diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb')
-rw-r--r-- | Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb | 455 |
1 files changed, 455 insertions, 0 deletions
diff --git a/Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb b/Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb new file mode 100644 index 0000000..7087ec2 --- /dev/null +++ b/Basic_Engineering_Thermodynamics_by_R_Joel/17-Engine_and_plant_trials.ipynb @@ -0,0 +1,455 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Engine and plant trials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: indicated_and_brake_output_mechanical_efficiency_and_energy_balance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.1');\n", +"\n", +"// aim : To determine\n", +"// the indicated and brake output and the mechanicl efficiency\n", +"// draw up an overall energy balance and as % age\n", +"\n", +"// given values\n", +"h = 21;// height of indicator diagram, [mm]\n", +"ic = 27;// indicator calibration, [kN/m^2 per mm]\n", +"sv = 14*10^-3;// swept volume of the cylinder;,[m^3]\n", +"N = 6.6;// speed of engine, [rev/s]\n", +"ebl = 77;// effective brake load, [kg]\n", +"ebr = .7;// effective brake radious, [m]\n", +"fc = .002;// fuel consumption, [kg/s]\n", +"CV = 44000;// calorific value of fuel, [kJ/kg]\n", +"cwc = .15;// cooling water circulation, [kg/s]\n", +"Ti = 38;// cooling water inlet temperature, [C]\n", +"To = 71;// cooling water outlet temperature, [C]\n", +"c = 4.18;// specific heat capacity of water, [kJ/kg]\n", +"eeg = 33.6;// energy to exhaust gases, [kJ/s]\n", +"g = 9.81;// gravitational acceleration, [m/s^2]\n", +"\n", +"// solution\n", +"PM = ic*h;// mean effective pressure, [kN/m^2]\n", +"LA = sv;// swept volume of the cylinder, [m^3]\n", +"ip = PM*LA*N/2;// indicated power,[kW]\n", +"T = ebl*g*ebr;// torque, [N*m]\n", +"bp = 2*%pi*N*T;// brake power, [W]\n", +"n_mech = bp/ip*10^-3;// mechanical efficiency\n", +"mprintf('\n The Indicated power is = %f kW\n',ip);\n", +"mprintf('\n The Brake power is = %f kW\n',bp*10^-3);\n", +"mprintf('\n The mechanical efficiency is = %f percent\n',n_mech);\n", +"\n", +"ef = CV*fc;// energy from fuel, [kJ/s]\n", +"eb = bp*10^-3;// energy to brake power,[kJ/s]\n", +"ec = cwc*c*(To-Ti);// energy to coolant,[kJ/s]\n", +"es = ef-(eb+ec+eeg);// energy to surrounding,[kJ/s]\n", +"\n", +"disp('Energy can be tabulated as :-');\n", +"disp('----------------------------------------------------------------------------------------------------');\n", +"disp(' kJ/s Percentage ')\n", +"disp('----------------------------------------------------------------------------------------------------');\n", +"mprintf('\n Energy from fuel %f %f\n Energy to brake power %f %f\n Energy to coolant %f %f\n Energy to exhaust %f %f\n Energy to suroundings,etc. %f %f\n',ef,ef/ef*100,eb,eb/ef*100,ec,ec/ef*100,eeg,eeg/ef*100,es,es/ef*100);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.2: EX17_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.2');\n", +"\n", +"// aim : To determine\n", +"// (a) bp\n", +"// (b) ip\n", +"// (c) mechanical efficiency\n", +"// (d) indicated thermal efficiency\n", +"// (e) brake specific steam consumption\n", +"// (f) draw up complete energy account for the test one-minute basis taking 0 C as datum\n", +"\n", +"// given values\n", +"d = 200*10^-3;// cylinder diameter, [mm]\n", +"L = 250*10^-3;// stroke, [mm]\n", +"N = 5;// speed, [rev/s]\n", +"r = .75/2;// effective radious of brake wheel, [m]\n", +"Ps = 800;// stop valve pressure, [kN/m^2]\n", +"x = .97;// dryness fraction of steam\n", +"BL = 136;// brake load, [kg]\n", +"SL = 90;// spring balance load, [N]\n", +"PM = 232;// mean effective pressure, [kN/m^2]\n", +"Pc = 10;// condenser pressure, [kN/m^2]\n", +"m_dot = 3.36;// steam consumption, [kg/min]\n", +"CC = 113;// condenser cooling water, [kg/min]\n", +"Tr = 11;// temperature rise of condenser cooling water, [K]\n", +"Tc = 38;// condensate temperature, [C]\n", +"C = 4.18;// heat capacity of water, [kJ/kg K]\n", +"g = 9.81;// gravitational acceleration, [m/s^2]\n", +"\n", +"// solution\n", +"// from steam table\n", +"// at 800 kN/m^2\n", +"tf1 = 170.4;// saturation temperature, [C]\n", +"hf1 = 720.9;// [kJ/kg]\n", +"hfg1 = 2046.5;// [kJ/kg]\n", +"hg1 = 2767.5;// [kJ/kg]\n", +"vg1 = .2403;// [m^3/kg]\n", +"\n", +"// at 10 kN/m^2\n", +"tf2 = 45.8;// saturation temperature, [C]\n", +"hf2 = 191.8;// [kJ/kg]\n", +"hfg2 = 2392.9;// [kJ/kg]\n", +"hg2 = 2584.8;// [kJ/kg]\n", +"vg2 = 14.67;// [m^3/kg]\n", +"\n", +"// (a)\n", +"T = (BL*g-SL)*r;// torque, [Nm]\n", +"bp = 2*%pi*N*T*10^-3;// brake power,[W]\n", +"mprintf('\n (a) The brake power is = %f kW\n',bp);\n", +"\n", +"// (b)\n", +"A = %pi*d^2/4;// area, [m^2]\n", +"ip = PM*L*A*N*2;// double-acting so*2, [kW]\n", +"mprintf('\n (b) The indicated power is = %f kW\n',ip);\n", +"\n", +"// (c)\n", +"n_mec = bp/ip;// mechanical efficiency\n", +"mprintf('\n (c) The mechanical efficiency is = %f percent\n',n_mec*100);\n", +"\n", +"// (d)\n", +"h = hf1+x*hfg1;// [kJ/kg]\n", +"hf = hf2;\n", +"ITE = ip/((m_dot/60)*(h-hf));// indicated thermal efficiency\n", +"mprintf('\n (d) The indicated thermal efficiency is = %f percent\n',ITE*100);\n", +"// (e)\n", +"Bsc=m_dot*60/bp;// brake specific steam consumption, [kg/kWh]\n", +"mprintf('\n (e) The brake steam consumption is = %f kg/kWh\n',Bsc);\n", +"\n", +"// (f)\n", +"// energy balanvce reckoned from 0 C\n", +"Es = m_dot*h;// energy supplied, [kJ]\n", +"Eb = bp*60;// energy to bp, [kJ]\n", +"Ecc = CC*C*Tr;// energy to condensate cooling water, [kJ]\n", +"Ec = m_dot*C*Tc;// energy to condensate, [kJ]\n", +"Ese = Es-Eb-Ecc-Ec;// energy to surrounding,etc, [kJ]\n", +"\n", +"mprintf('\n (f) Energy supplied/min is = %f kJ\n',Es);\n", +"\n", +"mprintf('\n Energy to bp/min is = %f kJ\n',Eb);\n", +"mprintf('\n Energy to condenser cooling water/min is = %f kJ\n',Ecc);\n", +"mprintf('\n Energy to condensate/min is = %f kJ\n',Ec);\n", +"mprintf('\n Energy to surrounding, etc/min is = %f kJ\n',Ese);\n", +"\n", +"// answer in the book is misprinted\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.3: brake_power_fuel_consumption_thermal_efficiency_and_energy_balance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.3');\n", +"\n", +"// aim : To determine\n", +"// (a) the brake power\n", +"// (b) the brake specific fuel consumption\n", +"// (c) the indicated thermal efficiency\n", +"// (d) the energy balance, expressing the various items\n", +"\n", +"// given values\n", +"t = 30;// duration of trial, [min]\n", +"N = 1750;// speed of engine, [rev/min]\n", +"T = 330;// brake torque, [Nm]\n", +"mf = 9.35;// fuel consumption, [kg]\n", +"CV = 42300;// calorific value of fuel, [kJ/kg]\n", +"cwc = 483;// jacket cooling water circulation, [kg]\n", +"Ti = 17;// inlet temperature, [C]\n", +"To = 77;// outlet temperature, [C]\n", +"ma = 182;// air consumption, [kg]\n", +"Te = 486;// exhaust temperature, [C]\n", +"Ta = 17;// atmospheric temperature, [C]\n", +"n_mec = .83;// mechanical efficiency\n", +"c = 1.25;// mean specific heat capacity of exhaust gas, [kJ/kg K]\n", +"C = 4.18;// specific heat capacity, [kJ/kg K]\n", +"\n", +"// solution\n", +"// (a)\n", +"bp = 2*%pi*N*T/60*10^-3;// brake power, [kW]\n", +"mprintf('\n (a) The Brake power is = %f kW\n',bp);\n", +"\n", +"// (b)\n", +"bsf = mf*2/bp;//brake specific fuel consumption, [kg/kWh]\n", +"mprintf('\n (b) The brake specific fuel consumption is = %f kg/kWh\n',bsf);\n", +"\n", +"// (c)\n", +"ip = bp/n_mec;// indicated power, [kW]\n", +"ITE = ip/(2*mf*CV/3600);// indicated thermal efficiency\n", +"mprintf('\n (c) The indicated thermal efficiency is = %f percent\n',ITE*100);\n", +"\n", +"// (d)\n", +"// taking basis one minute \n", +"ef = CV*mf/30;// energy from fuel, [kJ]\n", +"eb = bp*60;// energy to brake power,[kJ]\n", +"ec = cwc/30*C*(To-Ti);// energy to cooling water,[kJ]\n", +"ee = (ma+mf)/30*c*(Te-Ta);// energy to exhaust, [kJ]\n", +"es = ef-(eb+ec+ee);// energy to surrounding,etc,[kJ]\n", +"\n", +"mprintf('\n (d) Energy from fuel is = %f kJ\n',ef);\n", +"mprintf('\n Energy to brake power is = %f kJ\n',eb);\n", +"mprintf('\n Energy to cooling water is = %f kJ\n',ec);\n", +"mprintf('\n Energy to exhaust is = %f kJ\n',ee);\n", +"mprintf('\n Energy to surrounding, etc is = %f kJ\n',es);\n", +" \n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.4: indicated_power_and_mechanical_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.4');\n", +"\n", +"// aim : To determine\n", +"// (a) the indicated power of the engine\n", +"// (b) the mechanical efficiency of the engine\n", +"\n", +"// given values\n", +"bp = 52;// brake power output, [kW]\n", +"bp1 = 40.5;// brake power of cylinder cut1, [kW]\n", +"bp2 = 40.2;// brake power of cylinder cut2, [kW]\n", +"bp3 = 40.1;// brake power of cylinder cut3, [kW]\n", +"bp4 = 40.6;// brake power of cylinder cut4, [kW]\n", +"bp5 = 40.7;// brake power of cylinder cut5, [kW]\n", +"bp6 = 40.0;// brake power of cylinder cut6, [kW]\n", +"\n", +"// sollution\n", +"ip1 = bp-bp1;// indicated power of cylinder cut1, [kW]\n", +"ip2 = bp-bp2;// indicated power of cylinder cut2, [kW]\n", +"ip3 = bp-bp3;// indicated power of cylinder cut3, [kW]\n", +"ip4 = bp-bp4;// indicated power of cylinder cut4, [kW]\n", +"ip5 = bp-bp5;// indicated power of cylinder cut5, [kW]\n", +"ip6 = bp-bp6;// indicated power of cylinder cut6, [kW]\n", +"\n", +"ip = ip1+ip2+ip3+ip4+ip5+ip6;// indicated power of engine,[kW]\n", +"mprintf('\n (a) The indicated power of the engine is = %f kW\n',ip);\n", +"\n", +"// (b)\n", +"n_mec = bp/ip;// mechanical efficiency\n", +"mprintf('\n (b) The mechanical efficiency of the engine is = %f percent\n',n_mec*100);\n", +"\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.5: brake_power_indicated_power_mechanical_efficiency_and_energy_balance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.5');\n", +"\n", +"// aim : To determine\n", +"// the brake power,indicated power and mechanicl efficiency\n", +"// draw up an energy balance and as % age of the energy supplied\n", +"\n", +"// given values\n", +"N = 50;// speed, [rev/s]\n", +"BL = 267;// break load.,[N]\n", +"BL1 = 178;// break load of cylinder cut1, [N]\n", +"BL2 = 187;// break load of cylinder cut2, [N]\n", +"BL3 = 182;// break load of cylinder cut3, [N]\n", +"BL4 = 182;// break load of cylinder cut4, [N]\n", +"\n", +"FC = .568/130;// fuel consumption, [L/s]\n", +"s = .72;// specific gravity of fuel\n", +"CV = 43000;// calorific value of fuel, [kJ/kg]\n", +"\n", +"Te = 760;// exhaust temperature, [C]\n", +"c = 1.015;// specific heat capacity of exhaust gas, [kJ/kg K]\n", +"Ti = 18;// cooling water inlet temperature, [C]\n", +"To = 56;// cooling water outlet temperature, [C]\n", +"mw = .28;// cooling water flow rate, [kg/s]\n", +"Ta = 21;// ambient tempearture, [C]\n", +"C = 4.18;// specific heat capacity of cooling water, [kJ/kg K]\n", +"\n", +"// solution\n", +"bp = BL*N/455;// brake power of engine, [kW]\n", +"bp1 = BL1*N/455;// brake power of cylinder cut1, [kW]\n", +"i1 = bp-bp1;// indicated power of cylinder cut1, [kW]\n", +"bp2 = BL2*N/455;// brake power of cylinder cut2, [kW]\n", +"i2 = bp-bp2;// indicated power of cylinder cut2, [kW]\n", +"bp3 = BL3*N/455;// brake power of cylinder cut3, [kW]\n", +"i3 = bp-bp3;// indicated power of cylinder cut3, [kW]\n", +"bp4 = BL4*N/455;// brake power of cylinder cut4, [kW]\n", +"i4 = bp-bp4;// indicated power of cylinder cut4, [kW]\n", +"\n", +"ip = i1+i2+i3+i4;// indicated power of engine, [kW]\n", +"n_mec = bp/ip;// mechanical efficiency\n", +"\n", +"mprintf('\n The Brake power is = %f kW\n',bp);\n", +"mprintf('\n The Indicated power is = %f kW\n',ip);\n", +"mprintf('\n The mechanical efficiency is = %f percent\n',n_mec*100);\n", +"\n", +"mf = FC*s;// mass of fuel/s, [kg]\n", +"ef = CV*mf;// energy from fuel/s, [kJ]\n", +"me = 15*mf;// mass of exhaust/s,[kg],(given in condition)\n", +"ee = me*c*(Te-Ta);// energy to exhaust/s,[kJ]\n", +"ec = mw*C*(To-Ti);// energy to cooling water/s,[kJ]\n", +"es = ef-(ee+ec+bp);// energy to surrounding,etc/s,[kJ]\n", +"\n", +"disp('Energy can be tabulated as :-');\n", +"disp('----------------------------------------------------------------------------------------------------');\n", +"disp(' kJ/s Percentage ')\n", +"disp('----------------------------------------------------------------------------------------------------');\n", +"mprintf('\n Energy from fuel %f %f\n Energy to brake power %f %f\n Energy to exhaust %f %f\n Energy to coolant %f %f\n Energy to suroundings,etc. %f %f\n',ef,ef/ef*100,bp,bp/ef*100,ee,ee/ef*100,ec,ec/ef*100,es,es/ef*100);\n", +"\n", +"// there is minor variation in the result reported in the book\n", +"// End" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.6: brake_power_fuel_consumption_and_thermal_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"disp('Example 17.6');\n", +"\n", +"// aim : To determine \n", +"// (a) the break power of engine\n", +"// (b) the fuel consumption of the engine\n", +"// (c) the brake thermal efficiency of the engine\n", +"\n", +"// given values\n", +"d = 850*10^-3;// bore , [m]\n", +"L = 2200*10^-3;// stroke, [m]\n", +"PMb = 15;// BMEP of cylinder, [bar]\n", +"N = 95/60;// speed of engine, [rev/s]\n", +"sfc = .2;// specific fuel oil consumption, [kg/kWh]\n", +"CV = 43000;// calorific value of the fuel oil, [kJ/kg]\n", +"\n", +"// solution\n", +"// (a)\n", +"A = %pi*d^2/4;// area, [m^2]\n", +"bp = PMb*L*A*N*8/10;// brake power,[MW]\n", +"mprintf('\n (a) The brake power is = %f MW\n',bp);\n", +"\n", +" // (b)\n", +" FC = bp*sfc;// fuel consumption, [kg/h]\n", +" mprintf('\n (b) The fuel consumption is = %f tonne/h\n',FC);\n", +" \n", +" // (c)\n", +" mf = FC/3600;// fuel used, [kg/s]\n", +" n_the = bp/(mf*CV);// brake thermal efficiency\n", +" mprintf('\n (c) The brake thermal efficiency is = %f percent\n',n_the*100);\n", +" \n", +" // End" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |