n",
+"disp('Resistace is : '+string(R2)+' ohm');\n",
+"// (ii) when\n",
+"I_D=-1;// in miu A\n",
+"I_D=I_D*10^-6;// in A\n",
+"V_D=-10;// in V\n",
+"R3=V_D/I_D;// in ohm\n",
+"R3=R3*10^-6;// in M ohm\n",
+"disp('Resistace is : '+string(R3)+' M ohm');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24: Fraction_of_the_total_number_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',12)\n",
+"// given data\n",
+"E_G=0.72;// in eV\n",
+"E_F=E_G/2;// in eV\n",
+"k=8.61*10^-5; // in eV/K\n",
+"T=300;// in K\n",
+"// Formula n_C/n = 1/1+%e^(E_G-E_F)/k*T\n",
+"// Let n_C/n = N\n",
+"N=1/(1+%e^((E_G-E_F)/(k*T)));\n",
+"\n",
+"disp('Fraction of the total number of electrons (conduction band as well as valence band) : '+string(N));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.25: Current_flowing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.25\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',3)\n",
+"// given data\n",
+"I_0=.15;// in micro amp\n",
+"I_0=I_0*10^-6;// in A\n",
+"V=0.12;// in V\n",
+"V_T=26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I=I_0*(%e^(V/V_T)-1);// in amp\n",
+"I=I*10^6;// in micro amp\n",
+"disp('Large reverse bias current is : '+string(I)+' micro amp');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.26: Forward_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.26\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',5)\n",
+"// given data\n",
+"I=.01;// in A\n",
+"I_0=2.5*10^-6;// in amp\n",
+"nita=2;// for silicon\n",
+"V_T=26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"// Formula I=I_0*(%e^(V/(nita*V_T))-1);\n",
+"V=nita*V_T*log(I/I_0+1);\n",
+"disp('Forward voltage is : '+string(V)+' V') ;\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.27: Reverse_saturation_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.27\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"N_D=10^21;// in m^-3\n",
+"N_A=10^22;// in m^-3\n",
+"D_e=3.4*10^-3;// in m^2/s\n",
+"D_h=1.2*10^-3;// in m^2/s\n",
+"L_e=7.1*10^-4;// in m\n",
+"L_h=3.5*10^-4;// in m\n",
+"n_i=1.602*10^16;// in /m^3\n",
+"e=1.6*10^-19;// in C (electron charge)\n",
+"// Formula I_0=a*e*[D_h/(L_h*N_D) + D_e/(L_e*N_A)]*n_i^2\n",
+"//and\n",
+"// Reverse saturation current density = I_0/a = [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2 , So\n",
+"CurrentDensity= [D_h/(L_h*N_D) + D_e/(L_e*N_A)]*e*n_i^2;// in A\n",
+"CurrentDensity=CurrentDensity*10^6;// in micro A\n",
+"disp('Reverse saturation current density is : '+string(CurrentDensity)+' micro amp');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.28: Junction_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.28\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data'\n",
+"format('v',13)\n",
+"N_D=10^17*10^6;// in m^-3\n",
+"N_A=0.5*10^16*10^6;// in atoms/m^3\n",
+"epsilon_r=10;// in F/m\n",
+"epsilon_o=8.85*10^-12;// in F/m\n",
+"epsilon=epsilon_r*epsilon_o;\n",
+"e=1.602*10^-19;// in C (electron charge)\n",
+"// (i) when no external voltage is applied i.e.\n",
+"V=0;\n",
+"V_B=0.7;// in V\n",
+"W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));\n",
+"disp('Junction width is : '+string(W)+' m');\n",
+"// (ii) when external voltage of -10 V is applied i.e.\n",
+"V=-10;// in V\n",
+"V_o=0.7;// in V\n",
+"V_B=V_o-V;\n",
+"W=sqrt(2*epsilon*V_B/e*(1/N_A+1/N_D));\n",
+"disp('Junction width is : '+string(W)+' m');\n",
+"\n",
+"// Note: Answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Relaxation_time_resistivity_of_conductor_and_velocity_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"E=5.5;// in eV; (Fermi energy)\n",
+"E=E*1.6*10^-19;// in J \n",
+"miu_e=7.04*10^-3; //in m^2/V-s (Mobility of electrons)\n",
+"n=5.8*10^28 ; // in /m^3 (Number of conduction electrons/m^3)\n",
+"e=1.6*10^-19; // in coulomb\n",
+"m=9.1*10^-31;//in kg\n",
+"//(i) Relaxation time,\n",
+"tau=miu_e/e*m;\n",
+"disp('(i) Relaxation time is : '+string(tau)+' second');\n",
+"sigma=(n*e*miu_e);\n",
+"//(ii) Resistivity of conductor,\n",
+"rho=1/sigma;\n",
+"disp('(ii) Resistivity of conductor is : '+string(rho)+' ohm-meter');\n",
+"// (iii) Let Velocity of electrons with fermi energy = v\n",
+"v=sqrt(2*E/m);\n",
+"disp('(iii) Velocity of electron with Fermi-level is : '+string(v)+' m/s');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Electron_and_hole_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"n_i=2.5*10^13;// in /cm^3\n",
+"rho=0.039;// in ohm-cm\n",
+"sigma_n=1/rho;\n",
+"e=1.602*10^-19;// in C\n",
+"miu_e=3600;// in cm^2/V-s\n",
+"//since sigma_n = n*e*miu_e = N_D*e*miu_e\n",
+"N_D=sigma_n/(e*miu_e);\n",
+"n=N_D;// (approx)\n",
+"disp('Concentration of electrons is : '+string(n)+' /cm^3');\n",
+"p=n_i^2/n;\n",
+"disp('Concentration of holes is : '+string(p)+' /cm^3');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: EX3_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"SiliconAtom=5*10^22;// unit less (Number of silicon atom)\n",
+"DonorImpurity=1/10^6;\n",
+"n_i=1.45*10^10;// in cm^-3\n",
+"e=1.602*10^-19;// in C\n",
+"miu_e=1300;// taking miu_e for Si as 1300 cm^2/V-s\n",
+"// (i) Donor atom concentraion\n",
+"// Formula N_D= Number of silicon atoms/cm^3 * donor impurity\n",
+"N_D=SiliconAtom*DonorImpurity;\n",
+"disp('(i) Donor atom concentration is : '+string(N_D)+' per cm^3');\n",
+"\n",
+"// (ii) Mobile electron concentration\n",
+"n=N_D; // (approx.)\n",
+"disp('(ii) Mobile electron concentration is : '+string(n)+' per cm^3');\n",
+"\n",
+"// (iii) Hole concentration\n",
+"p=n_i^2/N_D;\n",
+"disp('(iii) Hole concentration is : '+string(p)+' /cm^3');\n",
+"\n",
+"//(iv) conductivity of doped silicon sample\n",
+"sigma=n*e*miu_e;\n",
+"disp('(iv) conductivity of doped silicon sample is : '+string(sigma)+' S/cm');\n",
+"\n",
+"rho=1/sigma;\n",
+"//(v) resistance of given semiconductor\n",
+"l=0.5;// in cm\n",
+"a=(50*10^-4)^2\n",
+"R=rho*l/a;\n",
+"disp('Resistance of give semiconductor is : '+string(R)+' ohm');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Concentration_of_hole_in_si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"n_i=1.4*10^18;// in m^3\n",
+"N_D=1.4*10^24;// in m^3\n",
+"n=N_D;// (approx)\n",
+"p=n_i^2/n;\n",
+"// let Ratio of electron to hole concentration = r\n",
+"r=n/p;\n",
+"disp('Ratio of electron to hole concentration is : '+string(r));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Conductivity_and_resitivity_of_an_intrinsic_semiconductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"n_i=2.5*10^13;// in cm^3\n",
+"e=1.6*10^-19;// in coulomb\n",
+"miu_h=1800;// in cm^2/V-s\n",
+"miu_e=3800;// in cm^2/V-s\n",
+"sigma_i=n_i*e*(miu_e+miu_h);\n",
+"disp('Intrinsic conductivity is : '+string(sigma_i)+' /ohm-cm');\n",
+"rho_i=1/sigma_i;\n",
+"disp('Intrinsic resistiviry is : '+string(rho_i)+' ohm-cm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Density_of_electron_and_drift_velocity_of_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"rho_i=0.47;// in ohm-meter\n",
+"sigma_i=1/rho_i;\n",
+"miu_e=0.39;// in m^2/V-s\n",
+"miu_h=0.19;// in m^2/V-s\n",
+"e=1.6*10^-19;// in C\n",
+"\n",
+"// since sigma_i=n_i*e*(miu_e+miu_h);\n",
+"n_i=sigma_i/(e*(miu_e+miu_h));\n",
+"// so Density of electrons = Intrinsic Concentration,n_i\n",
+"disp('Density of electons is :'+string(n_i)+' /m^3');\n",
+"E=10^4;// in V/m\n",
+"v_n=miu_e*E;\n",
+"disp('Drift velocity of electrons is : '+string(v_n)+' m/s');\n",
+"v_h=miu_h*E;\n",
+"disp('Drift velocity of holes is : '+string(v_h)+' m/s');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Conductivity_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"n_i=1.5*10^10;// in /cm^3\n",
+"miu_e=1300;// in cm^2/V-s\n",
+"miu_h=450;// in cm^2/V-s\n",
+"e=1.6*10^-19;// in C (charge of electrons)\n",
+"sigma_i=n_i*e*(miu_e+miu_h);\n",
+"disp('Conductivity of silicon (intrinsic) is : '+string(sigma_i)+' /ohm-cm');\n",
+"N_A=10^18;// in /cm^3\n",
+"disp('conductivity of the resulting P-type silicon semiconductor')\n",
+"sigma_p=e*N_A*miu_h;\n",
+"disp(string(sigma_p)+' /ohm-cm');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: Find_conductivity_of_intrinsic_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa3.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"n_i=2.5*10^13;// in /m^3\n",
+"miu_e=3800;// in cm^2/V-s\n",
+"miu_h=1800;// in cm^2/V-s\n",
+"e=1.6*10^-19;// in C (charge of electrons)\n",
+"sigma_i=n_i*e*(miu_e+miu_h);\n",
+"disp('Intrinsic conductivity is : '+string(sigma_i)+' /ohm-cm');\n",
+"// Let Number of germanium atoms/cm^3 = no_g\n",
+"no_g=4.41*10^22;\n",
+"// since Donor impurity = 1 donor atom / 10^7 germanium atoms, so \n",
+"DonorImpurity=10^-7;\n",
+"N_D=no_g*DonorImpurity;\n",
+"n=N_D; // (approx)\n",
+"p=n_i^2/N_D;\n",
+"// so\n",
+"sigma_n=e*N_D*miu_e;\n",
+"disp('conductivity in N-type germanium semiconductor is : '+string(sigma_n)+' /ohm-cm');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb
new file mode 100644
index 0000000..bc54fad
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/4-Bipolar_Junction_And_Field_Effect_Transistors.ipynb
@@ -0,0 +1,391 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Bipolar Junction And Field Effect Transistors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: gm_at_IDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"VP=-4.5;//in Volt\n",
+"IDSS=9;//in mAmpere\n",
+"IDSS=IDSS*10^-3;//in Ampere\n",
+"IDS=3;//in mAmpere\n",
+"IDS=IDS*10^-3;//in Ampere\n",
+"//Formula : IDS=IDSS*[1-VGS/VP]^2\n",
+"VGS=VP*(1-sqrt(IDS/IDSS));//in Volt\n",
+"disp(VGS,'ID=3mA at VGS in Volt :');\n",
+"gm=(-2*IDSS)*(1-VGS/VP)/VP;//in mA/V or mS\n",
+"disp(gm*1000,'Transconductance in mA/V or mS: ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"ID_on=5;//in mAmpere\n",
+"VGS_on=8;//in Volt\n",
+"VGS=6;//in Volt\n",
+"VGST=4;//in Volt\n",
+"k=ID_on/(VGS_on-VGST)^2;//in mA/V^2\n",
+"ID=k*(VGS-VGST)^2;//in mA\n",
+"disp(ID,'Drain current in mA : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Resistance_between_gate_and_source.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"format('v',11)\n",
+"VGS=10;//in Volt\n",
+"IG=0.001;//in uAmpere\n",
+"IG=IG*10^-6;//in Ampere\n",
+"RGS=VGS/IG;//in Ohm\n",
+"disp(RGS*10^-6,'Resistance between gate and source in Mohm : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: AC_drain_resistance_of_the_JFET.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"delVDS=1.5;//in Volt\n",
+"delID=120;//in uAmpere\n",
+"delID=delID*10^-6;//in Ampere\n",
+"rd=delVDS/delID;//in Ohm\n",
+"disp(rd*10^-3,'AC drain Resistance of JFET in Kohm : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"ID2=1.5;//in mAmpere\n",
+"ID1=1.2;//in mAmpere\n",
+"delID=ID2-ID1;//in Ampere\n",
+"VGS1=-4.25;//in Volt\n",
+"VGS2=-4.10;//in Volt\n",
+"delVGS=VGS2-VGS1;//in Volt\n",
+"gm=delID/delVGS;//in Ohm\n",
+"disp(gm,'Transconductance in mA/V : ');\n",
+"disp(gm*10^3,'Transconductance in uS : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: AC_drain_resistance_transconductance_and_amplification_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"VDS1=5;//in Volt\n",
+"VDS2=12;//in Volt\n",
+"VDS3=12;//in Volt\n",
+"VGS1=0;//in Volt\n",
+"VGS2=0;//in Volt\n",
+"VGS3=-0.25;//in Volt\n",
+"ID1=8;//in mAmpere\n",
+"ID2=8.2;//in mAmpere\n",
+"ID3=7.5;//in mAmpere\n",
+"//AC drain resistance\n",
+"delVDS=VDS2-VDS1;//in Volt\n",
+"delID=ID2-ID1;//in mAmpere\n",
+"rd=delVDS/delID;//in Kohm\n",
+"disp(rd,'AC Drain resistance in Kohm : ');\n",
+"//Transconductance\n",
+"delID=ID3-ID2;//in mAmpere\n",
+"delVGS=VGS3-VGS2;//in Volt\n",
+"gm=delID/delVGS;//in mA/V or mS\n",
+"disp(gm,'Transconductance in mA/V : ');\n",
+"//Amplification Factor\n",
+"meu=rd*1000*gm*10^-3;//unitless\n",
+"disp(meu,'Amplification Factor : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"VP=-4.5;//in Volt\n",
+"IDSS=10;//in mAmpere\n",
+"IDS=2.5;//in mAmpere\n",
+"//Formula : IDS=IDSS*[1-VGS/VP]^2\n",
+"VGS=VP*(1-sqrt(IDS/IDSS));//in Volt\n",
+"gm=(-2*IDSS*10^-3)*(1-VGS/VP)/VP;//in mA/V or mS\n",
+"disp(gm*1000,'Transconductance in mA/V : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Calculate_VGS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"gm=10;//in mS\n",
+"gm=gm*10^-3;//in S\n",
+"IDSS=10;//in uAmpere\n",
+"IDSS=IDSS*10^-6;//in Ampere\n",
+"//VGS(OFF):VGS=VP\n",
+"//Formula : gm=gmo=-2*IDSS/VP=-2*IDSS/VG(Off)\n",
+"VGS_OFF=-2*IDSS/gm;//in Volt\n",
+"disp(VGS_OFF*1000,'VGS(OFF) in mV : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Minimum_value_of_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"VP=-4;//in Volt\n",
+"VGS=-2;//in Volt\n",
+"IDSS=10;//in mAmpere\n",
+"IDSS=IDSS*10^-3;//in Ampere\n",
+"//Formula : ID=IDSS*[1-VGS/VP]^2\n",
+"ID=IDSS*[1-VGS/VP]^2;//in Ampere\n",
+"disp(ID*1000,'Drain Current in mA : ');\n",
+"disp('The minimum value of VDS for pinch-off region is equal to VP. Thus the minimum value of VDS : VDS(min) = '+string(VP)+' Volt');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: ID_gmo_and_gm.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"IDSS=8.7;//in mAmpere\n",
+"IDSS=IDSS*10^-3;//in Ampere\n",
+"VP=-3;//in Volt\n",
+"VGS=-1;//in Volt\n",
+"//ID\n",
+"ID=IDSS*[1-VGS/VP]^2\n",
+"disp(ID*1000,'Drain current ID in mA : ');\n",
+"//gmo\n",
+"gmo=-2*IDSS/VP;//in S\n",
+"disp(gmo*1000,'Transconductance for VGS=0V in mA/V or mS : ');\n",
+"//gm\n",
+"gm=gmo*(1-VGS/VP);//in S\n",
+"disp(gm*1000,'Transconductance in mA/V or mS : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Id_and_gm.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//given data :\n",
+"IDSS=8.4;//in mAmpere\n",
+"IDSS=IDSS*10^-3;//in Ampere\n",
+"VP=-3;//in Volt\n",
+"VGS=-1.5;//in Volt\n",
+"//ID\n",
+"ID=IDSS*[1-VGS/VP]^2\n",
+"disp(ID*1000,'Drain current ID in mA : ');\n",
+"//gmo\n",
+"gmo=-2*IDSS/VP;//in S\n",
+"disp(gmo*1000,'Transconductance for VGS=0V in mA/V or mS : ');\n",
+"gm=gmo*(1-VGS/VP);//in S\n",
+"disp(gm*1000,'Transconductance in mA/V or mS : ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb
new file mode 100644
index 0000000..81abb4f
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/5-Magnetic_Properties_Of_Materials.ipynb
@@ -0,0 +1,203 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Magnetic Properties Of Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Hysteresis_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Area_hysteresis_curve=9.3;//in cm^2\n",
+"Cordinate1_1cm=1000;//in AT/m\n",
+"Cordinate2_1cm=0.2;//in T\n",
+"//Part (i)\n",
+"hysteresis_loss=Area_hysteresis_curve*Cordinate1_1cm*Cordinate2_1cm;//in J/m^3/cycle\n",
+"disp(hysteresis_loss,'Hysteresis loss/m^3/cycle in J/m^3/cycle: ');\n",
+"//Part (ii)\n",
+"f=50;//in Hz\n",
+"H_LossPerCubicMeter=hysteresis_loss*f;//in Watts\n",
+"disp(H_LossPerCubicMeter*10^-3,'Hysteresis loss Per Cubic Meter in KWatts :');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Hysteresis_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',11)\n",
+"// given data\n",
+"Area_hysteresis_loop=93;//in cm^2\n",
+"scale1_1cm=0.1;//in Wb/m^2\n",
+"scale2_1cm=50;//in AT/m\n",
+"\n",
+"hysteresis_loss=Area_hysteresis_loop*scale1_1cm*scale2_1cm;//in J/m^3/cycle\n",
+"disp(hysteresis_loss,'Hysteresis loss/m^3/cycle in J/m^3/cycle: ');\n",
+"\n",
+"f=65;//unit less\n",
+"V=1500*10^-6;// in m^3\n",
+"P_h=hysteresis_loss*f*V;\n",
+"disp('Hysteresis loss is : '+string(P_h)+' W');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Loss_of_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v', 11)\n",
+"// given data\n",
+"nita=628;// in J/m^3\n",
+"B_max=1.3;// in Wb/m^2\n",
+"f=25;// in Hz\n",
+"ironMass=50;// in kg\n",
+"densityOfIron=7.8*10^3;// in kg/m^3\n",
+"V=ironMass/densityOfIron;\n",
+"x=12.5;// in AT/m\n",
+"y=0.1;// in T\n",
+"// formula Hysteresis loss/second = nita*B_max^1.6*f*V\n",
+"H_Loss_per_second = nita*B_max^1.6*f*V ;// in J/s\n",
+"H_Loss_per_second=floor(H_Loss_per_second);\n",
+"H_Loss_per_hour= H_Loss_per_second*60*60;// in J\n",
+"disp('Hysteresis Loss per hour is : '+string(H_Loss_per_hour)+' J');\n",
+"// Let Hysteresis Loss per m^3 per cycle = H1\n",
+"H1=nita*B_max^1.6;\n",
+"// formula hysteresis loss/m^3/cycle = x*y*area of B-H loop\n",
+"Area_of_B_H_loop=H1/(x*y);\n",
+"Area_of_B_H_loop=floor(Area_of_B_H_loop);\n",
+"disp('Area of B-H loop is : '+string(Area_of_B_H_loop)+' cm^2');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Loss_per_kg_in_a_specimen.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"H_L_per_M_Cube_per_C=380;// in W-S\n",
+"f=50;// unit less\n",
+"density=7800;// in kg/m^3\n",
+"V=1/density;// in m^3\n",
+"// formula Hysteresis loss = Hysteresis loss/m^3/cycle * f * V\n",
+"P_h=H_L_per_M_Cube_per_C * f * V;\n",
+"disp('Hysteresis loss is : '+string(P_h)+' W');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Eddy_current_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"P_e1=1600;// in watts\n",
+"B_max1=1.2;// in T\n",
+"f1=50;// in Hz\n",
+"B_max2=1.5;// in T\n",
+"f2=60;// in Hz\n",
+"// P_e propotional to B_max^2*f^2, so\n",
+"P_e2=P_e1*(B_max2/B_max1)^2*(f2/f1)^2\n",
+"disp('Eddy current loss is : '+string(P_e2)+' watts');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb
new file mode 100644
index 0000000..b887418
--- /dev/null
+++ b/Electrical_And_Electronics_Engineering_Materials_by_J_B_Gupta/6-Dielectric_Properties_Of_Materials.ipynb
@@ -0,0 +1,169 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Dielectric Properties Of Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Element_of_parallel_RC_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 6.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"epsilon_r=2.5;\n",
+"epsilon_o=8.854*10^-12;\n",
+"d=.2*10^-3;// in m\n",
+"A=20*10^-4;// in m^2\n",
+"omega=2*%pi*10^6;// in radians/s\n",
+"f=10^6;\n",
+"tan_delta=4*10^-4;\n",
+"C=epsilon_o*epsilon_r*A/d;// in F\n",
+"disp('Capicitance is : '+string(C*10^12)+' miu miu F');\n",
+"// Formula P=V^2/R, so\n",
+"// R=V^2/P and P= V^2*2*%pi* f * C * tan delta, putting the value of P, we get\n",
+"R=1/(2*%pi*f*C*tan_delta);// in ohm\n",
+"disp('The element of parallel R-C circuit is : '+string(R*10^-6)+' M ohm');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Charge_sensitivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 6.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"g=0.055;// in V-m/N\n",
+"t=2*10^-3;// in m\n",
+"P=1.25*10^6;// in N/m^2\n",
+"epsilon=40.6*10^-12;// in F/m\n",
+"V_out=g*t*P;\n",
+"disp('Output voltage is : '+string(V_out)+' V');\n",
+"// Formula Charge Sensivity=epsilon_o*epsilon_r*g=epsilon*g\n",
+"ChargeSensivity=epsilon*g;\n",
+"disp('Charge Sensivity is : '+string(ChargeSensivity)+' C/N');\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Force_required_to_develop_a_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 6.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_out=150;// in V\n",
+"t=2*10^-3;// in m\n",
+"g=0.05;// in V-m/N\n",
+"A=5*5*10^-6;// in m^2\n",
+"F=V_out*A/(g*t);// in N\n",
+"disp('Force applied is : '+string(F)+' N')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Charge_and_its_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 6.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"g=12*10^-3;// in V-m/N\n",
+"t=1.25*10^-3;// in m\n",
+"A=5*5*10^-6;// in m^2\n",
+"F=3;// in N\n",
+"ChargeSensitivity=150*10^-12;// in C/N\n",
+"P=F/A;\n",
+"V_out=g*t*P;// in V\n",
+"Q=ChargeSensitivity*F;\n",
+"disp('Total charge developed is : '+string(Q)+' C');\n",
+"// Formula C=Q/V;\n",
+"C=Q/V_out;\n",
+"disp('Capacitance is : '+string(C*10^12)+' miu miu F');\n",
+"\n",
+"// Note: Answer in the Book is wrong"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}