summaryrefslogtreecommitdiff
path: root/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan')
-rw-r--r--Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/1-fundamental_concepts_and_defenitions_.ipynb1187
-rw-r--r--Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/2-First_Law_of_Thermodynamics.ipynb1143
-rw-r--r--Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/6-Introduction_to_heat_transfer.ipynb751
3 files changed, 3081 insertions, 0 deletions
diff --git a/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/1-fundamental_concepts_and_defenitions_.ipynb b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/1-fundamental_concepts_and_defenitions_.ipynb
new file mode 100644
index 0000000..a85e461
--- /dev/null
+++ b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/1-fundamental_concepts_and_defenitions_.ipynb
@@ -0,0 +1,1187 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: fundamental concepts and defenitions "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: Readings_of_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear \n",
+"//Input data \n",
+"z=750;//Barometric pressure in mm of Hg\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"Pa=101.325;//one atm pressure in kN/m^2\n",
+"Pg=3.3;//Pressure in atm\n",
+"Pf=3.2;//Pressure in m of water\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"\n",
+"//calculations\n",
+"Pp=(d*g*z)/10^6;//Pressure in kPa\n",
+"p1=(d*g*0.55)/1000;//Pressure in kPa\n",
+"p2=Pp+(Pg*101.325);//Pressure in kPa\n",
+"p3=Pp+((Pf*g*100))/1000;//Pressure in kPa\n",
+"p4=4.6*100;//Pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('(a)Pressure of 55cm of Hg (Abs) = %3.2f kPa \n (b)Pressure at 3.3 atm (Gauge)= %3.3f kPa \n (c)Pressure of 3.2m of water (Gauge)= %3.2f kPa \n (d)Pressure of 4.6bar (Abs)= %3.2f kPa',p1,p2,p3,p4)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Zw=50;//Manometer reading of water in cm\n",
+"Zo=763;//Atmospheric pressure in mm of Hg\n",
+"d=13.6*10^3;//Density of Hg in kg/m^3\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"\n",
+"//Calculations\n",
+"Pa=(d*g*Zo)/10^6;//Atmospheric pressure in kPa\n",
+"Pg=(dw*g*Zw)/10^5;//Gauge pressure in kPa\n",
+"Pab=Pa+Pg;//Absolute pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('Absolute pressure Pab = %3.3f kPa ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"Z=70;//Vaccum gauge reading in cm of Hg\n",
+"Pa=101.325;//Atmospheric pressure in kPa\n",
+"d=13.6*10^3;//Density of Hg in kg/m^3\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"\n",
+"//Calculations\n",
+"Pv=(d*g*Z)/10^5;//Vaccum pressure in kPa\n",
+"Pab=Pa-Pv;//Absolute pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('Absolute pressure Pab = %3.4f kPa ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Pv=30;//Vaccum pressure in kPa\n",
+"Z=755;//Barometer reading in mm of Hg\n",
+"d=13590;//Density of Hg in kg/m^3\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"\n",
+"//calculations \n",
+"Pa=(d*g*Z)/10^6;//Atmospheric perssure in kPa\n",
+"Pab=Pa-Pv;//Absolute pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('Asolute pressure in the tank Pab = %3.3f kPa ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: The_gas_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"Z=0.562;//Level of open limb in m\n",
+"Z1=0.761;//Barometer reading in m of Hg\n",
+"g=9.79;//Gravity in m/sec^2\n",
+"d=13640;//Density of Hg in kg/m^2\n",
+"\n",
+"//Calculations\n",
+"Pa=(d*g*Z1)/1000;//Atmospheric pressure in kPa\n",
+"Ph=(d*g*Z)/1000;//Pressure exercterd due to height in kPa\n",
+"Pab=Pa+Ph;//Absolute pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('The gas pressure Pab = %3.3f kN/m^2',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: The_absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data \n",
+"d=13.596*10^3;//Density of Hg in kg/m^3\n",
+"dl=800;//Density of liquid in kg/m^3\n",
+"Z=30;//Level of the liquid in the arm in cm\n",
+"Z1=0.75;//Barometric pressure in m\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"\n",
+"//Calculatins\n",
+"Pg=(dl*g*Z)/10^7;//Gauge pressure in bar\n",
+"Pa=(d*g*Z1)/10^5;//Atmospheric pressure in bar\n",
+"Pab=Pa+Pg;//Absolute pressure in bar\n",
+"\n",
+"//Output\n",
+"printf('Absolute pressure of the gas Pab = %3.5f bar ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: The_absolute_pressure_of_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Z1=0.17;//Level of liquid in m\n",
+"Z=0.76;//Barometer readings in m\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"g=9.806;//Gravity in m/sec^2\n",
+"s=0.8;//Specific gravity \n",
+"d1=1000;//Density of water in kg/m^3\n",
+"\n",
+"//Calculations\n",
+"dl=s*d1;//Density of given liquid in kg/m^3\n",
+"Pa=d*g*Z;//Atmospheric pressure in N/m^2\n",
+"p=dl*g*Z1;//Pressure in N/m^2\n",
+"Pab=(Pa-p)/10^5;//Absolute pressure in bar\n",
+"\n",
+"//Output\n",
+"printf('Absolute pressure of the gas Pab = %3.6f bar ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: The_absolute_pressure_of_steam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"g=9.806;//Gravity in m/sec^2\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"Z=9.75;//Level of Hg in cm\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"Zw=0.034;//Coloumn of condensate in m\n",
+"Zo=0.76;//Atmospheric pressure in m of Hg\n",
+"\n",
+"//Calculations\n",
+"P=dw*g*Zw;//Pressure in N/m^2\n",
+"Pa=d*g*Zo;//Atmospheric pressure in N/m^2\n",
+"Pg=(d*g*Z)/100;//Gauge pressure in N/m^2\n",
+"Pab=(Pa+Pg-P)/10^5;//Absolute pressure in bar\n",
+"\n",
+"//Output\n",
+"printf('Absolute pressure of steam Pab = %3.6f bar ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: The_absolute_pressure_of_steam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"g=9.7;//Gravity in m/sec^2\n",
+"d=13.69*10^3;//Density of Hg in kg/m^3\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"Pa=98;//Atmospheric pressure in kPa\n",
+"Z=0.6;//Manometer level difference in m of Hg\n",
+"Zw=0.04;//Water coloumn level in m\n",
+"\n",
+"//Calculations \n",
+"Pw=(dw*g*Zw)/1000;//Pressure due to water in kPa\n",
+"Pg=(d*g*Z)/1000;//Pressure in kPa\n",
+"Pab1=Pa+Pg-Pw;//Absolute pressure in kPa\n",
+"Pab=Pab1/100;//Absolute pressure in bar\n",
+"\n",
+"//Output \n",
+"printf('The absolute pressure of steam Pab = %3.5f bar ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: The_absolute_pressure_of_steam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Z=0.76;//Actual height of mercury coloumn in m\n",
+"g=9.806;//Gravity in m/sec^2\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"Zw=0.035;//Height of condensate coloumn in m\n",
+"Zh=0.10;//Height of mercury coloumn in m\n",
+"\n",
+"//Calculations\n",
+"Pa=d*g*Z;//Atmospheric pressure in N/m^2\n",
+"Pw=dw*g*Zw;//Pressure due to water in N/m^2\n",
+"Ph=d*g*Zh;//Pressure due to Hg in N/m^2\n",
+"Pab=(Pa+Ph-Pw)/10^5;//Absolute pressure in bar\n",
+"\n",
+"//Output \n",
+"printf('Absolute pressure of steam in the pipe Pab = %3.2f bar',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: To_find_the_work_done.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p=700;//pressure of fluid in kN/m^2\n",
+"v1=0.28;//Initial volume of fluid in m^3\n",
+"v2=1.68;//Final volume of fluid in m^3\n",
+"\n",
+"//Calculations\n",
+"W=p*(v2-v1);//Work done in kJ\n",
+"\n",
+"//Output\n",
+"printf('The Work done W= %3.2f kJ',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: The_absolute_pressure_of_vapour.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"dk=800;//Density of kerosene in kg/m^3\n",
+"g=9.81;//gravity in m/sec^2\n",
+"Zk=0.051;//Kerosene vapour on Hg coloumn in m\n",
+"d=13600;//Density of Hg in kg/m^3\n",
+"Zh=0.1;//Hg level in m\n",
+"Z=0.755;//Atmospheric pressure in m of Hg\n",
+"\n",
+"//Calculations\n",
+"Pk=dk*g*Zk;//Pressure of kerosene in N/m^2\n",
+"Pa=d*g*Z;//Atmospheric pressure in N/m^2\n",
+"Ph=d*g*Zh;//Pressure due to Hg in N/m^2\n",
+"Pab=(Pa+Ph-Pk)/1000;//Absolute pressure in kPa\n",
+"\n",
+"//Output \n",
+"printf('Absolute pressure of vapour Pab = %3.5f kPa ',Pab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21: The_absolute_pressure_of_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"g=9.806;//Gravity in m/sec^2\n",
+"df=0.8*1000;//Density of fluid in kg/m^3\n",
+"Z=0.76;//Atmospheric pressure in m of Hg\n",
+"Zf=0.3;//Height of fluid coloumn in m\n",
+"\n",
+"//Calculations\n",
+"Pa=d*g*Z;//Atmospheric perssure in N/m^2\n",
+"P=df*g*Zf;//Pressure due to fluid in N/m^2\n",
+"Pab=(Pa+P)/10^5;//Absolute pressure in bar\n",
+"Zh=((Pab*10^5-Pa)/(d*g))*100;//Difference between the height of Hg coloumn in 2 arms in m\n",
+"\n",
+"//Output\n",
+"printf('(a)The Absolute pressure of the gas in pipe line Pab = %3.7f bar \n (b)If the fluid used is Hg then the difference of height of Hg coloumn in the 2 arms Zh = %3.3f cm of Hg ',Pab,Zh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.22: The_pressure_in_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"clear \n",
+"//Input data\n",
+"Pa=1;//Atmospheric pressure in bar\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"do=0.8*1000;//Density of oil in kg/m^3\n",
+"Zo=0.8;//Level of oil in m\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"Zw=0.65;//Level of water in m\n",
+"d=13.6*10^3;//Density of Hg in kg/m^3\n",
+"Z=0.45;//Level of Hg in m\n",
+"\n",
+"//Calculations\n",
+"Po=(do*g*Zo)/10^5;//Pressure of oil in bar\n",
+"Pw=(dw*g*Zw)/10^5;//Pressure of water in bar\n",
+"P=(d*g*Z)/10^5;//Pressure of Hg in bar\n",
+"Pab=Pa+Po+Pw+P;//Pressure at the bottom of the coloumn in bar\n",
+"Pow=Pa+Po;//Pressure at the interface of oil and water in bar\n",
+"Poh=Pa+Po+Pw;//Pressure at the interface of water and Hg\n",
+"\n",
+"//Output\n",
+"printf('(a)Pressure at the bottom of the coloumn Pab = %3.5f bar \n (b)Pressure at the inter surface of oil and water Pow = %3.6f bar \n (c)Pressure at the inter surface of water and Hg Poh = %3.6f bar',Pab,Pow,Poh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: The_height_of_fluid.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear \n",
+"//Input data\n",
+"Z=0.76;//Barometer reading in m\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"d=13.6*10^3;//Density of Hg in kg/m^3\n",
+"Pab=1.2*10^5;//Absolute pressure in N/m^2\n",
+"do=0.8*1000;//Density of oil in kg/m^3\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"dh=13.6*10^3;//Density of Hg in kg/m^3\n",
+"\n",
+"//calculations\n",
+"Pa=dh*g*Z;//Atmospheric pressure in N/m^2\n",
+"Pg=Pab-Pa;//Gauge pressure in N/m^2\n",
+"Zo=Pg/(do*g);//Height of oil in manometer in m\n",
+"Pw=Pab-Pa;//Pressure exercted by water in N/m^2\n",
+"Zw=Pw/(dw*g);//Height of water in manometer in m\n",
+"P=Pab-Pa;//Pressure of Hg in N/m^2\n",
+"Zh=P/(d*g);//Height of Hg in manometer in m\n",
+"\n",
+"//Output\n",
+"printf('(a)The height of fluid for oil Manometer Zo = %3.2f m \n (b)The height of fluid for water Manometer Zw = %3.2f m \n (c)The height of fluid for Hg Manometer Zh = %3.2f m ',Zo,Zw,Zh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.24: The_altitude_of_the_plane.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Zg=0.753;//Barometer reading at ground level in m\n",
+"Zp=0.690;//Pilots barometer reading in the plane in m\n",
+"d=13600;//Density of Hg in kg/m^3\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"da=1.25;//Density of air in kg/m^3\n",
+"\n",
+"//Calculations\n",
+"Pg=d*g*Zg;//Pressure at ground level in N/m^2\n",
+"Pp=d*g*Zp;//Pressure at plane level in N/m^2\n",
+"P=Pg-Pp;//Change of pressure at ground level and that of plane level in N/m^2\n",
+"Za=P/(da*g);//Altitude of plane from ground in m\n",
+"\n",
+"//Output \n",
+"printf('The altitude of the plane from ground level Za = %3.2f m ',Za)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.25: The_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"dh=13590;//Density of Hg in kg/m^3\n",
+"Pa=400;//Pressure at A in kPa\n",
+"g=9.81;//Gravity in N/m^2\n",
+"Zw1=2.5;//First level of water in m\n",
+"Zw2=0.4;//Second level of water in m\n",
+"Zh=0.6;//Level of Hg in m\n",
+"\n",
+"//Calculations \n",
+"Pw1=dw*g*Zw1;//First level of water pressure in N/m^2\n",
+"Pw2=dw*g*Zw2;//Second level of water pressure in n/m^2\n",
+"Ph=dh*g*Zh;//Pressure of Hg in N/m^2\n",
+"Pb=((Pa*1000)+Pw1+Pw2-Ph)/1000;//Pressure exercted at B in kPa\n",
+"\n",
+"//Output\n",
+"printf('Pressure exercted at B Pb = %3.4f kPa',Pb)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.26: Weight_of_piston_and_slab.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"do=0.902*10^3;//Density of oil in kg/m^3\n",
+"Pg=2*10^5;//Gauge pressure in N/m^2\n",
+"g=9.81;//Gravity in m/sec^2\n",
+"ho=2;//Level of oil in m\n",
+"d=2;//Diameter of cylinder in m\n",
+"pi=3.141595;//Constant value of pi\n",
+"\n",
+"//Calculations\n",
+"A=(pi/4)*d^2;//Area of cylinder \n",
+"Po=do*g*ho;//Pressure due to oil in N/m^2\n",
+"W=(Pg+Po)*A;//Weight of the piston in N\n",
+"\n",
+"//Output\n",
+"printf('The total weight of piston and slab W = %3.2f N ',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.27: The_pressure_in_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=21;//Mass of piston in kg\n",
+"P1=600;//Pressure in the pipe 1 in kPa\n",
+"P2=170;//Pressure in the pipe 2 in kPa\n",
+"d1=0.10;//Diameter of the piston 1 in m\n",
+"d2=0.20;//Diameter of the piston 2 in m\n",
+"pi=3.14155;//Constant value of pi\n",
+"\n",
+"//Calculations\n",
+"F=(m*9.81)/1000;//Force due to mass in kN\n",
+"F1=(pi/4)*d1^2*P1;//Force 1 acting on 10 cm diameter piston in kN\n",
+"F2=(pi/4)*(d2^2-d1^2)*P2;//Force 2 acting on 20 cm diameter piston in kN\n",
+"F3=F+F1+F2;//Total downward force in kN\n",
+"P3=F3/((pi/4)*d2^2);//Pressure 3 in the gas in kPa\n",
+"\n",
+"//Output\n",
+"printf('The pressure in the gas P3 = %3.4f kPa ',P3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.28: The_height_of_building.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"clear\n",
+"//Input data\n",
+"P1=0.755;//Barometric reading at the bottom of the building in m\n",
+"P2=0.73;//Barometric reading at the top of the building in m\n",
+"da=1.18;//Density of air in kg/m^3\n",
+"g=9.81;//Gravitalional constant in m/sec^2\n",
+"d=13600;//Density of Hg in kg/m^3\n",
+"\n",
+"//Calculations\n",
+"h=((P1-P2)*d*g)/(da*g);//The height of the building in m\n",
+"\n",
+"//Output\n",
+"printf('The height of the building h = %3.2f m',h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.29: The_absolute_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"PA=200;//Gauge pressure reading for A in kPa\n",
+"PB=120;//Gauge pressure reading for B in kPa\n",
+"hb=750;//Barometer reading in mm of Hg\n",
+"g=9.806;//Gravitational constant in m/sec^2\n",
+"d=13597;//Density of Hg in barometer in kg/m^3\n",
+"\n",
+"//Calculations\n",
+"Pa=d*g*hb/10^6;//Atmospheric pressure in kPa\n",
+"Pab1=PA+Pa;//Absolute pressure in container A in kPa\n",
+"Pab2=PB+Pab1;//Absolute pressure in container B in kPa\n",
+"\n",
+"//Output \n",
+"printf('(a)The absolute pressure in the container A Pab1 = %3.2f kPa \n (b)The absolute pressure in the container B Pab2 = %3.2f kPa ',Pab1,Pab2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: New_volume_of_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=138;//Initial pressure of gas in kN/m^2\n",
+"p2=690;//Final pressure of gas in kN/m^2\n",
+"v1=0.112;//Initial volume in m^3\n",
+"\n",
+"//Calculations\n",
+"P=p1/p2;//Pressure ratio\n",
+"v2=v1*(P^(1/1.4));//Final volume of gas in m^3\n",
+"\n",
+"//Output\n",
+"printf('The new volume of the gas v2= %3.6f m^3',v2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.30: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"C1=40;//Temperature 1 in degree centigrade\n",
+"C2=-20;//Temperature 2 in degree centigrade \n",
+"\n",
+"//calculations\n",
+"F1=((C1/100)*180)+32;//Temperature 1 in Fahrenheit\n",
+"F2=((C2/100)*180)+32;//Temperature 2 in Fahrenheit\n",
+"\n",
+"//Output\n",
+"printf('(a)Temperature 40 degree C =%3.0f F \n (b)Temperature -20 degree C=%3.0f F',F1,F2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.31: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that the temperature has the same value on both the centrigrade and fahrenheit scales\n",
+"//(C/100)=((F-32)/180)\n",
+"\n",
+"//Putting C=F\n",
+"C=(-32/180)/((1/100)-(1/180));//Centrigade temperature in degree C\n",
+"F=C;//Fahrenheit temperature in degree Fahrenheit\n",
+"\n",
+"printf('The temperature which has the same value on both the centrigrade and fahrenheit scales is %i degree C = %i degree F',C,F)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.32: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"P1=1.5;//Thermometric properties at ice point\n",
+"P2=7.5;//Thermometric properties at steam point\n",
+"P3=3.5;//Thermometric property\n",
+"\n",
+"//Calculations\n",
+"A=[log(P2) 1\n",
+" log(P1) 1] //Coefficient matrix\n",
+"B=[100\n",
+" 0] //Constant matrix\n",
+"X=inv(A)*B //Inverse matrix\n",
+"t=(X(1)*log(P3)+X(2));//Required temperature in degree C\n",
+"\n",
+"//Output\n",
+"printf('The required temperature is %3.6f degree C',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.33: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"T=[100,300];//Temperature of ice and steam point in the scale\n",
+"P=[1.86,6.8];//Values of thermometric properties at ice point nad steam point respectively\n",
+"P1=2.5;//Thermometric property\n",
+"\n",
+"//Calculations\n",
+"A=[log(P(2)) 1\n",
+" log(P(1)) 1] //Coefficient matrix\n",
+"B=[T(2)\n",
+" T(1)] //Constant matrix\n",
+"X=inv(A)*B;//Variable matrix\n",
+"t=(X(1)*log(P1)+X(2));//Required temperature in degree C\n",
+"\n",
+"//Output\n",
+"printf('Temperature corresponding to the thermometric property is %3.1f degree C',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.34: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=32;//Pressure in mm of Hg at triple point of water\n",
+"p2=76;//Pressure in mm of Hg above atmospheric pressure\n",
+"p3=752;//Barometric pressure in mm of Hg\n",
+"T=273.16;//Triple point of water in K\n",
+"\n",
+"//Calculations\n",
+"P1=p3+p1;//Total pressure in mm of Hg\n",
+"P2=p2+p3;//Total pressure in mm of Hg\n",
+"T2=((T*P2)/P1)-273.16;//Temperture in degree C\n",
+"\n",
+"//Output\n",
+"printf('Temperature is %3.2f degree C',T2)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.35: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"T=[32,212];//Temperatures of ice point and steam point respectively\n",
+"P=[1.86,6.81];//P values at ice point and steam point respectively\n",
+"P1=2.5;//Reading on the thermometer\n",
+"\n",
+"//Calculations\n",
+"A=[log(P(2)) 1\n",
+" log(P(1)) 1] //Coefficient matrix\n",
+"B=[T(2)\n",
+" T(1)] //Constant matrix\n",
+"X=inv(A)*B;//Variable matrix\n",
+"t=(X(1)*log(P1)+X(2));//Required temperature in degree C\n",
+"\n",
+"//Output\n",
+"printf('Temperature corresponding to the thermometric property is %3.0f degree C',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: The_work_done_by_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=2070;//Initial pressure of gas in kN/m^2\n",
+"p2=207;//Final pressure of gas in kN/m^2\n",
+"v1=0.014;//Initial volume of gas in m^3\n",
+"n=1.35;//constant\n",
+"\n",
+"//Calculations\n",
+"P=p1/p2;//Pressure ratio\n",
+"v2=v1*(P^(1/1.35));//Final volume of gas in m^3\n",
+"W=(p1*v1-p2*v2)/(n-1);//Work done in kJ\n",
+"\n",
+"//Output\n",
+"printf('(a)Final volume of gas v2= %3.5f m^3 \n (b)Work done by the gas during the expansion W= %3.2f kJ',v2,W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Final_pressure_and_work_done.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"v1=0.056;//Initial volume of gas in m^3\n",
+"v2=0.007;//Final volume of gas in m^3\n",
+"p1=100;//Initial perssure compressed Isothermally in kN/m^2\n",
+"\n",
+"//Calculations\n",
+"p2=(p1*v1)/v2;//Final pressure in kN/m^2\n",
+"W=p1*v1*(log(v2/v1));//Work done in kJ\n",
+"\n",
+"//Output\n",
+"printf('(a)Final pressure p2= %3.2f kN/m^2 \n (b)The work done on gas W= %3.2f kJ',p2,W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: The_work_done.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"v1=1;//Initial volume in m^3\n",
+"v2=3;//Final volume in m^3\n",
+"\n",
+"//Calculations\n",
+"W=10^5*(((v2^3-v1^3)/3)+8*(log(v2/v1)));//Work done in J\n",
+"\n",
+"//Output\n",
+"printf('The work done W= %3.1f J',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: The_work_done_by_the_gas.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"v1=0.2;//Initial volume in m^3\n",
+"v2=0.5;//Final volume in m^3\n",
+"\n",
+"//Calculations\n",
+"W=1500*(((v2^2-v1^2)/200)+(v2-v1))/1000;//Work done in kJ\n",
+"\n",
+"//Output\n",
+"printf('The work done by the gas W= %3.4f kJ ',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: The_net_work_done.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"v1=1.5;//Initial volume in m^3\n",
+"v2=2;//Final volume in m^3\n",
+"w1=2;//Work receiving in Nm\n",
+"p=6;//constsnt pressure of gas in N/m^2\n",
+"\n",
+"//Calculations\n",
+"w2=p*(v2-v1);//Work done in Nm\n",
+"W=w2-w1;//Net work done by the system in Nm\n",
+"\n",
+"//Output\n",
+"printf('Net work done by the system W= %3.1f Nm',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Readings_of_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"d=13596;//Density of Hg in kg/m^3\n",
+"g=9.806;//gravity in m/sec^2\n",
+"z=760;//Barometer pressure in mm of Hg\n",
+"Pv=40;//Vaccum pressure in cm\n",
+"dw=1000;//Density of water in kg/m^3\n",
+"Zw=1.5;//Level of water in m\n",
+"\n",
+"//Calculations\n",
+"p=(d*g*z)/10^6;//Pressure in kPa\n",
+"p1=(80/76)*p;//Pressure in kPa\n",
+"Pa=p-Pv;//Absolute pressure in kPa\n",
+"p2=(36/76)*p;//Pressure in kPa\n",
+"p3=(dw*g*Zw)/1000;//pressure in kPa\n",
+"p4=(5.2*10^5)/1000;//pressure in kPa\n",
+"\n",
+"//Output\n",
+"printf('(a)Pressure of 80cm of Hg = %3.3f kPa \n (b)Pressure of 40cm of Hg vaccum = %3.3f kPa \n (c)Pressure due to 1.5m of water coloumn = %3.2f kPa \n (d)Pressure in kPa for 5.2bar = %3.2f kPa',p1,p2,p3,p4)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/2-First_Law_of_Thermodynamics.ipynb b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/2-First_Law_of_Thermodynamics.ipynb
new file mode 100644
index 0000000..aa44d7b
--- /dev/null
+++ b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/2-First_Law_of_Thermodynamics.ipynb
@@ -0,0 +1,1143 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: First Law of Thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: The_power_capacity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"E1=4000;//Enthalpy at entrance in kJ/Kg\n",
+"E2=4100;//Enthalpy at exit in kJ/kg\n",
+"V1=50;//Velocity at entrance in m/s\n",
+"V2=20;//Velocity at exit in m/s\n",
+"h1=50;//Height at the entrance \n",
+"h2=10;//Height at the exit\n",
+"m=1;//mass flow rate to the system in kJ/s\n",
+"Q=200;//Heat transfer rate to the system in kJ/s\n",
+"g=9.8;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"P=m*(((V1^2-V2^2)/(2000))+(g*(h2-h1)/1000)+(E1-E2))+Q;//Power capacity of the system in kW\n",
+"printf('Power capacity of the system P = %3.4f kW ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: The_specific_intenal_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"W=135;//Work done by the system in kJ/kg\n",
+"V1=0.37;//Specific volume of fluid at inlet in m^3/kg\n",
+"V2=0.62;//Specific volume of fluid at outlet in m^3/kg\n",
+"P1=600;//Pressure at the inlet in kPa\n",
+"P2=100;//Pressure at the outlet in kPa\n",
+"C1=16;//Velocity at the inlet in m/s\n",
+"C2=270;//Velocity at the outlet in m/s\n",
+"Z1=32;//Inlet height from floor level in m\n",
+"Z2=0;//Outlet height from floor level in m\n",
+"q=-9;//Heat loss between inlet and discharge in kJ/kg\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"U=((C2^2-C1^2)/2000)+(g*(Z2-Z1))/1000+(P2*V2-P1*V1)+W-q;//Change in specific internal energy of the system in kJ/kg\n",
+"\n",
+"//Output\n",
+"printf('Specific Internal Energy decreases by %3.3f kJ/kg ',U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: The_power_capacity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=5;//Rate of fluid flow in the system in kg/s\n",
+"P1=620;//Pressure at the entrance in kPa\n",
+"P2=130;//Pressure at the exit in kPa\n",
+"C1=300;//Velocity at the entrance in m/s\n",
+"C2=150;//Velocity at the exit in m/s\n",
+"U1=2100;//Internal energy at the entrance in kJ/kg\n",
+"U2=1500;//Internal energy at the exit in kJ/kg\n",
+"V1=0.37;//Specific volume at entrance in m^3/kg\n",
+"V2=1.2;//Specific volume at exit in m^3/kg\n",
+"Q=-30;//Heat loss in the system during flow in kJ/kg\n",
+"Z=0;//Change in potential energy is neglected in m\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"W=((C1^2-C2^2)/(2*1000))+(g*Z)+(U1-U2)+(P1*V1-P2*V2)+Q;//Total work done in the system in kJ/kg\n",
+"P=W*m;//Power capacity of the system in kW\n",
+"\n",
+"//Output\n",
+"printf('(a)Total work done in the system W = %3.2f kJ/kg \n (b)Power capacity of the system P = %3.2f kW ',W,P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: The_power_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"P1=100;//Pressure at Inlet in kPa\n",
+"P2=500;//Pressure at Exit in kPa\n",
+"V1=0.6;//Specific volume at Inlet in m^3/kg\n",
+"V2=0.15;//Specific volume at Exit in m^3/kg\n",
+"U1=50;//Specific internal energy at inlet in kJ/kg\n",
+"U2=125;//Specific internal energy at Exit in kJ/kg\n",
+"C1=8;//Velocity of air at Inlet in m/s\n",
+"C2=4;//Velocity of air at Exit in m/s\n",
+"m=5;//Mass flow rate of air in kg/s\n",
+"Q=-45;//Heat rejected to cooling water in kW\n",
+"Z=0;//Change in potential energy is neglected in m\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"P=m*(((C1^2-C2^2)/(2*1000))+(g*Z)+(U1-U2)+(P1*V1-P2*V2))+Q;//Power required to drive the compressor in kW\n",
+"P1=-P;//Power required to drive the compressor in kW\n",
+"\n",
+"//Output\n",
+"printf('The power required to drive the compressor P = %3.2f kW ',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: The_power_developed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m1=5000;//Steam flow rate in kg/hr\n",
+"Q1=-250;//Heat loss from the turbine insulation to surroundings in kj/min\n",
+"C1=40;//Velocity of steam at entrance in m/s\n",
+"h1=2500;//Enthalpy of the steam at entrance in kJ/kg\n",
+"C2=90;//Velocity of the steam at the Exit in m/s\n",
+"h2=2030;//Enthalpy of the steam at exit in kj/kg\n",
+"Z=0;//Change in potential energy is neglected in m\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"m=m1/3600;//Steam flow rate in kg/s\n",
+"Q=Q1/60;//Heat loss from the turbine to the surroundings\n",
+"P=m*(((C1^2-C2^2)/(2*1000))+(g*Z)+(h1-h2))+Q;//Power developed by the turbine in kW\n",
+"\n",
+"//Output\n",
+"printf('The power developed by the turbine P = %3.3f kW ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: The_work_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data \n",
+"c1=16;//Velocity of steam at entrance in m/s\n",
+"c2=37;//Velocity of steam at exit in m/s\n",
+"h1=2990;//Specific enthalpy of steam at entrance in kJ/kg\n",
+"h2=2530;//Specific enthalpy of steam at exit in kJ/kg\n",
+"Q=-25;//Heat lost to the surroundings in kJ/kg\n",
+"m1=360000;//The steam flow rate in kg/hr\n",
+"\n",
+"//Calculations\n",
+"m=m1/3600;//The steam flow rate in kg/s\n",
+"W=(((c1^2-c2^2)/(2*1000))+(h1-h2))+Q;//Total work done in the system in kJ/kg\n",
+"P=m*W;//Power developed by the turbine in kW\n",
+"//Output\n",
+"printf('The work output from the turbine P = %3.1f kW ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: The_external_work_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=720;//Pressure at the entrance in kPa\n",
+"t1=850;//Temperature at the entrance in degree centigrade \n",
+"c1=160;//Velocity of the gas at entrance in m/s\n",
+"Q=0;//Insulation (adiabatic turbine)\n",
+"P2=115;//Pressure at the exit in kPa\n",
+"t2=450;//Temperature at the exit in degree centigrade\n",
+"c2=250;//Velocity of the gas at exit in m/s\n",
+"cp=1.04;//Specific heat of gas at constant pressure in kJ/kg-K\n",
+"\n",
+"//Calculations\n",
+"H=cp*(t1-t2);//Change in Enthalpy of the gas at entrance and exit in kJ/kg\n",
+"W=((c1^2-c2^2)/(2*1000))+(H);//External work output of the turbine in kJ/kg\n",
+"\n",
+"//Output\n",
+"printf('The external work output of the turbine W = %3.2f kJ/kg ',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: The_work_done_and_mass_flow_rate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p=5000;//Power output of an adiabatic steam turbine in kW\n",
+"p1=2000;//Pressure at the inlet in kPa\n",
+"p2=0.15;//Pressure at the exit in bar\n",
+"t1=400;//temperature at the inlet in degree centigrade\n",
+"x=0.9;//Dryness at the exit\n",
+"c1=50;//Velocity at the inlet in m/s\n",
+"c2=180;//Velocity at the exit in m/s\n",
+"z1=10;//Elevation at inlet in m\n",
+"z2=6;//Elevation at exit in m\n",
+"h1=3248.7;//Enthalpy at the inlet from the steam table corresponding to and 20 bar in kJ/kg\n",
+"hf=226;//Enthalpy at exit at 0.15 bar from steam tables in kJ/kg\n",
+"hfg=2373.2;//Enthalpy at exit at 0.15 bar from steam tables in kJ/kg\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"h2=hf+(x*hfg);//Enthalpy at the exit in kJ/kg\n",
+"W=(h1-h2)+((c1^2-c2^2)/(2*1000))+((g*(z1-z2))/1000);//Work done in the system in kJ/kg\n",
+"m=p/W;//Mass flow rate of the steam \n",
+"\n",
+"//Output\n",
+"printf('(a)The work done per unit mass of the steam flowing through turbine W = %3.2f kJ/kg \n (b)The mass flow rate of the steam m = %3.3f kg/s ',W,m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: The_power_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"p1=1000;//Pressure at the inlet in kPa\n",
+"t1=750;//Temperature at the inlet in K\n",
+"c1=200;//Velocity at the inlet in m/s\n",
+"p2=125;//Pressure at the exit in kPa\n",
+"c2=40;//Velocity at the exit in m/s\n",
+"m1=1000;//Mass flow rate of air in kg/hr\n",
+"cp=1.053;//Specific heat at constant pressure in kJ/kgK\n",
+"k=1.375;//Adiabatic index\n",
+"Q=0;//The turbine is adiabatic\n",
+"\n",
+"//Calculations\n",
+"m=m1/3600;//The mass flow rate of air in kg/s\n",
+"P=p2/p1;//Ratio of the pressure\n",
+"t2=t1*((p2/p1)^((k-1)/k));//Temperature of air at exit in K\n",
+"h=cp*(t2-t1);//Change in enthalpy of the system in kJ\n",
+"p=m*(((c2^2-c1^2)/(2*1000))+h);//Power output of the turbine in kW\n",
+"p1=-p;//Power output of the turbine in kW\n",
+"\n",
+"//Output\n",
+"printf('(a)Temperature of air at exit t2 = %3.3f K \n (b)The power output of the turbine P = %3.3f kW ',t2,p1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: The_net_work.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"h1=60;//The heat transfer in the process in kJ\n",
+"h2=-8;//The heat transfer in the process in kJ\n",
+"h3=-34;//The heat transfer in the process in kJ\n",
+"h4=6;//The heat transfer in the process in kJ\n",
+"\n",
+"//Calculations\n",
+"Q=h1+h2+h3+h4;//Net work transfer in a cycle in kJ\n",
+"\n",
+"//Output\n",
+"printf('Net work transfer in a cycle Q = %3.0f kJ ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: The_ratio_of_pipe_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"c1=7;//Velocity of air at entrance in m/s\n",
+"c2=5;//Velocity of air at exit in m/s\n",
+"p1=100;//Pressure at the entrance in kPa\n",
+"p2=700;//Pressure at the exit in kPa\n",
+"v1=0.95;//Specific volume at entrance in m^3/kg\n",
+"v2=0.19;//Specific volume at exit in m^3/kg\n",
+"u=90;//Change in internal energy of the air entering and leaving in kJ/kg\n",
+"z=0;//Potential energy is neglected \n",
+"Q=-58;//Heat rejected to the surroundings in kW\n",
+"m=0.5;//The rate at which air flow in kg/s\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"P=m*([(c1^2-c2^2)/(2000)]+(p1*v1-p2*v2)-u)+(Q);//The rate of work input to the air in kW\n",
+"A=(v1*c2)/(v2*c1);//From continuity equation the ratio of areas\n",
+"D=A^(1/2);//The ratio of inlet pipe diameter to the outlet pipe diameter\n",
+"\n",
+"//Output\n",
+"printf('(a)The rate of work input to the air P = %3.3f kW \n (b)The ratio of inlet pipe diameter to the outlet pipe diameter D = %3.2f ',P,D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: The_nozzle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"h1=3000;//Enthalpy of the fluid passing at inlet in kJ/kg\n",
+"h2=2757;//Enthalpy of the fluid at the discharge in kJ/kg\n",
+"c1=60;//Velocity of the fluid at inlet in m/s\n",
+"A1=0.1;//Inlet area of the nozzle in m^2\n",
+"v1=0.187;//Specific volume at inlet in m^3/kg\n",
+"v2=0.498;//Specific volume at the outlet in m^3/kg\n",
+"q=0;//Heat loss during the flow is negligable\n",
+"z=0;//The nozzle is horizontal so change in PE is constant\n",
+"w=0;//The work done is also negligable\n",
+"\n",
+"//Calculations\n",
+"c2=[2*1000*((h1-h2)+(c1^2/2000))]^(1/2);//Velocity at the exit in m/s\n",
+"m=(A1*c1)/v1;//The mass flow rate in kg/s\n",
+"A2=(m*v2)/c2;//Area at the exit of the nozzle in m^3\n",
+"\n",
+"//Output\n",
+"printf('(a)The velocity at the exit c2 = %3.2f m/s \n (b)The mass flow rate m = %3.2f kg/s \n (c)Area at the exit A2 = %3.4f m^2 ',c2,m,A2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: Velocity_and_Exit_area.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"h1=3000;//Specific enthalpy of steam at inlet in kJ/kg\n",
+"h2=2762;//Specific enthalpy of steam at the outlet in kJ/kg\n",
+"v1=0.187;//Specific volume of steam at inlet in m^3/kg\n",
+"v2=0.498;//Specific volume of steam at the outlet in m^3/kg\n",
+"A1=0.1;//Area at the inlet in m^2\n",
+"q=0;//There is no heat loss\n",
+"z=0;//The nozzle is horizontal ,so no change in PE\n",
+"c1=60;//Velocity of the steam at the inlet in m/s\n",
+"\n",
+"//Calculations\n",
+"c2=[(2*1000)*((h1-h2)+(c1^2/2000))]^(1/2);//Velocity of the steam at the outlet in m/s\n",
+"m=(A1*c1)/v1;//Mass flow rate of steam in kg/s\n",
+"m1=m*3600;//Mass flow rate of steam in kg/hr\n",
+"A2=(m*v2)/c2;//Area at the nozzle exit in m^2\n",
+"\n",
+"//Output\n",
+"printf('(a)Velocity of the steam at the outlet c2 = %3.2f m/s \n (b)Mass flow rate of steam m = %3.3f kg/s (or) %3.2f kg/hr \n (c)Area at the nozzle exit A2 = %3.4f m^2 ',c2,m,m1,A2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23: The_exit_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"c1=40;//Velocity of air at the inlet of nozzle in m/s\n",
+"h=180;//The decrease in enthalpy in the nozzle in kJ/kg\n",
+"w=0;//Since adiabatic\n",
+"q=0;//Since adiabatic\n",
+"z=0;//Since adiabatic\n",
+"\n",
+"//Calculations\n",
+"c2=[(2*1000)*((h)+(c1^2/(2*1000)))]^(1/2);//The exit velocity of air in m/s\n",
+"\n",
+"//Output\n",
+"printf('The exit velocity of the air C2 = %3.2f m/s ',c2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24: The_shaft_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=100;//Pressure at the inlet of the compressor in kPa\n",
+"p2=500;//Pressure at the outlet of the compressor in kPa\n",
+"v1=3;//Volume of the air at the inlet of the compressor in m^3/kg\n",
+"v2=0.8;//Volume of the air at the outlet of the compressor in m^3/kg\n",
+"c1=25;//The velocity of air at the inlet of the compressor in m/s\n",
+"c2=130;//The velocity of air at the outlet of the compressor in m/s\n",
+"z=12;//The height of delivery connection above the inlet in m\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"n=1.3;//Polytropic index\n",
+"\n",
+"//Calculations\n",
+"W=[(n)*(p1*v1-p2*v2)]/(n-1);//Workdone for open system polytropic process in kJ/kg\n",
+"K=[(c2^2-c1^2)/2000];//Change in kinetic energy of the system in kJ/kg\n",
+"P=g*(z)/1000;//Change in potential energy of the system in kJ/kg\n",
+"w=W-K-P;//The shaft work of the compressor in kJ/kg\n",
+"\n",
+"//Output\n",
+"printf('The Shaft work of the compressor w = %3.3f kJ/kg \n It is the power absorbing system',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.25: The_power_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=10;//The rate of fluid compressed adiabatically in kg/s\n",
+"p1=500;//Initial pressure of the process in kPa\n",
+"p2=5000;//Final pressure of the process in kPa\n",
+"v=0.001;//The specific volume of the fluid in m^3/kg\n",
+"\n",
+"//Calculations\n",
+"P=m*v*(p2-p1);//The power required in kW\n",
+"\n",
+"//Output\n",
+"printf('The power required P = %3.0f kW ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.26: The_exit_air_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=2;//Mass flow rate of air in kg/s\n",
+"t1=20;//Initial temperature of the air in degree centigrade\n",
+"P=-30;//The amount of power consumed in kW\n",
+"c1=100;//The inlet velocity of air in m/s\n",
+"c2=150;//The outlet velocity of air in m/s\n",
+"R=0.287;//The gas constant for air in kJ/kg-K\n",
+"g=1.4;//It is the adiabatic index\n",
+"cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n",
+"q=0;//Heat developed as it is adiabatic condition\n",
+"z=0;//The change in potential energy is neglected\n",
+"\n",
+"//Calculations\n",
+"h=(P/m)+((c2^2-c1^2)/(2*1000));//The change in enthalpy of the system in kJ/kg\n",
+"t=h/cp;//The change in temperature of the system in degree centigrade\n",
+"t2=t1-t;//The exit air temperature in degree centigrade\n",
+"\n",
+"//Output\n",
+"printf('The exit air temperature is t2 = %3.2f degree centigrade ',t2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.27: The_exit_air_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=0.6;//Mass flow rate of air in kg/s\n",
+"W=40;//Power required to run the compressor in kW\n",
+"p1=100;//Initial pressure at the inlet of the compressor in kPa\n",
+"t1=30;//Initial temperature at the inlet of the compressor in degree centigrade\n",
+"z=0;//Change in potential energy is neglected\n",
+"c=0;//Change in kinetic energy is neglected\n",
+"q=0.4;//Heat lost to the cooling water ,bearings and frictional effects is 40% of input\n",
+"cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n",
+"\n",
+"//Calculations\n",
+"Q=q*W;//Net heat losses from the system in kW\n",
+"H=W-Q;//Change in total enthalpy of the system in kW\n",
+"t2=(H/(m*cp))+t1;//The exit air temperature in degree centigrade\n",
+"\n",
+"//Output\n",
+"printf('The exit air temperature T2 = %3.0f degree centigrade ',t2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.28: The_rate_of_heat_transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m1=100;//Air flow rate in kg/hr\n",
+"q1=600;//The heat generated by each person in kJ/hr\n",
+"h1=85;//The enthalpy of air entering the room in kJ/kg\n",
+"h2=60;//The enthalpy of air leaving the room in kJ/kg\n",
+"Q1=0.2;//The heat added by each lamp in the room in kW\n",
+"P1=0.2;//The power consumed by each fan in kW\n",
+"\n",
+"//Calculations\n",
+"q=(5*q1)/3600;//The heat generated by 5 persons in the room in kW\n",
+"Q=3*Q1;//The heat added by three lamps in the room in kW\n",
+"P=2*P1;//The power consumed by two fans in the room in kW\n",
+"m=m1/3600;//Mass flow rate of air in kg/s\n",
+"H=[q+Q+P]+[m*(h1-h2)];//Heat to be removed by the cooler in kW\n",
+"\n",
+"//Output\n",
+"printf('The rate at which the heat is to be removed by cooler X = %3.3f kJ/sec ',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.29: The_heat_loss_or_gai.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=1000;//Pressure at the inlet of the system in kPa\n",
+"p2=15;//Pressure at the outlet of the system in kPa\n",
+"v1=0.206;//Specific volume at the inlet of the system in m^3/kg\n",
+"v2=8.93;//Specific volume at the outlet of the system in m^3/kg\n",
+"h1=2827;//Specific enthalpy at the inlet of the system in kJ/kg\n",
+"h2=2341;//Specific enthalpy at the outlet of the system in kJ/kg\n",
+"c1=20;//Velocity at the inlet of the system in m/s\n",
+"c2=120;//Velocity at the outlet of the system in m/s\n",
+"z1=3.2;//Elevation at the inlet of the system in m\n",
+"z2=0.5;//Elevation at the outlet of the system in m\n",
+"m=2.1;//The fluid flow rate in kg/s\n",
+"W=750;//The work output of the device in kW\n",
+"g=9.81;//Gravitational constant in m/s^2\n",
+"\n",
+"//Calculations\n",
+"Q=m*[((c2^2-c1^2)/(2*1000))+((g*(z2-z1)/(1000)))+(h2-h1)]+W;//The heat loss/gain by the system in kW\n",
+"\n",
+"//Output\n",
+"printf('The Heat loss by the system Q = %3.4f kW ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: The_work_done.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Q=-300;//Heat transfer in the system consisting of the gas in kJ\n",
+"u=0;//Internal energy is constant\n",
+"\n",
+"//Calculations\n",
+"W=Q-u;//Work done of the system in kJ\n",
+"\n",
+"//Output\n",
+"printf('The work done of the system W = %3.0f kJ ',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.30: Rate_of_heat_transfer_and_power_and_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"t1=15;//The inlet temperature of the air passing through the heat exchanger in degree centigrade\n",
+"c1=30;//The inlet velocity of air in m/s\n",
+"t2=800;//The outlet temperature of the air from heat exchanger in degree centigrade \n",
+"t2'==800;//The inlet temperature of the air to the turbine in degree centigrade\n",
+"c2=30;//The inlet velocity of air to the turbine in m/s\n",
+"t3=650;//The outlet temperature of the air from the turbine in degree centigrade\n",
+"t3'==650;//the inlet temperature of the air to the nozzle in degree centigrade\n",
+"c3=60;//The outlet velocity of the air from turbine in m/s\n",
+"c3'==60;//Velocity at the inlet of the nozzle in m/s\n",
+"t4=500;//The temperature at the outlet of the nozzle in degree centigrade\n",
+"m=2;//Air flow rate in kg/s\n",
+"cp=1.005;//Specific heat at constant pressure in kJ/kgK\n",
+"\n",
+"//Calculations\n",
+"Qh=m*cp*(t2-t1);//Rate of heat transfer to the air in the heat exchanger in kJ/s\n",
+"P=m*[(cp*(t2'-t3))+((c2^2-c3^2)/2000)];//Power output from the turbine in kW\n",
+"c4=[(2*1000)*[cp*(t3'-t4)]+c3^2]^(1/2);//Velocity of air at exit from nozzle in m/s\n",
+"\n",
+"//Output \n",
+"printf('(a)Rate of heat transfer to the air in the heat exchanger q = %3.2f kJ/s \n (b)Power output from the turbine W = %3.1f kW \n (c)Velocity of air at exit from nozzle C = %3.2f m/s ',Qh,P,c4)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.31: The_heat_transfer_and_exit_area.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=400;//Initial pressure of the gas in a turbine in kPa\n",
+"t1=573;//Initial temperature of the gas in a turbine in K\n",
+"p2=100;//Final pressure of the gas in a turbine in kPa\n",
+"V=2.5;//It is the ratio of final volume to the inlet volume \n",
+"c2=50;//Velocity of the gas at exit in m/s\n",
+"P=1000;//Power developed by the turbine in kW\n",
+"cp=5.193;//Specific heat of the helium at constant pressure in kJ/kg K\n",
+"G=8.314;//Gas constant in kNm/kgK\n",
+"M=4;//Molecular weight of the helium\n",
+"\n",
+"//Calculations\n",
+"R=G/M;//Characteristic gas constant in kNm/kgK\n",
+"v1=(R*t1)/p1;//Specific volume at the inlet in m^3/kg\n",
+"v2=V*v1;//Specific volume at the outlet in m^3/kg\n",
+"n=log(p2/p1)/log(v1/v2);//Polytropic index \n",
+"t2=[(t1)*((p2/p1)^((n-1)/n))];//Final temperature of the gas in a turbine in K\n",
+"w=(n/(n-1))*(R*(t1))*[1-((p2*v2)/(p1*v1))];//Specific work in kJ/kg\n",
+"K=c2^2/(2*1000);//Change in kinetic energy in kJ/kg\n",
+"Ws=w-K;//Work done by the shaft in kJ/kg\n",
+"q=Ws+(cp*(t2-t1))+K;//The heat transfer during the process in kJ/kg\n",
+"m=P/Ws;//Mass flow rate of gas required in kg/s\n",
+"A2=(m*v2)/c2;//Exit area of the turbine in m^2\n",
+"\n",
+"//Output\n",
+"printf('(a)The mass flow rate of the gas required m = %3.4f kg/s \n (b)The heat transfer during the process q = %3.2f kJ/kg \n (c)Exit area of the turbine A2 = %3.4f m^2 ',m,q,A2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Internal_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"v1=1.5;//Initial volume of the process in m^3\n",
+"v2=4.5;//Final volume of the process in m^3\n",
+"Q=2000;//Amount of heat added in kJ\n",
+"\n",
+"//Calculations\n",
+"W=100*((3.5*log(v2/v1))+(3*(v2-v1)));//Amount of work done in kJ\n",
+"U=Q-W;//The change in internal energy in kJ\n",
+"\n",
+"//Output\n",
+"printf('The change in internal energy is %3.4f kJ ',U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: The_change_in_KE_and_PE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"h1=35;//Enthalpy of water entering the boiler in kJ/kg\n",
+"h2=705;//Enthalpy of steam leaving the boiler in kJ/kg\n",
+"C=0;//Change in kinetic energy is neglected\n",
+"Z=0;//Change in potential energy is neglected\n",
+"\n",
+"//Calculations\n",
+"q=h2-h1;//The heat transfer per kg of steam in kJ/kg\n",
+"\n",
+"//Output\n",
+"printf('The heat transfer per kg of steam q = %3.0f kJ/kg ',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: The_net_rate_of_work_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Q=-170;//Sum of all heat transfers per cycle in kJ\n",
+"N=100;//Total number of cycles per min in cycles/min\n",
+"Q1=0;//Heat developed in a-b process in kJ/min\n",
+"Q2=21000;//Heat developed in b-c process in kJ/min\n",
+"Q3=-2100;//Heat developed in c-d process in kJ/min\n",
+"W1=2170;//Work done in the process a-b in kJ/min\n",
+"W2=0;//Work done in the b-c process in kJ/min\n",
+"E3=-36600;//Change in energy in the process in kJ/min\n",
+"\n",
+"//Calculations\n",
+"E1=Q1-W1;//Change in energy in process a-b in kJ/min\n",
+"E2=Q2-W2;//Change in energy in b-c process in kJ/min\n",
+"W3=Q3-E3;//Work done in the c-d process in kJ/min\n",
+"Qt=Q*N;//Total heat transfer per min in kJ/min \n",
+"Q4=Qt-Q1-Q2-Q3;//Heat developed in the process d-a in kJ/min\n",
+"Et=0;//Total change in energy of the cycle\n",
+"E4=Et-E1-E2-E3;//Energy in the process d-a in kJ/min\n",
+"W4=Q4-E4;//Work done in the d-a process in kJ/min \n",
+"Wn=Qt/60;//Net rate of work output in kW\n",
+"\n",
+"//Output\n",
+"printf('(a)Change in energy in a-b process E = %3.0f kJ/min \n (b)Change in energy in b-c process E = %3.0f kJ/min \n (c)Work done in the c-d process W = %3.0f kJ/min \n (d)Heat developed in the process d-a Q = %3.0f kJ/min \n (e)Energy in the process d-a E = %3.0f kJ/min \n (f)Work done in the d-a process W =%3.0f kJ/min \n (g)Net rate of work output W = %3.2f kW ',E1,E2,W3,Q4,E4,W4,Wn)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: The_power_developed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"Q1=50;//Heat developed in the 1-2 process in kJ/kg\n",
+"U1=20;//Change in energy in the 1-2 process in kJ/kg\n",
+"Q2=-30;//Heat developed in the 2-3 process in kJ/kg\n",
+"W2=-40;//Work done in the 2-3 process in kj/kg\n",
+"U3=-30;//Change in energy in the 3-1 process in kJ/kg\n",
+"Wt=30;//Net work done per kg of fluid in kJ/kg\n",
+"m=0.1;//Mass of fluid in the cycle in kg\n",
+"N=10;//Number of cycles per sec in cycles/sec\n",
+"\n",
+"//Calculations\n",
+"W1=Q1-U1;//Work done in the 1-2 process in kJ/kg\n",
+"U2=Q2-W2;//Change in energy in the 2-3 process in kJ/kg\n",
+"W3=Wt-W1-W2;//Work done in the 3-1 process in kJ/kg\n",
+"Q3=W3+U3;//Heat developed in the process in kJ/kg\n",
+"m1=m*N;//mass flow rate per sec in kg/sec\n",
+"P=Wt*m1;//Rate of power in kW\n",
+"\n",
+"//Output\n",
+"printf('(a)Work done in the 1-2 process W =%3.0f kJ/kg \n (b)Change in energy in the 2-3 process U = %3.0f kJ/kg \n (c)Work done in the 3-1 process W = %3.0f kJ/kg \n (d)Heat developed in the process Q = %3.0f kJ/kg \n (e)mass flow rate per sec m = %3.0f kg/sec \n (f)Rate of power P = %3.0f kW',W1,U2,W3,Q3,m1,P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: The_work_transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"m=3;//Mass of substance in the system in kg\n",
+"P1=500;//Initial pressure of the system in kPa\n",
+"P2=100;//Final pressure of the system in kPa\n",
+"V1=0.22;//Initial volume of the system in m^3\n",
+"n=1.2;//Polytropic index \n",
+"Q1=30;//Heat transfer for the another process\n",
+"\n",
+"//Calculations\n",
+"V2=V1*(P1/P2)^(1/1.2);//Final volume of the system in m^3\n",
+"U=3.56*(P2*V2-P1*V1);//Total change in internal energy in kJ\n",
+"W1=(P2*V2-P1*V1)/(1-n);//Work done for the 1-2 process in kJ\n",
+"Q=U+W1;//Heat developed in the process in kJ\n",
+"W2=Q1-U;//Work done for the another process in kJ\n",
+"\n",
+"//Output\n",
+"printf('(a)Total change in internal energy U = %3.0f kJ \n (b)Work done for the 1-2 process W = %3.0f kJ \n (c)Heat developed in the process Q = %3.0f kJ \n (d)Work done for the another process W = %3.0f kJ ',U,W1,Q,W2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Heat_transfer_work_and_IE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"m=5;//Mass of the substance in the system in kg\n",
+"P1=500;//Initial pressure of the system in kPa\n",
+"P2=100;//Final pressure of the system in kPa\n",
+"V1=0.22;//Initial volume of the system in m^3\n",
+"n=1.2;//Polytropic index\n",
+"\n",
+"//Calculations \n",
+"V2=V1*(P1/P2)^(1/1.2);//Final volume of the system in m^3\n",
+"U=3.5*(P2*V2-P1*V1);//Change in the internal energy of the system in kJ\n",
+"W=(P1*V1-P2*V2)/(n-1);//Work developed in the process in kJ\n",
+"Q=U+W;//Heat transfer in the process in kJ\n",
+"\n",
+"//Output\n",
+"printf('(1)Heat transfer of the process Q = %3.0f kJ \n (2)Total change in Internal Energy U = %3.0f kJ \n (3)Non flow work in the process W = %3.0f kJ ',Q,U,W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Work_and_heat_transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"p1=170;//Initial pressure of the fluid in kPa\n",
+"p2=400;//Final pressure of the fluid in kPa\n",
+"v1=0.03;//Initial volume in m^3\n",
+"v2=0.06;//Final volume in m^3\n",
+"\n",
+"//Calculations\n",
+"U=3.15*[(p2*v2)-(p1*v1)];//The change in internal energy of the fluid in kJ\n",
+"A=[1 v1\n",
+" 1 v2] //Coefficient matrix\n",
+"B=[p1\n",
+" p2] //Constant matrix\n",
+"X=inv(A)*B;//Variable matrix\n",
+"W=[X(1)*(v2-v1)]+[X(2)*((v2^2-v1^2)/2)];//The work done during the process in kJ\n",
+"Q=U+W;//The heat transfer in kJ\n",
+"\n",
+"//Output\n",
+"printf('(a)The direction and magnitude of work W = %3.2f kJ \n (b)The direction and magnitude of heat transfer Q = %3.2f kJ ',W,Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/6-Introduction_to_heat_transfer.ipynb b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/6-Introduction_to_heat_transfer.ipynb
new file mode 100644
index 0000000..d8f8bd1
--- /dev/null
+++ b/Basic_Mechanical_Engineering_by_G_K_Pathak_and_D_K_Chavan/6-Introduction_to_heat_transfer.ipynb
@@ -0,0 +1,751 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Introduction to heat transfer"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: The_rate_of_heat_removed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"T1=7;//Inside temperature of refrigerator in degree centigrade \n",
+"T0=28;//Temperature in the kitchen in degree centigrade\n",
+"K1=40;//Thermal conductivity of mild steel in W/mC\n",
+"x1=0.03;//Thickness of mild sheets in m\n",
+"K3=40;//Thermal conductivity of the mild steel in W/mC\n",
+"x3=0.03;//Thickness of another side mild sheet in m\n",
+"x2=0.05;//Thickness of glass wool insulated in m\n",
+"hi=10;//Heat transfer coefficient in the inner surface of refrigerator in W/m^2 C\n",
+"ho=12.5;//Heat transfer coefficient in the outer surface of refrigerator in W/m^2 C\n",
+"K2=0.04;//Thermal conductivity of glass in W/mC\n",
+"\n",
+"//Calculations\n",
+"Q=(T1-T0)/((1/hi)+(x1/K1)+(x2/K2)+(x3/K3)+(1/ho));//Heat transfer per unit area in W/m^2\n",
+"\n",
+"//Output\n",
+"printf('The rate of heat removed from the refrigirator Q = %3.3f W/m^2 ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Heat_loss_and_maximum_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Input data\n",
+"x1=0.2;//Thickness of the fire brick\n",
+"x2=0.2;//Thickness of the common brick\n",
+"Ti=1400;//Temperature of hot gases in the inner surface of the brick in degree centigrade\n",
+"To=50;//Temperature of gases in the outer surface of the brick in degree centigrade\n",
+"h1=16.5;//Convection heat transfer coefficient on gas side in W/mC\n",
+"h2=17.5;//radiation heat transfer coefficient on gas side in W/mC\n",
+"h3=12.5;//Convection heat transfer coefficient on outer side in W/mC\n",
+"h4=6.5;//Radiation heat transfer coeeficient on outer side in W/mC\n",
+"K1=4;//Thermal conductivity of fire brick in W/mC\n",
+"K2=0.65;//Thermal conductivity of common brick in W/mC\n",
+"\n",
+"//Calculations \n",
+"hi=h1+h2;//Total heat transfer coefficient in inner in W/mC\n",
+"ho=h3+h4;//Total heat transfer coefficient in outer in W/mC\n",
+"Q=(Ti-To)/((1/hi)+(x1/K1)+(x2/K2)+(1/ho));//Heat flow through the furnace composite wall per unit area in W/m^2\n",
+"Q1=Q/1000;//Heat flow through the furnace composite wall per unit area in kW/m^2\n",
+"T1=Ti-(Q/hi);//Temperature at the inside of the fire brick in degree centigrade\n",
+"T2=T1-(Q*(x1/K1));//Maximum temperature to which common brick is subjected in degree centigrade\n",
+"\n",
+"//Output\n",
+"printf('(a)Heat loss per m^2 area of the furnace wall Q = %3.2f kW/m^2 \n (b)Maximum temperature to which common brick is subjected T1 = %3.3f degree centigrade \n similarly on other side T2 = %3.3f degree centigrade',Q1,T1,T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: The_thickness_of_brick.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"K1=0.93;//Thermal conductivity of fire clay in W/mC\n",
+"K2=0.13;//Thermal conductivity of diatomite brick in W/mC\n",
+"K3=0.7;//Thermal conductivity of red brick in W/mC\n",
+"x1=0.12;//Thickness of fire clay in m\n",
+"x2=0.05;//Thickness of diatomite in m\n",
+"x3=0.25;//Thickness of brick in m\n",
+"T=1;//Assume the difference between temperature in degree centigrade\n",
+"\n",
+"//Calculations\n",
+"Q=(T)/((x1/K1)+(x2/K2)+(x3/K3));//The heat flow per unit area in W/m^2\n",
+"X3=K3*((T/Q)-(x1/K1));//Thickness of the red brick layer in m\n",
+"X=X3*100;//Thickness of the red brick layer in cm\n",
+"\n",
+"//Output\n",
+"printf('The thickness of the red brick layer, \n if the brick work is to be laid with out diatomic is %3.3f cm ',X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: The_rate_of_heat_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"R1=0.06;//Thickness of material layer in m\n",
+"R2=0.12;//Thickness of the two insulating materials in m\n",
+"R3=0.16;//Thickness of material layers with pipe in m\n",
+"K1=0.24;//Thermal conductivity of one layer in W/mC\n",
+"K2=0.4;//Thermal conductivity of another layer in W/mC\n",
+"L=60;//Length of the pipe in m\n",
+"hi=60;//Heat transfer coefficient inside in W/m^2C\n",
+"ho=12;//Heat transfer coefficient outside in W/m^2C\n",
+"ti=65;//Temperature of hot air flowing in pipe in degree centigrade\n",
+"to=20;//Atmospheric temperature in degree centigrade\n",
+"pi=3.1428;//Constant value of pi\n",
+"\n",
+"//Calculations\n",
+"Q=(ti-to)*(2*pi*L)/((1/(hi*R1))+(log(R2/R1)/(K1))+(log(R3/R2)/(K2))+(1/(ho*R3)));//Rate of heat loss in W\n",
+"Q1=Q/1000;//Rate of heat loss in kW\n",
+"\n",
+"//Output\n",
+"printf('The rate of heat loss Q = %3.5f kW ',Q1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: Heat_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"R1=8;//Inner radius of the pipe in cm\n",
+"R2=8.5;//Outter radius of the pipe in cm\n",
+"x1=3;//Thickness of first layer in cm\n",
+"x2=5;//Thickness of second layer in cm\n",
+"T1=300;//Inner surface temperature of the steam pipe in degree centigrade\n",
+"pi=3.1428;//Constant value of pi \n",
+"T4=50;//Temperature at outer surface of insulation in degree centigrade\n",
+"L=1;//Length of the pipe in m\n",
+"K1=50;//Thermal conductivity of pipe in W/mC\n",
+"K2=0.15;//Thermal conductivity of first layer in W/mC\n",
+"K3=0.08;//Thermal conductivity of second layer in W/mC\n",
+"h=2751;//Enthalpy of dry and saturated steam at 300 degree centigrade in kJ/kg\n",
+"q=40;//Quantity of steam flow in gm/hr\n",
+"hf=1345;//Enthalpy of fluid at 300 degree centigrade in kJ/kg\n",
+"hfg=1406;//enthalpy at 300 degree centigrade in kJ/kg\n",
+"\n",
+"//Calculations\n",
+"R3=R2+x1;//Radius of pipe with first layer\n",
+"R4=R3+x2;//Radius of pipe with two layers\n",
+"Q=(2*pi*L*(T1-T4))/((log(R2/R1)/(K1))+(log(R3/R2)/(K2))+(log(R4/R3)/(K3)));//Quantity of heat loss per meter length of pipe in W/m\n",
+"Q1=Q/1000;//Quantity of heat loss per meter length of pipe in kW\n",
+"Q2=Q1*3600;//Quantity of heat loss per meter length of pipe in kJ/hr\n",
+"hg=((h)-(Q2/q));//Enthalpy of steam in kJ/kg\n",
+"x=(hg-hf)/(hfg);//Dryness fraction of steam\n",
+"\n",
+"//Output\n",
+"printf('(a)The quantity of heat lost per meter length of steam pipe Q = %3.1f kJ/hr \n (b)The quantity of steam coming out of one meter length pipe x = %3.5f gm/hr ',Q2,x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: Heat_transfer_and_conductance_and_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"x=0.3;//Thickness of brick wall in m\n",
+"ti=24;//Inside surface temperature of wall in degree centigrade\n",
+"to=-6;//Outside surface temperature of wall in degree centigrade\n",
+"h=2.75;//Height of the wall in m\n",
+"L=6.1;//Length of the wall in m\n",
+"K=2.6;//Thermal conductivity of brick material in kJ/m hr C\n",
+"\n",
+"//Calculations\n",
+"T=ti-to;//Temperature difference across the wall in degree centigrade\n",
+"A=h*L;//Area of the wall in m^2\n",
+"Q=(K*A*T)/(x);//Heat transfer through conduction by the wall per hour in kJ/hr\n",
+"R=T/Q;//Resistance of the wall in hr C/kJ\n",
+"C=1/R;//Conductance of the wall in kJ/hr C\n",
+"\n",
+"//Output\n",
+"printf('(a)The heat transfer by conduction through the wall per hr Q = %3.1f kJ/hr \n (b)The resistance of the wall R = %3.4f hr C/kJ \n The conductance of the wall C = %3.2f kJ/hr C ',Q,R,C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: Reduction_in_heat_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear \n",
+"//Input data\n",
+"x1=0.3;//Thickness of refractory bricks in m\n",
+"K1=5.66;//Thermal conductivity of refractory bricks in kJ/hr mC\n",
+"t1=1650;//Inner surface temperature of the wall in degree centigrade\n",
+"t2=320;//Outside surface temperature of the wall in degree centigrade\n",
+"x2=0.3;//Thickness of insulating brick in m\n",
+"K2=1.26;//Thermal conductivity of insulating brick in kJ/hr mC\n",
+"A=1;//unit surface area in m^2\n",
+"t3=27;//Outside surface temperature of the brick in degree centigrade\n",
+"\n",
+"//Calculations \n",
+"T1=t1-t2;//Temperature difference in degree centigrade\n",
+"Q1=(K1*A*T1)/(x1);//Heat loss without insulation in kJ/hr/m^2\n",
+"R1=(K1*A)/(x1);//Heat loss for the change in temperature for refractory brick wall material in kJ/hrC\n",
+"R2=(K2*A)/(x2);//Heat loss for the change in temperature for insulated brick wall material kJ/hrC\n",
+"Q2=(t1-t3)/((1/R1)+(1/R2));//Heat loss with insulation in kJ/hr/m^2\n",
+"Q3=Q1-Q2;//Reduction in heat loss through the wall in kJ/hr/m^2\n",
+"\n",
+"//Output\n",
+"printf('The reduction in heat loss through the wall is %3.2f kJ/hr/m^2 ',Q3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.17: Leakage_and_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"L=4.6;//Length of the wall in m\n",
+"b=2.3;//Breadth of the wall in m\n",
+"x1=0.025;//Thickness of the wood in m\n",
+"x2=0.075;//Thickness of the cork slabbing in m\n",
+"x3=0.115;//Thickness of the brick in m\n",
+"t1=18;//Exterior temperature of the wall in degree centigrade\n",
+"t4=-20;//Interior temperature of the wall in degree centigrade\n",
+"K1=7.5;//Thermal conductivity of the wood in kJ/hr mC\n",
+"K2=1.9;//Thermal conductivity of the wood in kJ/hr.mC\n",
+"K3=41;//Thermal conductivity of the brick in kJ/hr mC\n",
+"\n",
+"//Calculations\n",
+"A=L*b;//Area of the wall in m^2\n",
+"R1=(K1*A)/(x1);//Heat loss for the change in temperature for insulated wood material in kJ/hrC\n",
+"R2=(K2*A)/(x2);//Heat loss for the change in temperature for cork material in kJ/hrC\n",
+"R3=(K3*A)/(x3);//Heat loss for the change in temperature for brick in kJ/hrC\n",
+"Q=(t1-t4)/(1/R1+1/R2+1/R3);//Heat loss with insulation in kJ/hr\n",
+"Q1=Q*24;//Heat loss with insulation in kJ/24hr\n",
+"t2=t1-(Q/R1);//Interface temperature t2 in degree centigrade \n",
+"t3=t2-(Q/R2);//Interface temperature t3 in degree centigrade\n",
+"\n",
+"//Output \n",
+"printf('(a)The leakage through the wall per 24 hours Q = %3.2f kJ/24hr \n (b)Temperature at the interface t2 = %3.4f degree centigrade \n Temperature at interface t3 = %3.4f degree centigrade ',Q1,t2,t3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18: The_heat_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"L=0.3;//Thickness of the wall in m\n",
+"ti=320;//Inner surface temperature in degree centigrade\n",
+"to=38;//Outer surface temperature in degree centigrade\n",
+"A=1;//Assume unit area in m^2\n",
+"\n",
+"//Calculations\n",
+"Q=(A/L)*((0.01256/2)*(ti^2-to^2)-(4.2/3)*10^-6*(ti^3-to^3));//Heat loss per sq metre of surface area for a furnace wall in kJ/hr/m^2\n",
+"\n",
+"//Output\n",
+"printf('The heat loss per sq metre of surface area for a furnace wall Q = %3.1f kJ/hr/m^2 ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19: The_heat_loss_and_the_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"d=11.5;//Outer diameter of steam pipe line in cm\n",
+"t1=5;//Thickness of first layer in cm\n",
+"K1=0.222;//Thermal conductivity of first layer in kJ/hr mC\n",
+"t2=3;//Thickness of second layer in cm\n",
+"pi=3.1428;//Constant value of pi\n",
+"K2=3.14;//Thermal conductivity of second layer in kJ/hr mC\n",
+"T1=235;//Outside surface temperature of steam pipe in degree centigrade\n",
+"T3=38;//Outer surface of lagging in degree centigrade\n",
+"L=1;//Length of the pipe in m\n",
+"\n",
+"//Calculations\n",
+"I=log((d+(2*t1))/d);//For inner layer calculation\n",
+"O=log((d+(2*t1)+(2*t2))/(d+(2*t1)));//For outer layer calculations\n",
+"R1=(2*pi*L*K1)/I;//Heat loss for change in temperature for first insulated material in kJ/hC\n",
+"R2=(2*pi*L*K2)/O;//Heat loss for the change in temperature for second insulated material in kJ/hC\n",
+"Q=(T1-T3)/(1/R1+1/R2);//Heat loss per metre length of pipe per hr in kJ/hr\n",
+"T2=T1-(Q/R1);//Temperature between the two layers of insulation in degree centigrade\n",
+"\n",
+"//Output\n",
+"printf('(a)The heat loss per metre length of pipe per hr Q = %3.2f kJ/hr \n (b)Temperature between the two layers of insulation T= %3.2f degree centigrade ',Q,T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Heat_transfer_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"t1=270;//Temperature inside surface of the furnace wall in degree centigrade\n",
+"t3=20;//Temperature outside surface is dissipating heat by convection into air in degree centigrade\n",
+"L=0.04;//Thickness of the wall in m\n",
+"K=1.2;//Thermal conductivity of wall in W/m-K\n",
+"t2=70;//Temperature of outside surface should not exceed in degree centigrade\n",
+"A=1;//Assuming area in m^2\n",
+"\n",
+"//Calculations\n",
+"Q1=(K*A*(t1-t2))/(L);//Heat transfer through the furnace wall in W\n",
+"hc=(Q1)/(A*(t2-t3));//Heat transfer coefficient in W/m^2K\n",
+"\n",
+"//Output\n",
+"printf('The minimum value of heat transfer coefficient at the outer surface hc = %3.1f W/m^2K',hc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20: The_rate_of_heat_flow.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"t1=24;//Temperature at the outside surface in degree centigrade \n",
+"t4=-15;//Temperature at the inner surface in degree centigrade\n",
+"A=1;//Assuming unit area in m^2\n",
+"K1=23.2;//Thermal conductivity of steel in W/mC\n",
+"K2=0.014;//Thermal conductivity of glasswood in W/mC\n",
+"K3=0.052;//Thermal conductivity of plywood in W/mC\n",
+"x1=0.0015;//Thickness of steel sheet at outer surface in m\n",
+"x2=0.02;//Thickness of glasswood in between in m\n",
+"x3=0.01;//Thickness of plywood at a inner surface in m\n",
+"\n",
+"//Calculations\n",
+"R1=(K1*A)/x1;//Heat loss for the change in temperature for first insulated material\n",
+"R2=(K2*A)/x2;//Heat loss for the change in temperature for second insulated material\n",
+"R3=(K3*A)/x3;//Heat loss for the change in temperature for third insulated material\n",
+"Q=(t1-t4)/(1/R1+1/R2+1/R3);//The rate of heat flow in W/m^2\n",
+"\n",
+"//Output\n",
+"printf('The rate of heat flow Q = %3.2f W/m^2 ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Emissive_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"t1=30;//Normal temperature of black body in degree centigrade\n",
+"t2=100;//Heated temperature of black body in degree centigrade\n",
+"s=20.52*10^-8;//Stefan Boltzmann constant in kJ/hrK^4\n",
+"A=1;//Assume area in m^2\n",
+"\n",
+"//Calculations\n",
+"T1=273+t1;//Black body temperatures in kelvin K\n",
+"T2=273+t2;//Heated temperature of black body in kelvin K\n",
+"E=s*(T2^4-T1^4);//Increase of emissive power in kJ/hr\n",
+"\n",
+"//Output\n",
+"printf('The change in its emissive power E= %3.4f kJ/hr',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Temperature_and_Heat_transfer_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"L=0.012;//Wall thickness of a mild steel tank in m\n",
+"t1=100;//Temperature of water in tank in degree centigrade\n",
+"t4=20;//Atmospheric temperature of air in degree centigrade\n",
+"K=50;//Thermal conductivity of mild steel in W/m-K\n",
+"hi=2850;//Convection heat transfer coefficient on water side in W/m^2-K\n",
+"ho=10;//Convection heat transfer coefficient on air side in W/m^2-K\n",
+"Q1=60;//Heat trasfer from the incandicent lamp in W\n",
+"s=5.67*10^-8;//Stefan boltzmann constant in W/m^2/K^4\n",
+"T1=2500;//Lamp surface temperature in K\n",
+"T2=300;//Room temperature in K\n",
+"A=1;//Assuming area in m^2\n",
+"\n",
+"//Calculations\n",
+"T=t1-t4;//Temperature difference in degree centigrade\n",
+"Q=(T)/((1/hi)+(L/K)+(1/ho));//Rate of heat loss per m^2 area of surface of tank in W\n",
+"t3=(Q/(ho*A))+(t4);//Temperature of the outside surface in degree centigrade\n",
+"U=(Q)/(A*T);//Overall Heat transfer coefficient in W/m^2/K\n",
+"a=(Q1)/(s*(T1^4-T2^4));//surface area of the coil in m^2\n",
+"a1=a*10^6;//Surface area of the coil in mm^2\n",
+"\n",
+"//Output\n",
+"printf('(a) The rate of heat loss per sq m area of the tank Q = %3.2f W \n (b) Overall heat transfer coefficient U = %3.2f W/m^2/K \n (c) Temperature of the outside surface of tank t3 = %3.2f degree centigrade \n (d)The surface area of the coil is %3.3f mm^2',Q,U,t3,a1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Heat_loss_rate_and_Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"A1=3.5;//Area of the boiler plate in m^2\n",
+"X2=0.02;//Thickness of the plate in m\n",
+"K2=50;//Thermal conductivity of plate in W/m-K\n",
+"X1=0.002;//Thickness of layer inside boiler in m\n",
+"K1=1;//Thermal conductivity of layer in W/m-K\n",
+"t1=250;//The hot gas temperature of the plate in degree centigrade\n",
+"t3=200;//Temperature of cold air in degree centigrade\n",
+"\n",
+"//Calculations \n",
+"T=t1-t3;//Temperature difference in degree centigrade\n",
+"Q=(T*A1)/((X1/K1)+(X2/K2));//Rate of heat loss in W\n",
+"Q1=Q/1000;//Rate of heat loss in kJ/s\n",
+"Q2=Q1*3600;//Rate of heat loss in kJ/hr\n",
+"\n",
+"//Output\n",
+"printf('(a)Rate of heat loss in kJ/s = %3.2f kJ/s \n (b)Rate of heat loss per hour Q = %3.2f kJ/hr ',Q1,Q2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Rate_of_heat_loss_and_Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data \n",
+"L1=0.225;//Thickness of the brick in m\n",
+"K1=4.984;//Thermal conductivity of brick in kJ/hr m C/m\n",
+"L2=0.125;//Thickness of insulating brick in m\n",
+"K2=0.623;//Thermal conductivity of insulating brick in kJ/hr m C /m\n",
+"Ti=1650;//Temperature inside the furnace in degree centigrade\n",
+"hl=245.28;//Conductance at inside wall in kJ/hr m^2 C\n",
+"ho=40.88;//Conductance at outside wall in kJ/hr m^2 C\n",
+"To=27;//Temperature of surrounding atmosphere in degree centigrade \n",
+"\n",
+"//Calculations \n",
+"R=((1/hl)+(L1/K1)+(L2/K2)+(1/ho));//Total resistance of the wall in C hr/kJ\n",
+"q=(Ti-To)/R;//Rate of heat loss per m^2 of the wall in kJ/hr m^2\n",
+"T1=Ti-(q*(1/hl));//Inner surface temperature in degree centigrade\n",
+"T3=Ti-(q*((1/hl)+(L1/K1)+(L2/K2)));//Outer surface temperature in degree centigrade\n",
+"\n",
+"//Output\n",
+"printf('(a)The rate of heat loss per sq m of the wall q = %3.2f kJ/hr m^2 \n (b)The temperature at the inner surface T1 = %3.2f degree centigrade \n (c)The temperature at the outer surface T3 = %3.2f degree centigrade ',q,T1,T3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: The_heat_transfer_and_conductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"x=0.3;//Thickness of the wall in degree centigrade\n",
+"t1=24;//Inside surface temperature of the wall in degree centigrade\n",
+"t2=-6;//Outside temperature of wall in degree centigrade\n",
+"h=2.75;//Height of the wall in m\n",
+"L=6.1;//Length of the wall in m\n",
+"K=2.6;//Coefficient of conductivity of brick in kJ/hr m C\n",
+"\n",
+"//Calculations \n",
+"A=h*L;//Area of the wall in m^2\n",
+"T=t2-t1;//Temperature difference in degree centigrade\n",
+"q=(K*A*(-T))/(x);//Heat transfer by conduction in kJ/hr\n",
+"R=(t1-t2)/q;//Resistance of the wall in C hr/kJ\n",
+"C=1/R;//Conductance of the wall in kJ/m C\n",
+"\n",
+"//Output\n",
+"printf('(a)The heat transfer by conduction through the wall q = %3.2f kJ/hr \n (b)Resistance of the wall R = %3.5f C hr/kJ \n Conductance of the wall C= %3.2f kJ/m C',q,R,C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: The_energy_received.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data \n",
+"T=300;//Temperature of the earth as a black body in K\n",
+"s=20.52*10^-8;//Stefan Boltzmann constant in kJ/hr m^2 T^4\n",
+"\n",
+"//Calculations \n",
+"Q=s*T^4;//Heat received by unit area on the earths surface perpendicular to solar rays in kJ/hr\n",
+"\n",
+"//Output\n",
+"printf('Heat received by the unit area of earths surface Q = %3.2f kJ/hr',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: The_loss_of_heat.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"D=0.07;//Diameter of the steel tube in m\n",
+"L=3;//Length of the steel tube\n",
+"t1=227;//Temperature of the steel tube in m\n",
+"t2=27;//Temperature of the room in degree centigrade\n",
+"s=20.52*10^-8;//Stefan Boltzmann constant in kJ/hr m^2 T^4\n",
+"pi=3.1428;//Constant value of pi\n",
+"\n",
+"//Calculations \n",
+"A=2*pi*D*L;//Surface area of the tube in m^2\n",
+"Q=(A)*(s)*((t1+273)^4-(t2+273)^4);//Loss of heat by radiation in kJ/hr\n",
+"Q1=Q/3600;//Loss of heat by radiation in kW\n",
+"\n",
+"//Output\n",
+"printf('The loss of heat by radiation from steel tube Q = %3.4f kW ',Q1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}