diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb')
-rw-r--r-- | Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb | 411 |
1 files changed, 411 insertions, 0 deletions
diff --git a/Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb b/Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb new file mode 100644 index 0000000..a0e207a --- /dev/null +++ b/Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb @@ -0,0 +1,411 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: The Atom" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: count_rate_determination.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"w=0.004//weight of manganese\n", +"a=6*10^23\n", +"t=303*24*3600//half time\n", +"//calculation\n", +"N=w*a/0.054//number of moles\n", +"x=0.693*N/(303*24*3600)//count rate from decay law\n", +"//output\n", +"printf('the count rate is %3.3e counts per second',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: determination_of_attributes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=400//pd\n", +"d=4*10^-3 //distance of seperation\n", +"B=0.52//flux density\n", +"na=6*10^23//avagadro number\n", +"//calcuation\n", +"E=v/d//electric field strength\n", +"v1=E/B// speed of ions \n", +"m=24*10^-3/na//mass of each ion\n", +"ke=m*v1*v1/2//kinetic energy \n", +"W=1.6*10^-19*1\n", +"KE=ke/W//kinetic energy in electron volts\n", +"//output\n", +"printf('the electric field strength is %3.3e Vm^-1',E)\n", +"printf('\n the speed of ions is %3.3e m/s',v1)\n", +"printf('\n the kinetic energy is %3.3e J',ke)\n", +"printf('\n the kinetic energy in electron volts is %3.3f ev',KE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.12: velocity_selectio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=400//pd\n", +"d=4*10^-3 //distance of seperation\n", +"B=0.52//flux density\n", +"na=6*10^23//avagadro number\n", +"//calculation\n", +"x=2*1.6*10^-19/(4*10^-26)//specific charge of ions\n", +"r=1*10^5/(8*10^6*B*B)// path radius\n", +"//output\n", +"printf('the specific charge of ions is %3.0e C/kg',x)\n", +"printf('\n the path radius is %3.3e m',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: electric_field_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=400 //voltage\n", +"d=0.18 //distance of screen from centre\n", +"e=1.6*10^-19 //electronic charge\n", +"m=9.1*10^-31 //mass\n", +"l=0.03 //length of parallel plates\n", +"s=0.01 //air gap\n", +"//calculation\n", +"w=e*v//work done\n", +"v1=sqrt(2*e*v/m)//speed of electron \n", +"e1=v/s//electric field strength\n", +"d1=d*6*10^3*l/(2*v)//vertical displacement\n", +"//output\n", +"printf('the work done is %3.3e J',w)\n", +"printf('\n the speed of electron is %3.3e ms^-1',v1)\n", +"printf('\n the displacement is %3.3f m',d1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Millikan_experiment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"v=5.7*10^-4 //velocity\n", +"ro=830 //density\n", +"d=4*10^-3\n", +"V=3.2*10^3 //pd\n", +"g=9.8 //acceleration due to gravity\n", +"k=4.2*10^-4 //resistive force of air\n", +"//calculation\n", +"r=sqrt(3*k*v/(4*%pi*ro*g))//equating the forces on drop\n", +"q=4*%pi*r^3*ro*g/(3*V/d)//electric firld between plates\n", +"//output\n", +"printf('the radius of oil drop is %3.3e m',r)\n", +"printf('\n the value of electric firld between plates is %3.3e C',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Stephan_Boltzmann_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"sig=6//stephans constant\n", +"//calculation\n", +"x=3^4*6*2^2/6//ratio of rate of emission \n", +"//output\n", +"printf('the ratio of rate of emission is %d and hence larger cube emits faster than smaller',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: working_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"p=900 //power\n", +"d=4*10^-3 //diameter\n", +"l=0.87//length\n", +"sig=5.7*10^-8 //stephans constant\n", +"//calculation\n", +"t=(p/(%pi*d*l*sig))^0.25//temperature\n", +"//output\n", +"printf('the working temperature is %d K',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: stephan_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"e1=350//heat per second\n", +"t=7+273 //teperature\n", +"sig=5.7*10^-8//stephans constant\n", +"//calculation\n", +"e2=e1*4//stephans law\n", +"E=sig*(t^4-t^4)//stephans law\n", +"//output\n", +"printf('the rate of emission is %3.3f W',e2)\n", +"printf('\nthe rate of emission when outer temperature is increased is %d W',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: incereased_temperature_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"t1=280\n", +"t2=290//temperature of surroundings\n", +"sig=5.7*10^-8 //stephans constant\n", +"//calculation\n", +"e3=sig*(t1^4-t2^4)//stephans law\n", +"e1=6.2*10^9*sig \n", +"e3=0.15*e1\n", +"//output\n", +"printf('the absorbing rate is %d W',e3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: plancks_theory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"c=3*10^8 //velocity of speed\n", +"w=5.1*10^-7 //wavelength of green light\n", +"w1=0.7 //wavelength of radio waves\n", +"w2=1.3*10^-13 //wavelength of gamma\n", +"h=6.6*10^-34\n", +"//calculation\n", +"e1=h*c/w//plancks theory for greeen light\n", +"e2=h*c/w1//plancks theory for radio waves\n", +"e3=h*c/w2//plancks theory for gamma waves\n", +"//output\n", +"printf('energy carried by green light is %3.3e J',e1)\n", +"printf('\nenergy carried by radio waves is %3.3e J',e2)\n", +"printf('\nenergy carried by gamma waves is %3.3e J',e3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: quantities_of_metal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"c=3*10^8//speed of light\n", +"m=9.1*10^-31//mass of electron\n", +"tw=5.12*10^-7//threshhold wavelength\n", +"w1=4.52*10^-8 //radiation wavelength\n", +"h=6.6*10^-34//stephans constant\n", +"//calculation\n", +"f0=c/tw//threshhold frequency\n", +"w=h*f0//work function\n", +"a=h*c/w1//einsteins photo electric equation\n", +"v=sqrt((2*(a-w))/m)//photoelectric energy \n", +"emax=0.5*m*v*v\n", +"//output\n", +"printf('threshhold frequency is %3.3e Hz',f0)\n", +"printf('\n the work function is %3.3e J',w)\n", +"printf('\n the maximum photoelectric speed is %3.3e ms^-1',v)\n", +"printf('\n the maximum photoelectric energy is %3.3e J',emax)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: decay_law.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input\n", +"t=2.14*10^6*365*24*60*60//half time\n", +"//calculation\n", +"l=0.693/t//decay constant\n", +"t1=1.1097/l//decay law\n", +"t2=t1/(365*60*60*24)//time in yrs\n", +"//output\n", +"printf('time taken is %3.3e yrs',t2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |