diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal')
9 files changed, 3277 insertions, 0 deletions
diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/1-Introduction_To_Electronics.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/1-Introduction_To_Electronics.ipynb new file mode 100644 index 0000000..68915ff --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/1-Introduction_To_Electronics.ipynb @@ -0,0 +1,32 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Introduction To Electronics" + ] + }, +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/12-Memory_Systems.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/12-Memory_Systems.ipynb new file mode 100644 index 0000000..1704395 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/12-Memory_Systems.ipynb @@ -0,0 +1,227 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Memory Systems" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Capacity_of_memory_chip.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"RAMbit= 2*4;//K bit RAM IC chip\n", +"// The capacity of the memory chip,\n", +"Capacity = RAMbit*2^10;// in bits\n", +"disp(Capacity,'The capacity (or density) of the memory chip in bits is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Required_address_bits.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.2\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"// (a) For 1024 number of bits\n", +"No_of_bits= 1024;// bits\n", +"Req_add_bits= log(No_of_bits)/log(2);\n", +"disp(Req_add_bits,'Address bits required for a memory that has 1024 number of bits');\n", +"\n", +"// (b) For 256 number of bits\n", +"No_of_bits= 256;// bits\n", +"Req_add_bits= log(No_of_bits)/log(2);\n", +"disp(Req_add_bits,'Address bits required for a memory that has 256 number of bits');\n", +"\n", +"// (c) For 4098 number of bits\n", +"No_of_bits= 4096;// bits\n", +"// 2^12= 4096, 2^13= 8192, where 4096<4098<8192 or 2^12<4098<2^13, hence\n", +"Req_add_bits= 13;\n", +"disp(Req_add_bits,'Address bits required for a memory that has 4098 number of bits');\n", +"\n", +"// d) For 16384 number of bits\n", +"No_of_bits= 16384;// bits\n", +"Req_add_bits= log(No_of_bits)/log(2);\n", +"disp(Req_add_bits,'Address bits required for a memory that has 16384 number of bits');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Bits_of_storage_and_lines_in_address_bus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"memory = 16;// in K\n", +"memory= memory*1024;// in bits\n", +"// Number of bits of storage,\n", +"Req_add_bits= log(memory)/log(2);\n", +"disp(Req_add_bits,'Number of bits of storage is : ')\n", +"disp(Req_add_bits,'Number of lines in address bus is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Number_of_address_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"memory= 16;// in K\n", +"wordBit= 8;\n", +"// Number of address\n", +"N= log((memory/wordBit)*1024)/log(2);\n", +"disp(N,'The number of address lines is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Memory_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.5\n", +"format('v',8)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"memory= 16;// in K\n", +"memory= memory*1024;// in bits\n", +"// Number of words\n", +"N1= memory;\n", +"disp(N1,'The number of words is : ')\n", +"N2= 32;// number of bits per word\n", +"disp(N2,'The number of bits per word is : ')\n", +"// Number of memory cell\n", +"N3= N2*memory;\n", +"disp(N3,'The number of memory cell is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Total_number_of_memory_cells.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 12.6\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N1= 16;// address input\n", +"inputs= 4;\n", +"outputs= 4;\n", +"// Total number of memory cells\n", +"N2= 2^N1*2^inputs;\n", +"disp(N2,'Total number of memory cells is : ')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/2-Semiconductor_Materials_And_Junction_Diode.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/2-Semiconductor_Materials_And_Junction_Diode.ipynb new file mode 100644 index 0000000..ff91a12 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/2-Semiconductor_Materials_And_Junction_Diode.ipynb @@ -0,0 +1,368 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Semiconductor Materials And Junction Diode" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Electron_and_hole_component_of_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.1\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10^10;// in /cc\n", +"p = n_i;// in /cc\n", +"n = n_i;// in /cc\n", +"miu_n = 1400;// in cm^2/V-s\n", +"miu_p = 450;//in cm^2/V-s\n", +"q = 1.6 * 10^-19;// in C\n", +"E = 20;// in V/cm\n", +"a= 5;// cross section area of Si bar in cm^2\n", +"sigma_n = n*q*miu_n;// in mho/cm\n", +"sigma_p = n*q*miu_p;// in mho/cm\n", +"// Electron current density \n", +"Jn = sigma_n*E;// in A\n", +"Jn= Jn*10^6;// in µA/cm^2\n", +"disp(Jn,'Electron current density in µA/cm^2 is');\n", +"// The hole current density \n", +"Jp = sigma_p*E;// in A/cm^2\n", +"Jp= Jp*10^6;// in µA/cm^2\n", +"disp(Jp,'The hole current density in µA/cm^2 is');\n", +"//The total current in the bar \n", +"total = (Jn+Jp)*a;// µA/cm^2\n", +"disp(total,'The total current in the bar in µA/cm^2 is');\n", +"format('e',8)\n", +"// The resistivity of the bar \n", +"rho = 1/(n_i*q*(miu_p+miu_n)*10^2);// in ohm-cm\n", +"disp(rho,'The resistivity of the bar in ohm-cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Peak_output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.2\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_F = 20;// in V\n", +"Vin = V_F;// in V\n", +"V_BE = 0.7;// in V\n", +"R1 = 500;//resistance in ohm\n", +"R2 = 10;// resistance in ohm\n", +"// Peak current though the diode\n", +"Ifpeak = (V_F-V_BE)/(R1+R2);// in A\n", +"Ifpeak = Ifpeak * 10^3;// in mA\n", +"disp(Ifpeak,'The peak current through the diode in mA is');\n", +"R_L = 500;// in ohm\n", +"// Peak output voltage\n", +"Vpeakout = Ifpeak*10^-3*R_L;// in V\n", +"disp(Vpeakout,'The peak out voltage in V is');\n", +"// For ideal diode\n", +"Ifpeak = V_F/R_L;// in A\n", +"Ifpeak = Ifpeak * 10^3;// in mA\n", +"// The peak output voltage for ideal diode \n", +"Vpeakout= Ifpeak*10^-3*R_L;// in V\n", +"disp(Ifpeak,'The peak current for ideal diode in mA is');\n", +"disp(Vpeakout,'The peak output voltage for ideal diode in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Increase_in_forward_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t = 27;// in °C\n", +"t= t+273;// in °K\n", +"q= 1.6*10^-19;// electron charge in C\n", +"v = 200*10^-3;// in V\n", +"kt_by_q= 0.026;// in V\n", +"Io= 3*10^-7;// in A\n", +"// For large reverse bias I= Io*(%e^(q*v/(k*t)))\n", +"I= Io*(%e^(v/kt_by_q)-1);// in A\n", +"I= round(I*10^6);// in µA\n", +"disp(I,'The current flowing through the diode in µA is');\n", +"Idaso = Io*2^7;// in A\n", +"// r_ac = dv/di = 1/( Io*(1/kTdividedq)*(%e^(v/(kTdividedq))) );\n", +"r_ac = 1/( Io*(1/kt_by_q)*(%e^(v/(kt_by_q))) );\n", +"disp(r_ac,'The ac resistance in ohm is : ');\n", +"kt_by_q = 0.032;// in V\n", +"I1 = Idaso * ((%e^(v/(kt_by_q))) - 1);// in A\n", +"I1 = I1 * 10^3;// in mA\n", +"delI = I1-(I*10^-3);// in mA\n", +"disp(delI,'The increase in forward current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Slope_of_the_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.4\n", +"format('e',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V = 30;//applied forward voltage in V\n", +"R_L = 3;//load resistance in k ohm\n", +"R_L = R_L * 10^3;// in ohm\n", +"Imax = V/R_L;// maximum diode current in A\n", +"Imax = Imax * 10^3;// in mA\n", +"slope = -1/R_L;// in mho\n", +"plot([V,0],[0,Imax]);\n", +"xlabel('V_F in volts');\n", +"ylabel('I_F in mA');\n", +"title('DC load line');\n", +"disp('DC load line shown in figure')\n", +"disp(slope,'The slope of the line in mho is');\n", +"\n", +"// Note: There is calculation error to find the value of slope because -1/3kΩ = -3.33*10^-4 mho, not = -3.33*10^-3 mho" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Maximum_and_minimum_values_of_the_instantaneous_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vp= '[4+0.2*sin(omega*t)]';// in V\n", +"Ip= '[4+0.3*sin(omega*t)]';// in mA\n", +"//The instantaneous power dissipated, P= Vp*Ip = [4+0.2*sind(wt)]*[4+0.3*sind(wt)] \n", +"// and putting, sin^2(omega*t)= 1/2-1/2*cos(2*omega*t)\n", +"P= '[16.03+2*sin(omega*t)-0.03*cos(2*omega*t)]*10^-3';// in W\n", +"disp(P,'The instantaneous power dissipated in the diode in W is : ')\n", +"// Pmax occurs when omega*t=90, so\n", +"omega_t= 90;// in °\n", +"Pmax= [16.03+2*sind(omega_t)-0.03*cosd(2*omega_t)]*10^-3;// in W\n", +"disp(Pmax,'The maximum value of instantaneous power dissipated in W is : ')\n", +"// Pmin occurs when omega*t=-90, so\n", +"omega_t= -90;// in °\n", +"Pmin= [16.03+2*sind(omega_t)-0.03*cosd(2*omega_t)]*10^-3;// in W\n", +"disp(Pmin,'The minimum value of instantaneous power dissipated in W is : ');\n", +"// The average power dissipated\n", +"Pav=(Pmax+Pmin)/2;// in W\n", +"disp(Pav,'The average power dissipated in the diode in W is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Load_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.6\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R_L = 50;// in ohm\n", +"V = 10;// in V\n", +"R = 5;// in ohm\n", +"V_D = (V*R)/(R_L+R);// in V\n", +"R_D = (R_L*R)/(R_L+R);// in ohm\n", +"I_D = V_D/R_D;// in A\n", +"I_D = I_D * 10^3;// in mA\n", +"plot([V_D,0],[0,I_D])\n", +"xlabel('V_D in volts');\n", +"ylabel('I_D in mA');\n", +"title('DC load line');\n", +"disp('DC load line shown in figure')\n", +"slope = -1/R_D;\n", +"disp(slope,'The slope of the dc load line is : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Value_of_Is.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.7\n", +"format('e',8)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T= 26*10^-3;// in V\n", +"T = 300;// in K\n", +"V = 0.25;// in V\n", +"I= 10 * 10^-3;// in A\n", +"// I = I_S*( (%e^(V/(n*kTdividedq)))-1 ) = I_S*( (%e^(V/V_T))-1 );\n", +"I_S= I/(%e^(V/V_T)-1);// in A\n", +"disp(I_S,'The reverse saturate current in amp. is : ')\n", +"format('v',6)\n", +"// For 1 mA current\n", +"I = 1;// in mA\n", +"I = I*10^-3;// in A\n", +"V = (1/38.46)*log(I/I_S);// in V\n", +"disp(V,'The bias voltage needed for 1 mA in V is');\n", +"// For 100 mA current\n", +"I = 100;// in mA\n", +"I = I * 10^-3;// in A\n", +"V = (1/38.46)*log(I/I_S);// in V\n", +"disp(V,'The bias voltage needed for 100 mA in V is');\n", +"\n", +"// Note: Answer in the book is not accurate." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Reverse_saturation_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.8\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T= 25*10^-3;// in V\n", +"// I = Io*( (%e^(V/V_T))-1 );\n", +"I = 1;// in mA\n", +"I = I * 10^-3;// in A\n", +"V = 0.15;// in V\n", +"Io = I/( (%e^((1/V_T)*V))-1 );// in A\n", +"Io = Io * 10^6;// in µA\n", +"disp(Io,'The reverse saturation current at room temperature in µA is');\n", +"// Io doubles for every 10°C-rise in temperature. Thus at 40°C\n", +"Io_new= 4*Io;//new value of reverse saturation current in µA\n", +"disp(Io_new,'The reverse saturation current at 40 °C in µA is');\n", +"I = 100;// in mA\n", +"I = I * 10^-3;// in A\n", +"// I = Io*( (%e^((1/V_T)*V))-1 );\n", +"V = (1/40)*log( I/(Io*10^-6) );// in V\n", +"disp(V,'The forward bias voltage in V is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/3-Junction_Diode_and_Their_Applications.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/3-Junction_Diode_and_Their_Applications.ipynb new file mode 100644 index 0000000..db03a42 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/3-Junction_Diode_and_Their_Applications.ipynb @@ -0,0 +1,451 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Junction Diode and Their Applications" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Value_of_limiting_resistance_R1_and_R2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vz1= 10;//voltage across zener diode, Z1 in V\n", +"Vz2= 5;// voltage across zener diode, Z2 in V\n", +"Iz1= 30*10^-3;// current through zener diode, Z1 in A\n", +"Iz2= 15*10^-3;// current through zener diode, Z1 in A\n", +"I_knee= 5*10^-3;//knee current of zener diode,Z1 in A\n", +"R_L=500;//load resistance in ohm\n", +"R= 1*10^3;// in ohm\n", +"V_B= 25;// in V\n", +"// Current through RL,\n", +"I_RL= Vz2/R_L;// in A\n", +"// Current through R2,\n", +"I_R2= Iz2+Vz2/R_L;// in A\n", +"// Voltage across resistance R2,\n", +"V_R2= Vz1-Vz2;// in V\n", +"R2= V_R2/I_R2;// in ohm\n", +"disp(R2,'The value of resistance R2 in ohm is : ')\n", +"// Current through R1,\n", +"I_R1= Iz1+Vz1/R+I_R2;//in A\n", +"// Voltage across R1,\n", +"V_R1= V_B-Vz1;// in V\n", +"R1= V_R1/I_R1;// in ohm\n", +"disp(R1,'The value of resistance R1 in ohm is : ')\n", +"// Current through R1,\n", +"I_R1= I_knee+Vz1/R+I_R2;// in mA\n", +"// Voltage across R1,\n", +"V_R1= I_R1*R1;// in volts\n", +"V_Bmin= Vz1+V_R1;// in V\n", +"disp(V_Bmin,'The lowest power supply voltage in volts is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Im_Idc_Irms_and_Ripple_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.1\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"// V = 50 * snid(omega*t);\n", +"Vm = 50;// in V\n", +"r_d = 20;// in ohm\n", +"R_L = 800;// in ohm\n", +"Im = Vm/(r_d+R_L);// in A\n", +"Im = Im * 10^3;// in mA\n", +"disp(Im,'The value of Im in mA is');\n", +"Idc = Im/%pi;// in mA\n", +"disp(Idc,'The value of Idc in mA is');\n", +"Irms = Im/2;// in mA\n", +"disp(Irms,'The value of Irms in mA is');\n", +"// The ac power input\n", +"P_ac_input = (Irms*10^-3)^2*(r_d+R_L);// in W\n", +"disp(P_ac_input,'The ac power input in W is');\n", +"P_dc_output = (Idc*10^-3)^2*R_L;// in W\n", +"// The dc power output \n", +"disp(P_dc_output,'The dc power output in W is');\n", +"// The dc output voltage \n", +"V_dc_out = Idc*10^-3*R_L;// in V\n", +"disp(V_dc_out,'The dc output voltage in V is');\n", +"//The Efficiency of rectification, Eta = ((Idc^2*R_L)*100)/(Irms^2*(R_L+r_d)) = (8/%pi) * ((R_L*100)/(R_L+r_d))\n", +"Eta = 8/%pi^2 * ((R_L*100)/(R_L+r_d));// in %\n", +"disp(Eta,'The Efficiency of rectification in % is');\n", +"ripplefactor = sqrt( (Irms/Idc)^2 -1 );\n", +"disp(ripplefactor,'The ripple factor is');\n", +"\n", +"// Note: In the book, the calculation to evaluate the value of efficiency of rectification is wrong." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Required_PIV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.2\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vdc = 120;// in V\n", +"Vm = (%pi/2)*Vdc;// in V\n", +"disp(Vm,'The peak value of output voltage in V is');\n", +"Vpeak = 2*Vm;// in V\n", +"disp(Vpeak,'The peak value of voltage at transformer secondary in volts is : ')\n", +"Vrms = Vpeak/sqrt(2);// in V\n", +"disp(Vrms,'The r.m.s. value of voltage at transformer secondary in V is');\n", +"R_L = 250;// in k ohm\n", +"R_L = R_L * 10^3;// in ohm\n", +"Idc = Vdc/R_L;// in A\n", +"Idc= Idc*10^6;// in µA\n", +"disp(Idc,'The average current delivered to load in µA is');\n", +"Io = Idc/2;// in µA\n", +"disp(Io,'The average current through each of the diode in µA is');\n", +"// Peak current through each of the diode in A\n", +"I_peak = Vm/R_L;// in A\n", +"I_peak= I_peak*10^3;// in mA\n", +"disp(I_peak,'The peak current through each of the diode in mA is');\n", +"PIV = 2*Vm;// in V\n", +"disp(PIV,'The PIV required for each of the diode in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Maximum_and_minimum_value_of_zener_diode_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V = 120;// in V\n", +"Vz = 50;// in V\n", +"R = 5;// in k ohm \n", +"R = R * 10^3;// in ohm\n", +"I = (V-Vz)/R;// in A\n", +"R1 = 10;// in k ohm\n", +"R1 = R1 * 10^3;// in ohm\n", +"I_L = Vz/R1;// in A\n", +"// The maximum value of zener diode current \n", +"I_Zmax = I-I_L;// in A\n", +"I_Zmax= I_Zmax*10^3;// in mA\n", +"disp(I_Zmax,'The maximum value of zener diode current in mA is');\n", +"V2 = 80;// in V\n", +"I = (V2-Vz)/R;// in A\n", +"// The minimum value of zener diode current \n", +"I_Zmin = I-I_L;// in A\n", +"I_Zmin=I_Zmin*10^3;// in mA\n", +"disp(I_Zmin,'The minimum value of zener diode current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Value_of_R.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R_L = 18;// in ohm\n", +"Vz = 18;// in V\n", +"V1 = 22;// in V\n", +"V2 = 28;// in V\n", +"// Minimum voltage across R,\n", +"V = V1-Vz;// in V\n", +"Izmin = 200;// in mA\n", +"I_Lmax = Vz/R_L;// in A\n", +"I = I_Lmax+Izmin*10^-3;// in A\n", +"R =V/I;// in ohm\n", +"disp(R,'The value of R in ohm is : ')\n", +"I1 = (V2-Vz)/R;;// in A\n", +"// The maximum current through R \n", +"Izmax = I1 - 1;// in A\n", +"Izmax= Izmax*10^3;// in mA\n", +"disp(Izmax,'The maximum current through R in mA is');\n", +"disp('Which is within the limit of Iz (max) provided.')\n", +"pd = Vz*Izmax*10^-3;// maximum power dissipated in W\n", +"disp(pd,'The maximum power dissipated in W is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Designing_of_the_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V1 = 12;// in V\n", +"Vz = 10;// in V\n", +"V = V1-Vz;// in V\n", +"I_Lmax = 10;// in mA\n", +"I_Zmin = 0.2;// in mA\n", +"I = I_Lmax+I_Zmin;// in mA\n", +"R = V/I;// in k ohm\n", +"Vz1 = 5;// in V\n", +"// The maximum current through R \n", +"Imax = Vz1/R;// in mA\n", +"disp(Imax,'The maximum current through R in mA is');\n", +"// The power rating of zener \n", +"power = Vz*Imax;// in mW\n", +"disp(power,'The power rating of zener in mW is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Input_and_output_waveform.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vo= -6;// in V (for Vi<=-6.6 V)\n", +"Vo= 8;// in V (for Vi>=8.8 V)\n", +"// Vi= 10000*i+100000*i or i= Vi/110000 (i)\n", +"Vi= -6.6:0.1:8.8;\n", +"// Vo= 100000*i \n", +"Vo= 100000*Vi/110000;// (substituting i from eq(i))\n", +"plot(Vi,Vo);\n", +"xlabel('Vi in volts')\n", +"ylabel('Vo in volts')\n", +"title('The overall transfer characteristics')\n", +"disp('The overall transfer characteristics shown in figure.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Output_dc_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.7\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vm = 20;// in V\n", +"Idc = 100;// in mA\n", +"Idc = Idc * 10^-3;// in A\n", +"R_S = 5;// in ohm\n", +"R_F = 2;// in ohm\n", +"Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F);// in V\n", +"disp(Vdc,'The output dc voltage at dc load current of 100 mA in V is');\n", +"Idc = 200;// in mA\n", +"Idc = Idc * 10^-3;// in A\n", +"Vdc = ((2*sqrt(2)*Vm)/%pi) - Idc*(R_S+2*R_F);// in V\n", +"R_L = Vdc/Idc;// in ohm\n", +"// The percentage regulaiton\n", +"Per_reg = ((2*R_F+R_S)/R_L)*100;// in %\n", +"disp(Per_reg,'The percentage regulation for a full load dc current of 200 mA in % is');\n", +"Eta = round((8/(%pi^2)) * ( R_L/(2*R_F+R_S+R_L) )*100);// in %\n", +"disp(Eta,'The efficiency of the rectifier in % is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Designing_of_a_zener_voltage_regulator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.8\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vz = 20;// in V\n", +"R_L = 1;// in k ohm\n", +"R_L = R_L * 10^3;// in ohm\n", +"I_L =Vz/R_L;// in A\n", +"V1 = 30;// in V\n", +"R_S = (V1-Vz)/I_L;// in ohm\n", +"V2 = 50;// in V\n", +"// The maximum current through Rs resistor,\n", +"I_S = (V2-Vz)/R_S;// in A\n", +"I_Smax = V1/R_S;// in A\n", +"I_Zmax = I_Smax-I_L;// in A\n", +"power = I_Zmax*Vz;// in W\n", +"disp(power,'The maximum power rating of the Zener diode in W is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Designing_of_a_zener_voltage_regulator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.9\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vz = 20;// in V\n", +"V1 = 30;// in V\n", +"V2 = 50;// in V\n", +"R_L = 2;// in k ohm\n", +"R_L = R_L * 10^3;// in ohm\n", +"I_L =Vz/R_L;// in A\n", +"I_ZK = 5*10^-3;// in mA\n", +"I_Smin = I_L+I_ZK;// in A\n", +"R_S = (V1-Vz)/I_Smin;// in ohm\n", +"I_Smax = (V2-Vz)/R_S;// in A\n", +"I_Zmax = I_Smax-(I_Smin+I_ZK);// in A\n", +"// The maximum power rating of the zener diode, \n", +"power = I_Zmax*Vz;// in W\n", +"disp(power,'The maximum power rating of the zener diode in W is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/4-BJTs_and_FETs.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/4-BJTs_and_FETs.ipynb new file mode 100644 index 0000000..7efca47 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/4-BJTs_and_FETs.ipynb @@ -0,0 +1,838 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: BJTs and FETs" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: DC_load_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.10\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 18;// in V\n", +"V_BB = 6;// in V\n", +"Beta = 75;\n", +"I_CO = 100;// in nA\n", +"I_CO = I_CO * 10^-9;// in A\n", +"R_C = 1;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"V_CE = 9;// in V\n", +"I_C = 9;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"// I_C = Beta*I_B + (1+Beta)*I_CO;\n", +"I_B = (I_C-((1+Beta)*I_CO))/Beta;// in A\n", +"I_B = I_B * 10^3;// in mA\n", +"disp(I_B,'The value of I_B in mA is');\n", +"V_BE = 0.7;// in V assumed\n", +"R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm\n", +"R_B = R_B * 10^-3;// in k ohm\n", +"disp(R_B,'The value of R_B for Si transistor in k ohm is');\n", +"V_BE = 0.3;// in V\n", +"R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm\n", +"R_B= R_B*10^-3;// in k ohm\n", +"disp(R_B,'The value of R_B for Ge transistor in k ohm is');\n", +"V_CEQ= V_CC-I_C*R_C;// in V\n", +"I_CQ= round(Beta*I_B);// in mA\n", +"I_C= V_CC/R_C;// in A\n", +"I_C= I_C*10^3;// in mA\n", +"plot([V_CC,0],[0,I_C]);\n", +"xlabel('V_CC in volts ');\n", +"ylabel('I_C in mA')\n", +"title('DC load line ')\n", +"disp('DC load line shown in figure')\n", +"disp('Q point : '+string(V_CEQ)+' volts, '+string(I_CQ)+' mA')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.11\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"alpha = 0.9;\n", +"I_E = 1;// mA\n", +"I_C = alpha * I_E;// in mA\n", +"// The base current,\n", +"I_B = I_E - I_C;// in mA\n", +"disp(I_B,'The value of base current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: Emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.12\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita = 50;\n", +"I_B= 20;// in µA\n", +"I_B=I_B*10^-6;// in A\n", +"I_C= bita*I_B;// in A\n", +"// The emitter current,\n", +"I_E= I_C+I_B;// in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The Emitter current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: Base_current_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.13\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"beta_dc = 90;\n", +"// The base current,\n", +"I_C = 15;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"I_B = I_C/beta_dc;// in A\n", +"I_B= I_B*10^6;// in µA\n", +"disp(I_B,'The base current in µA is');\n", +"I_B= I_B*10^-6;// in A\n", +"// The emitter current,\n", +"I_E = I_C + I_B;// in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The Emitter current in mA is');\n", +"alpha_dc = beta_dc/(1+beta_dc);\n", +"disp(alpha_dc,'The value of alpha_dc is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: Change_in_base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.14\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_ic = 1.8;// in mA\n", +"del_ie = 1.89;// in mA\n", +"alpha = del_ic / del_ie;\n", +"bita = alpha/(1 - alpha);\n", +"// Change in base current,\n", +"del_ib = del_ic/bita;// in mA\n", +"del_ib = del_ib * 10^3;// in µA\n", +"disp(del_ib,'The change in I_B in µA is'); \n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: Collector_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.15\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita = 100;\n", +"I_CBO = 4;// in µA\n", +"I_B = 40;// in µA\n", +"// The collector current,\n", +"I_C = (bita * I_B) + ((1+bita) * I_CBO);// in µA\n", +"I_C = I_C * 10^-3;// in msA\n", +"disp(I_C,'The collector current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.16: Alphadc_and_beta_dc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.16\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"I_CEo = 21;// in µA\n", +"I_CBO = 1.1;// in µA\n", +"// Value of beta_dc \n", +"beta_dc = round((I_CEo/I_CBO) - 1);\n", +"disp(beta_dc,'Value of beta_dc is');\n", +"// The value of alpha_dc \n", +"alpha_dc = beta_dc/(1 + beta_dc);\n", +"disp(alpha_dc,'The value of alpha_dc is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.17: Alphadc_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.17\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_CBO = 3;//in µA\n", +"I_CBO= I_CBO*10^-3;// in mA \n", +"I_C= 15;// in mA\n", +"// But it is given that I_C= 99.5% of I_E, SO\n", +"I_E= I_C/99.5*100;// in mA\n", +"alpha_dc= I_C/I_E;\n", +"disp(alpha_dc,'The value of alpha_dc is : ')\n", +"disp(I_E,'The value of I_E in mA is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.18: IC_and_IB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.18\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"alpha_dc = 0.99;\n", +"I_CBO = 10;// in µA\n", +"I_CBO= I_CBO*10^-6;// in A\n", +"I_E = 10;// in mA\n", +"I_E= I_E*10^-3;// in A\n", +"// The collector current,\n", +"I_C = (alpha_dc * I_E) + I_CBO;// in A\n", +"I_C=I_C*10^3;// in mA\n", +"disp(I_C,'The value of I_C in mA is');\n", +"I_C=I_C*10^-3;// in A\n", +"// The base current,\n", +"I_B = I_E - I_C;// in A\n", +"I_B = I_B * 10^6;// in µA\n", +"disp(I_B,'The value of I_B in µA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.19: Base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.19\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',9)\n", +"// Given data\n", +"alpha_dc = 0.99;\n", +"I_C = 6;// in mA\n", +"I_C= I_C*10^-3;// in A\n", +"I_CBO = 15;// in µA\n", +"I_CBO= I_CBO*10^-6;// in A\n", +"// The emitter current,\n", +"I_E = (I_C - I_CBO)/alpha_dc;// in A\n", +"// The base current,\n", +"I_B = I_E - I_C;// in A \n", +"I_B= I_B*10^6;// in µA\n", +"I_B= round(I_B)\n", +"disp(I_B,'The value of I_B in µA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: DC_load_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 18;// in V\n", +"V_BB = 6;// in V\n", +"Beta = 75;\n", +"I_CO = 100;// in nA\n", +"I_CO = I_CO * 10^-9;// in A\n", +"R_C = 1;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"V_CE = 9;// in V\n", +"I_C = 9;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"// I_C = Beta*I_B + (1+Beta)*I_CO;\n", +"I_B = (I_C-((1+Beta)*I_CO))/Beta;// in A\n", +"I_B = I_B * 10^3;// in mA\n", +"disp(I_B,'The value of I_B in mA is');\n", +"V_BE = 0.7;// in V assumed\n", +"R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm\n", +"R_B = R_B * 10^-3;// in k ohm\n", +"disp(R_B,'The value of R_B for Si transistor in k ohm is');\n", +"V_BE = 0.3;// in V\n", +"R_B = (V_BB-V_BE)/(I_B*10^-3);// in ohm\n", +"R_B= R_B*10^-3;// in k ohm\n", +"disp(R_B,'The value of R_B for Ge transistor in k ohm is');\n", +"V_CEQ= V_CC-I_C*R_C;// in V\n", +"I_CQ= round(Beta*I_B);// in mA\n", +"I_C= V_CC/R_C;// in A\n", +"I_C= I_C*10^3;// in mA\n", +"plot([V_CC,0],[0,I_C]);\n", +"xlabel('V_CC in volts ');\n", +"ylabel('I_C in mA')\n", +"title('DC load line ')\n", +"disp('DC load line shown in figure')\n", +"disp('Q point : '+string(V_CEQ)+' volts, '+string(I_CQ)+' mA')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.20: Emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.20\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"alpha_dc = 0.98;\n", +"I_CBO = 12;// in µA\n", +"I_CBO = I_CBO * 10^-6;// in A\n", +"I_B = 120;// in µA\n", +"I_B = I_B * 10^-6;// in A\n", +"beta_dc = alpha_dc/(1-alpha_dc);\n", +"// The emitter current,\n", +"I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO);//in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The value of I_E in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.21: Base_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.21\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"beta_dc = 90;\n", +"// The base current,\n", +"I_C = 15;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"I_B = I_C/beta_dc;// in A\n", +"I_B=I_B*10^6;// in µA\n", +"disp(I_B,'The base current in µA is');\n", +"I_B=I_B*10^-6;// in A\n", +"// The emitter current,\n", +"I_E = I_C + I_B;// in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The Emitter current in mA is');\n", +"alpha_dc = beta_dc/(1+beta_dc);\n", +"disp(alpha_dc,'The value of alpha_dc is');\n", +"\n", +"// Note: There is printing mistake in the book in this example." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Value_of_RB_RC_and_IC.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.2\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_BB = 15;// in V\n", +"V_CC = 15;// in V\n", +"I_CO = 0.1;// in µA\n", +"I_CO = I_CO * 10^-6;// in A\n", +"Beta = 60;\n", +"I_B = 50;// in µA\n", +"I_B = I_B * 10^-6;// in A\n", +"V_CE = 8;// in V\n", +"I_C = (Beta*I_B)+((1+Beta)*I_CO);// in A\n", +"I_C = round(I_C * 10^3);// in mA\n", +"disp('Part (i) : ')\n", +"disp(I_C,'The value of I_C in mA is');\n", +"R_C = (V_CC-V_CE)/(I_C*10^-3);// in ohm\n", +"R_C = R_C * 10^-3;// in k ohm\n", +"disp(R_C,'The value of R_C in k ohm is');\n", +"V_BE = 0.3;// in V\n", +"R_BGe = (V_BB-V_BE)/I_B;// in ohm\n", +"R_BGe = R_BGe * 10^-3;// in k ohm\n", +"disp(R_BGe,'The value of R_B for Ge in k ohm is');\n", +"V_BE = 0.7;// in V\n", +"R_BSi = (V_BB-V_BE)/I_B;// in ohm\n", +"R_BSi = R_BSi * 10^-3;// in k ohm\n", +"disp(R_BSi,'The value of R_B for Si in k ohm is');\n", +"P_RC = ((I_C*10^-3)^2)*(7/3)*10^3;// in W\n", +"P_RC = P_RC * 10^3;// in mW\n", +"disp('Part (ii) : ')\n", +"disp(P_RC,'The power dissipations in RC in mW is');\n", +"// The power dissipations in the transistor \n", +"P_TRANS = V_CE*I_C;// in mW\n", +"disp(P_TRANS,'The power dissipations in the transistor in mW is');\n", +"disp('Part (iii) : For RC= 1 kΩ, V_CE increase, shifting the Q-point ot right and I_C increase slightly')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: NEw_value_of_VCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CE = 9;// in V\n", +"R_C = 10;// in Mohm\n", +"R_C = R_C * 10^6;// in ohm\n", +"V = 10;// in V\n", +"I_CEO = (V - V_CE)/R_C;// in A\n", +"// When R_C is changed to 10 k ohm\n", +"R_C = 10;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"V_CE = (V - (I_CEO*R_C));// in V\n", +"disp(V_CE,'The new value of V_CE in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: DC_load_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 20;// in V\n", +"V_BB = 10;// in V\n", +"V_BE= 0.7;// in V\n", +"V_CEsat = 0.3;// in V\n", +"R_B = 47;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"R_C = 1;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"I_C =V_CC/R_C;// in A\n", +"I_C = I_C * 10^3;// in mA\n", +"plot([V_CC,0],[0,I_C]);\n", +"xlabel('V_CE in volts');\n", +"ylabel('I_C in mA');\n", +"title('DC load line')\n", +"I_BQ = (V_BB-V_BE)/R_B;// in A\n", +"Beta = 80;\n", +"I_CQ = Beta*I_BQ*10^3;// in mA\n", +"V_CEQ = V_CC - (I_CQ*10^-3*R_C);// in V\n", +"disp('DC load line shown in figure')\n", +"disp('Q points : '+string(V_CEQ)+' volts, '+string(I_CQ)+' mA')\n", +"I_Csat = (V_CC-V_CEsat)/R_C;// in A\n", +"I_B = I_Csat/Beta;// in A\n", +"V_BE = 0.7;// in V\n", +"R_B = (V_BB-V_BE)/I_B;// in ohm\n", +"disp(R_B*10^-3,'The value of R_B in k ohm is');\n", +"R_C = 500;// in ohm\n", +"V_CE = V_CC - (I_Csat*R_C);// in V\n", +"disp(V_CE,'The value of V_CE in volts is : ')\n", +"disp('The transistor will come out of saturation and enter the active region of the transistors.');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Value_of_bita_dc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Beta_dc = 80;\n", +"V_CC = 25;// in V\n", +"V_BE = 0.7;// in V\n", +"R_B = 180;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"R_E = 200;// in ohm\n", +"R_C = 820;// in ohm\n", +"I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E));// in A\n", +"I_C = Beta_dc*I_B;// in A\n", +"V_CG = V_CC - (I_C*R_C);// in V\n", +"disp(V_CG,'The voltage between collector and ground in volts is : ')\n", +"V_CEsat = 0.3;// in V\n", +"// V_CC - V_CEsat = I_Csat*R_C + I_Csat/Beta_dc*(Beta_dc+1)*R_E;\n", +"I_C = (V_CC-V_CEsat)/(R_C+R_E);// in A\n", +"//I_B = V_CC - ((I_E*R_E)+V_BE)/R_B = V_CC - ((I_C*R_E)+V_BE)/R_B;\n", +"I_B = (V_CC-I_C*R_E+V_BE)/R_B;// in A\n", +"Beta_dc = I_C/I_B;\n", +"disp(Beta_dc,'The value of Beta_dc on which transistor is saturate is');\n", +"\n", +"// Note: There is some difference between the value of Beta_dc in the book and coding output because the correct values of I_C and I_B are 24.215 mA and 0.1158" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Value_of_Beta_dc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.7\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Beta_dc = 80;\n", +"V_CC = 25;// in V\n", +"V_BE = 0.7;// in V\n", +"R_B = 180;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"R_E = 200;// in ohm\n", +"R_C = 820;// in ohm\n", +"I_B = (V_CC-V_BE)/(R_B+((Beta_dc+1)*R_E));// in A\n", +"I_C = Beta_dc*I_B;// in A\n", +"V_CG = V_CC - (I_C*R_C);// in V\n", +"disp(V_CG,'The voltage between collector and ground in volts is : ')\n", +"V_CEsat = 0.3;// in V\n", +"// V_CC - V_CEsat = I_Csat*R_C + I_Csat/Beta_dc*(Beta_dc+1)*R_E;\n", +"I_C = (V_CC-V_CEsat)/(R_C+R_E);// in A\n", +"//I_B = V_CC - ((I_E*R_E)+V_BE)/R_B = V_CC - ((I_C*R_E)+V_BE)/R_B;\n", +"I_B = (V_CC-I_C*R_E+V_BE)/R_B;// in A\n", +"Beta_dc = I_C/I_B;\n", +"disp(Beta_dc,'The value of Beta_dc on which transistor is saturate is');\n", +"\n", +"// Note: There is some difference between the value of Beta_dc in the book and coding output because the correct values of I_C and I_B are 24.215 mA and 0.1158" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: New_operating_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.8\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CE = 8;// in V\n", +"I_C = 1;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"V_CC = 12;// in V\n", +"Beta = 100;\n", +"R_C = (V_CC-V_CE)/I_C;// in ohm\n", +"I_B = I_C/Beta;// in A\n", +"V_BE = 0.3;// in V\n", +"R_B = ((V_CC-(I_C*R_C))-V_BE)/I_B;// in ohm\n", +"// For Beta= 50;\n", +"V_CE= 9.6;// in V\n", +"I_C= 0.6;// in mA\n", +"R_C= R_C*10^-3;// in k ohm\n", +"R_B= R_B*10^-3;// in k ohm\n", +"disp(R_C,'The value of R_C in k ohm is');\n", +"disp(R_B,'The value of R_B in k ohm is');\n", +"disp('New Q point : '+string(V_CE)+' volts, '+string(I_C)+' mA')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Value_of_R1_and_R2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.9\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_BE= 0.7;\n", +"bita = 100;\n", +"V_CC = 20;// in V\n", +"R_E = 1 * 10^3;// in ohm\n", +"V_CEQ = 10;// in V\n", +"I_CQ = 2* 10^-3;// in A\n", +"S_ICO = 10;\n", +"I_BQ = I_CQ/bita;// in A\n", +"// R_B= R1*R2/(R1+R2) (i)\n", +"// V_B= R2*V_CC/(R1+R2) (ii)\n", +"R_B= (S_ICO-1)*R_E;// in ohm\n", +"// V_CC= I_CQ*R_C+V_CEQ+(1+bita)*I_C/bita*R_E\n", +"R_C= (V_CC-V_CEQ-I_CQ*R_E)/I_CQ;// in ohm\n", +"I_B= I_CQ/bita;// in A\n", +"V_B= I_B*R_B+V_BE+(1+bita)*R_E*I_B;// in V\n", +"// From eq (i) and (ii)\n", +"R2= (V_B*R_B+R_B*(V_CC-V_B))/(V_CC-V_B);// in ohm\n", +"R1= R2*R_B/(R2-R_B);// in ohm\n", +"R1= R1*10^-3;// in k ohm\n", +"R2= R2*10^-3;// in k ohm\n", +"disp(R1,'The value of R1 in k ohm is : ')\n", +"disp(R2,'The value of R2 in k ohm is : ')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/5-Transistor_Biasing_and_Small_Signal_Amplifiers.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/5-Transistor_Biasing_and_Small_Signal_Amplifiers.ipynb new file mode 100644 index 0000000..ac15fe6 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/5-Transistor_Biasing_and_Small_Signal_Amplifiers.ipynb @@ -0,0 +1,439 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Transistor Biasing and Small Signal Amplifiers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: Value_of_rE_Ai_and_Rin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.10\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V = 5.7;// in V\n", +"V_BE = 0.7;// in V\n", +"R1 =10 * 10^3;// in ohm\n", +"R2 = 100 * 10^3;// in ohm\n", +"I_BQ = (V-V_BE)/(R1+R2);// in A\n", +"I_BQ = I_BQ * 10^3;// in mA\n", +"I_EQ = 100*I_BQ;// in mA\n", +"R1= 2;// in k ohm\n", +"R_L= 100*10^-3;// in k ohm\n", +"disp(I_EQ,'The value of I_EQ in mA is');\n", +"V_T = 0.026;// in V assumed\n", +"r_E = V_T/(I_EQ*10^-3);// in ohm\n", +"disp(r_E,'The value of r_E in ohm is');\n", +"Beta = 100;\n", +"h_fe= Beta;\n", +"r_pi = Beta*r_E;// in ohm\n", +"disp(r_pi,'The value of r_pi in ohm is : ')\n", +"ib= poly(0,'ib');\n", +"vb_by_ib= 0.572+101*1;// in k ohm\n", +"Ri= 10;// in k ohm\n", +"i1_by_ib= vb_by_ib/Ri;\n", +"is_by_ib= 1+i1_by_ib;\n", +"iL_by_ib= -h_fe*R1/(R1+R_L);\n", +"// Ai= iL/is = iL_by_ib/is_by_ib;\n", +"Ai= iL_by_ib/is_by_ib;\n", +"Rin= vb_by_ib/is_by_ib;// in k ohm\n", +"disp(Ai,'The value of Ai is : ')\n", +"disp(Rin,'The value of Rin in k ohm is : ')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: h_parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1= 10;// in ohm\n", +"R2= 20;// in ohm\n", +"R3=30;// in ohm\n", +"v2= 50;// in V\n", +"v1= 20;// in V\n", +"i1= -2.5;//in V\n", +"i2= 1;// in A\n", +"h11= R1+(R2*R3/(R2+R3));// in ohm\n", +"// h-parameters\n", +"disp('h-parameters : ')\n", +"disp(h11,'The value of h11 in ohm is : ')\n", +"// From vi= h11*i1+h12*V1 and i2= h21*i1+h22*v2\n", +"h12= v1/v2;\n", +"disp(h12,'The value of h12 is : ')\n", +"h21= i2/i1;\n", +"disp(h21,'The value of h21 is : ')\n", +"h22= i2/v2;// in mho\n", +"disp(h22,'The value of h22 in mho is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: h_parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.2\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R1 = 30;// in ohm\n", +"R2 = 40;// in ohm\n", +"R3 = 60;// in ohm\n", +"R4 = 40;// in ohm\n", +"R5 = 70;// in ohm\n", +"h11 = (R1+(R2*R5/(R2+R5)));// in ohm\n", +"disp(h11,'The numericals values of h11 in ohm is');\n", +"h12 =R2*R4/(R4+R5)*1/(R3+R4*R5/(R4+R5))\n", +"disp(h12,'The numericals values of h12 is');\n", +"h21 =-R4*R2/(R5+R2)*1/(R3+R5*R2/(R5+R2))\n", +"disp(h21,'The numericals values of h21 is');\n", +"h22 = 1/(R3+(R2*R5/(R2+R5)))\n", +"disp(h22,'The numericals values of h22 in mho is');\n", +"\n", +"// Note : In the book the calculated value of h11 i.e 30+(40 || 70) = 53 is wrong. correct value is 55.45 so the answer in the book is wrong." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: z_parameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R1 = 30;// in ohm\n", +"R2 = 40;// in ohm\n", +"R3 = 60;// in ohm\n", +"R4 = 40;// in ohm\n", +"R5 = 70;// in ohm\n", +"// z-parameters\n", +"z11= R1+(R2*(R1+R2)/(R2+(R1+R2)))\n", +"disp(z11,'The value of z11 in ohm is : ');\n", +"z22= R3+R4*R5/(R4+R5);\n", +"disp(z22,'The value of z22 is : ');\n", +"z12= R2*R4/(R1+R2+R4);\n", +"disp(z12,'The value of z12 is : ');\n", +"z21= R2*R4/(R1+R2+R4);\n", +"disp(z21,'The value of z21 in mho is : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: External_voltage_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Avint = 100;\n", +"Ri = 1;// in k ohm\n", +"Ro = 200;// in ohm\n", +"Ro = Ro * 10^-3;// in k ohm\n", +"R_S = 50;// in ohm\n", +"R_S = R_S * 10^-3;// in k ohm\n", +"R_L = 2;// in k ohm\n", +"// Avext = V_L/V_S =Avint*(Ri/(RiR_S))*(R_L/(R_L+Ro));\n", +"Avext = Avint*(Ri/(Ri+R_S))*(R_L/(R_L+Ro));\n", +"disp(Avext,'The external voltage gain is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: External_current_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.5\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Ri = 1;// in k ohm\n", +"Ro = 80;// in k ohm\n", +"Aiint = 150;\n", +"R_S = 5;// in k ohm\n", +"R_L = 1;// in k ohm\n", +"//Aiext = i1/i2 = (R_S/(R_S+Ri)) * (Ro/(Ro+R_L))*Aiint;\n", +"Aiext = (R_S/(R_S+Ri)) * (Ro/(Ro+R_L))*Aiint;\n", +"disp(Aiext,'The external current gain is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Lower_3_dB_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.6\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"// Vo = -R_L*Io = ( (-R_L*Rc)/(Rc+R_L+(1/SC)) )*h_fe*Ib;\n", +"R_C = 4;// in k ohm\n", +"R_L = 2;// in k ohm\n", +"R = R_C+R_L;// in k ohm\n", +"R= R*10^3;// in ohm\n", +"C_L = 10;// in µF\n", +"C_L = C_L * 10^-6;// in F\n", +"// Vo/Ib =Aos/(S+(1/R*C_L));\n", +"f_L = 1/(2*%pi*R*C_L);// in Hz\n", +"disp(f_L,'The lower 3-dB frequency in Hz is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: Ai_Av_Ri_Ais_and_Avs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.7\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// GIven data\n", +"R_L= 10*10^3;// in ohm\n", +"h_ie = 1.1;// in k ohm\n", +"h_ie = h_ie * 10^3;// in ohm\n", +"h_re = 2.5*10^-4;\n", +"h_fe = 50;\n", +"h_oe = 24;// in µA/V\n", +"h_oe = h_oe * 10^-6;// in A/V\n", +"R_S = 1;// in k ohm\n", +"R_S = R_S * 10^3;// in ohm\n", +"Rc = 10;// in k ohm\n", +"Rc = Rc * 10^3;// in ohm\n", +"Ai = round(-h_fe/(1+(h_oe*R_L)));\n", +"disp(Ai,'The value of Ai is');\n", +"Ri = h_ie+(h_re*Ai*R_L);// in ohm\n", +"Ri= Ri*10^-3;// k ohm\n", +"disp(Ri,'The value of Ri in k ohm is');\n", +"Ri= Ri*10^3;// ohm\n", +"Av = (Ai*R_L)/Ri;\n", +"disp(Av,'The value of Av is');\n", +"Avs = (Av*Ri)/(Ri+R_S);\n", +"disp(Avs,'The value of Avs is');\n", +"Ais = (Ai*R_S)/(Ri+R_S);\n", +"disp(Ais,'The value of Ais is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Cut_off_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.8\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_C = 1 ;// in A\n", +"bita= 200;\n", +"h_fe = bita;\n", +"R_C = 5*10^3;// in ohm\n", +"R_E = 2*10^3;// in ohm\n", +"R_S =600;// in ohm\n", +"R_L = 600;// in ohm\n", +"C1=10*10^-6;// in F\n", +"C2= C1;// in F\n", +"f_L= 20;// in Hz (lower cut-off frequency)\n", +"// R1||R2= 6;// in k ohm\n", +"r_e = 25/I_C;// in ohm\n", +"h_i = bita*r_e;// in ohm\n", +"// R_B= R1||R2=6;// in k ohm\n", +"R_B= 6*10^3;// in ohm\n", +"r_i = 5*10^3;// in ohm\n", +"Ri = (R_B*r_i)/(R_B+r_i);// in ohm\n", +"// The cut off frequency due to C1\n", +"f1= 1/(2*%pi*(Ri+R_S)*C1);// in Hz\n", +"disp(f1,'The cut-off frequency due to C1 in Hz is : ')\n", +"// The cut off frequency due to C2\n", +"f2= 1/(2*%pi*(R_C+R_L)*C2);// in Hz\n", +"disp(f2,'The cut-off frequency due to C1 in Hz is : ')\n", +"// The cut off frequency due to C_E, f_L= (1+h_fe)/(2*%pi*C_E*(R_S+h_ie)) or\n", +"C_E = (1+h_fe)/(2*%pi*f_L*(R_S+h_i));// in F\n", +"C_E =round(C_E * 10^6);// in µF\n", +"disp(C_E,'The value of C_E in µF is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Mid_band_voltage_gain_and_input_impedance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.9\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h_fe = 100;\n", +"h_ie = 1;// in k ohm\n", +"h_ie = h_ie * 10^3;// in ohm\n", +"vo_by_I= -100*10^3;// in ohm\n", +"vi_by_I= 1100+101*0.1*10^3;// in ohm\n", +"Av= vo_by_I/vi_by_I;\n", +"Av= round(Av);\n", +"Av= abs(Av);\n", +"disp(Av,'The mid-band voltage gain is');\n", +"//Ri =Vi/Ii;\n", +"Ri= vi_by_I;// in ohm\n", +"Ri= Ri*10^-3;// in k ohm\n", +"disp(Ri,'The input impedance in k ohm is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/6-Feedback_Amplifiers_and_Oscillations.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/6-Feedback_Amplifiers_and_Oscillations.ipynb new file mode 100644 index 0000000..90d81c5 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/6-Feedback_Amplifiers_and_Oscillations.ipynb @@ -0,0 +1,422 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Feedback Amplifiers and Oscillations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Voltage_gain_input_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.10\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h_fe = 50;\n", +"h_ie = 1.2;// in k ohm\n", +"h_ie = h_ie * 10^3;// in ohm\n", +"R_C = 1;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"R_E = 200;// in ohm\n", +"R_B = 2;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"Av = (-h_fe*R_C)/h_ie;\n", +"disp(Av,'The voltage gain (Av) is');\n", +"Ri = (h_ie*R_B)/(h_ie+R_B);// in ohm\n", +"disp(Ri,'The input resistance (Ri) in ohm is');\n", +"// vi= vs (on neglecting Rs), hence i_E= i_B+h_fe*i_B = (1+h_fe)*i_B (i)\n", +"// vo= -i_C*R_C = -h_fe*i_B*R_C (As i_C= h_fe*i_B) (ii)\n", +"// From eq (i) : vi= i_B*h_ie+i_E*R_E= i_B*(h_ie+(1+h_fe)*R_E) (iii)\n", +"// i_L= i_B (iv) \n", +"// Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));\n", +"Avf = (-h_fe*R_C)/( h_ie+(1+h_fe)*R_E );\n", +"disp(Avf,'The voltage gain (Avf) is');\n", +"Rif = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie + ((1+h_fe)*R_E)));// in ohm\n", +"Rif= Rif*10^-3;// in k ohm\n", +"disp(Rif,'The input resistance (Rif) in k ohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: New_gain_after_feedback.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"BWf = 5;// in MHz\n", +"BWf= BWf * 10^6;// in Hz\n", +"Av = 100;\n", +"BW = 500;// in kHz\n", +"BW = BW * 10^3;// in Hz\n", +"// BWf = (1+(B*Av))*BW;\n", +"B = ((BWf/BW)-1)/Av;\n", +"disp(B,'The amount of negative feed back is');\n", +"Avf = Av/(1+(Av*B));\n", +"disp(Avf,'The new gain after negative feed back is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Av_of_the_basic_amplifier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.2\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h11 = 2;// in k ohm\n", +"h11 = h11 * 10^3;// in ohm\n", +"h12 = 0;\n", +"h21 = 80;\n", +"h22= 1*10^-3;// in mho\n", +"R_L= 10*10^3;// in ohm\n", +"B= 10/100;\n", +"Ri= 2;// in k ohm\n", +"R_Ldesh= (R_L*1/h22)/(R_L+1/h22);// in ohm\n", +"Av= h21*R_Ldesh/h11;\n", +"disp(Av,'Part (a) : The value of Av of the basic amplifier is : ')\n", +"D= 1+Av*B;\n", +"disp(D,'The value of densitivity factor is : ')\n", +"Avf= Av/(1+B*Av);\n", +"disp(Avf,'The value of Avf is : ')\n", +"Rif= (1+Av*B)*Ri;// in k ohm\n", +"disp(Rif,'The value of Rif in k ohm is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Value_of_RC.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.3\n", +"format('e',8)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f_osc = 6.5;// in kHz\n", +"f_osc = f_osc * 10^3;// in Hz\n", +"// f_osc = 1/(2*%pi*sqrt(6)*RC);\n", +"RC = 1/(2*%pi*sqrt(6)*f_osc);// in sec\n", +"disp(RC,'The value of RC in sec is : ')\n", +"format('v',5)\n", +"// Possible selection of R and C may be\n", +"R= 1;// in k ohm\n", +"C= RC/R;// in mF\n", +"C= C*10^3;// in µF\n", +"disp('The posible selection of R and C : ')\n", +"disp('(a) : '+string(R)+' kΩ and '+string(C)+' µF')\n", +"format('v',6)\n", +"R= 10;// in k ohm\n", +"C= RC/R;// in mF\n", +"C= C*10^3;// in µF\n", +"disp('The posible selection of R and C : ')\n", +"disp('(a) : '+string(R)+' kΩ and '+string(C)+' µF')\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Reverse_transmission_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"A= 1000;\n", +"dA= 100;\n", +"dAbyAf= 0.1/100;\n", +"// dAf/Af = 1/|1+B*A| * dA/A or\n", +"B= (dA-dAbyAf*A)/(dAbyAf*A^2)\n", +"disp(B,'The reverse transmission factor of the feedback networks used is : ');\n", +"Af = A/(1+(B*A));\n", +"disp(Af,'The gain with feed back is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Output_voltage_and_input_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Vout = 36;// in V\n", +"Vs = 0.028;// in V\n", +"B = 1.2/100;\n", +"A = Vout/Vs;\n", +"Af = A/(1+(B*A));\n", +"Vo =Af*Vs;// in V\n", +"disp(Vo,'The output voltage in V is');\n", +"// 1+BA = 7 or\n", +"BA= 6;\n", +"Af= A/(1+BA);\n", +"Vin = Vout/Af;// in V\n", +"disp(Vin,'The input voltage in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Value_of_fLF.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f_L = 20;// in Hz\n", +"f_H = 50;// in kHz\n", +"f_H = f_H * 10^3;// in Hz\n", +"Ao = 1000;\n", +"B = 10/100;\n", +"f_HF =f_H*(1+(B*Ao));// in Hz\n", +"f_HF = f_HF * 10^-6;// in MHz\n", +"disp(f_HF,'The value of f_HF in MHz is');\n", +"f_LF = f_L/(1+(B*Ao));// in Hz\n", +"disp(f_LF,'The value of f_LF in Hz is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Wien_bridge_oscillation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.7\n", +"format('e',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"f_o = 1;// in kHz\n", +"f_o = f_o * 10^3;// in Hz\n", +"// f_o = 1/(2*%pi*Rc);\n", +"RC = 1/(2*%pi*f_o);\n", +"disp(RC,'The value of RC is : ')\n", +"disp('So R and C can be choosen as 15.9 kΩ and 0.01 µF respectively.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Av_of_the_basic_amplifier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.8\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h11 = 2;// in k ohm\n", +"h11 = h11 * 10^3;// in ohm\n", +"h12 = 0;\n", +"h21 = 80;\n", +"h22= 1*10^-3;// in mho\n", +"R_L= 10*10^3;// in ohm\n", +"B= 10/100;\n", +"Ri= 2;// in k ohm\n", +"R_Ldesh= (R_L*1/h22)/(R_L+1/h22);// in ohm\n", +"Av= h21*R_Ldesh/h11;\n", +"disp(Av,'Part (a) : The value of Av of the basic amplifier is : ')\n", +"D= 1+Av*B;\n", +"disp(D,'The value of densitivity factor is : ')\n", +"Avf= Av/(1+B*Av);\n", +"disp(Avf,'The value of Avf is : ')\n", +"Rif= (1+Av*B)*Ri;// in k ohm\n", +"disp(Rif,'The value of Rif in k ohm is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Value_of_vo_by_vs_Ri_and_Ro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 6.9\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h_ie = 1.5 * 10^3;// in ohm\n", +"h_fe = 100;\n", +"// R = R1||R2 = 20;// in k ohm\n", +"R = 20 * 10^3;// in ohm\n", +"R_E = 560;// in ohm\n", +"R_S = 600;// in ohm\n", +"Avf = (h_fe*R_E)/(h_ie+(h_fe*R_E));\n", +"VoByVs = Avf;\n", +"disp(VoByVs,'The value of midband voltage gain (vo/vs) is :');\n", +"Ri = h_ie + ((1+h_fe)*R_E);// in ohm\n", +"Ri= Ri*10^-3;// in k ohm\n", +"disp(Ri,'The value of input impedance (Ri) in k ohm is : ')\n", +"Ri= Ri*10^3;// in ohm\n", +"Ro = (R_S+h_ie)/(1+h_fe);// in ohm\n", +"disp(Ro,'The value of output impedance (Ro) in ohm is : ')\n", +"R_desh_i = (R*Ri)/(R+Ri);// in ohm\n", +"R_desh_i=R_desh_i*10^-3;// in k ohm \n", +"disp(R_desh_i,'The value of R''i in k ohm is');\n", +"// For load resistance of 10 k ohm\n", +"R_L = 10;// in k ohm\n", +"R_L = R_L * 10^3;// in ohm\n", +"R_desh_o = (Ro*R_L)/(Ro+R_L);// in ohm\n", +"disp(R_desh_o,'The value of R''o for load resistance of 10 k ohm in ohm is');\n", +"// For load resistance of 220 ohm\n", +"R_L = 220;// in ohm\n", +"R_desh_o = (Ro*R_L)/(Ro+R_L);// in ohm\n", +"disp(R_desh_o,'The value of R''o for load resistance of 220 ohm in ohm is');\n", +"\n", +"// Note: There is a calculation mistake to evaluate the value of R_desh_i (R'i)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/7-Operational_Amplifiers.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/7-Operational_Amplifiers.ipynb new file mode 100644 index 0000000..7624f67 --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/7-Operational_Amplifiers.ipynb @@ -0,0 +1,307 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Operational Amplifiers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: CMRR_in_dB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.10\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Ad = 100000;\n", +"Ac = 25;\n", +"CMRR = Ad/Ac;\n", +"CMRR_indB= 20*log10(CMRR);// in dB\n", +"disp(CMRR_indB,'Part (a) : The value of CMRR in dB is');\n", +"format('e',8)\n", +"R2 = 100;// in k ohm\n", +"R1 = 10;// in k ohm\n", +"V_B = 0.18;// in mV\n", +"V_A = 0.16;// in mV\n", +"// The output from the amplifier,\n", +"Vo = ((R2/R1)*(V_B-V_A)*10^-3) + ((R2/R1)*V_B*10^-3*(1/CMRR));// in V\n", +"disp(Vo,'Part (b) : The output from the amplifier in V is');\n", +"V_B = 2.00018;// in V\n", +"V_A = 2.00016;// in V\n", +"// The output from the amplifier,\n", +"Vo = ((R2/R1)*(V_B-V_A)) + ((R2/R1)*V_B*(1/CMRR));// in V\n", +"disp(Vo,'Part (c) : The output from the amplifier in V is'); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: Output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.12\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R1 = 10;// in k ohm\n", +"Rf = 30;// in k ohm\n", +"Vs = 4;// in V\n", +"V_A = 2;// in V\n", +"V_B = 2;// in V\n", +"I = (Vs-V_B)/(R1);// in mA\n", +"Vo = (-I*Rf)+V_B;// in V\n", +"// The output voltage,\n", +"disp(Vo,'The value of Vo in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.13: Voltage_gain_and_input_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.13\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h_fe = 50;\n", +"h_ie = 1.2;// in k ohm\n", +"h_ie = h_ie * 10^3;// in ohm\n", +"R_C = 1;// in k ohm\n", +"R_C = R_C * 10^3;// in ohm\n", +"R_E = 200;// in ohm\n", +"R_B = 2;// in k ohm\n", +"R_B = R_B * 10^3;// in ohm\n", +"Av = (-h_fe*R_C)/h_ie;\n", +"disp(Av,'The voltage gain (Av) is');\n", +"Ri = (h_ie*R_B)/(h_ie+R_B);// in ohm\n", +"disp(Ri,'The input resistance (Ri) in ohm is');\n", +"// vi= vs (on neglecting Rs), hence i_E= i_B+h_fe*i_B = (1+h_fe)*i_B (i)\n", +"// vo= -i_C*R_C = -h_fe*i_B*R_C (As i_C= h_fe*i_B) (ii)\n", +"// From eq (i) : vi= i_B*h_ie+i_E*R_E= i_B*(h_ie+(1+h_fe)*R_E) (iii)\n", +"// i_L= i_B (iv) \n", +"// Avf = (h_fe*i_B*R_C)/(i_B*(h_ie+(1+h_fe)*R_E));\n", +"Avf = (-h_fe*R_C)/( h_ie+(1+h_fe)*R_E );\n", +"disp(Avf,'The voltage gain (Avf) is');\n", +"Rif = (R_B*(h_ie + ((1+h_fe)*R_E)))/(R_B+(h_ie + ((1+h_fe)*R_E)));// in ohm\n", +"Rif= Rif*10^-3;// in k ohm\n", +"disp(Rif,'The input resistance (Rif) in k ohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Ac = 35;//common mode gain in dB\n", +"Ac = 10^(Ac/20);\n", +"CMRR = 72;// in dB\n", +"CMRR = 10^(CMRR/20);\n", +"// CMRR = Ad/Ac\n", +"Ad = CMRR*Ac;\n", +"V1 = 0.16;// in mV\n", +"V2 = 0.18;// in mV\n", +"// Common mode signal\n", +"Vc = 1/2*(V1+V2);// in mV\n", +"// Difference mode signal\n", +"Vd = V2-V1;// in mV\n", +"// The output voltage\n", +"Vo = Ac*Vc+Ad*Vd;// in mV\n", +"Vo= Vo*10^-3;// in V\n", +"disp(Vo,'The output voltage in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.6\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Ro = 10;// in k ohm\n", +"R1 = 10;// in k ohm\n", +"R2 = 2.2;// in k ohm\n", +"R3 = 3.3;// in k ohm\n", +"V1 = 6;// in V\n", +"V2 = -3;// in V\n", +"V3 = -0.75;// in V\n", +"// Output voltage,\n", +"Vo = -( ((Ro/R1)*V1) + ((Ro/R2)*V2) + ((Ro/R3)*V3) );// in V\n", +"disp(Vo,'The value of Vo in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: Open_loop_voltage_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.8\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R = 100;// in k ohm\n", +"R = R * 10^3;// in ohm\n", +"C = 2;// in µF\n", +"C = C * 10^-6;// in F\n", +"f = 10;// in kHz\n", +"f = f * 10^3;// in Hz\n", +"omega = 2*%pi*f;// in Krad\n", +"// The open loop voltage gain,\n", +"A = R*omega*C;\n", +"disp(A,'The open loop voltage gain is');\n", +"format('e',9)\n", +"//The feedback function, B is evaluated as, A_F = -R/Z_C*( 1/(1+(1/(A*B))) );\n", +"B = 1/( sqrt( 1+((R*omega*C)^2) ) );\n", +"disp(B,'The feed back function is');\n", +"format('v',7)\n", +"//A_F = -R/Z_C*(1/( 1+(1/(A*B)) ));\n", +"Av = 10^3;\n", +"A_F = round(A*(1/(1+(1/(Av*B)))));\n", +"disp(A_F,'The overall gain is');\n", +"\n", +"// Note: The open loop voltage gain in the book is not accurate." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: Value_of_constant_A1_and_A2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 7.9\n", +"format('v',7)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// GIven data\n", +"R1 = 10;// in k ohm\n", +"R2 = 100;// in k ohm\n", +"R3 = 10.1;// in k ohm\n", +"R4 = 99;// in k ohm\n", +"// Vdaso = Vo2 = V2*(-R2/R1)\n", +"//Vdaso = Vo1 = V1*(R4/(R3+R4))*(1+(R2/R1))\n", +"//Vo = Vo1+Vo2 = (V1*(R4/(R3+R4))*(1+(R2/R1))) - (V2*(-R2/R1))\n", +"//Vo = (R2/R1) * ( -V2 + ( 1+(R1/R2) )/(1+(R3/R4))*V1 )\n", +"A1 = (1+(R1/R2))/(1+(R3/R4))*(R2/R1);// (on comparing vo= A1*V1+A2*V2)\n", +"disp(A1,'The value of A1 is');\n", +"A2 = -R2/R1;\n", +"disp(A2,'The value of A2 is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/8-Digital_Logic_and_Combinational_Circuits.ipynb b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/8-Digital_Logic_and_Combinational_Circuits.ipynb new file mode 100644 index 0000000..282b5ff --- /dev/null +++ b/Basic_Electronics_Devices_Circuits_and_Its_Fundamentals_by_S_Kal/8-Digital_Logic_and_Combinational_Circuits.ipynb @@ -0,0 +1,193 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Digital Logic and Combinational Circuits" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Hexadecimal_number_3BF_ino_binary.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 8.1\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"str= '3BF';// given number in hexadecimal to convert into binary\n", +"str_in_dec= hex2dec(str);// decimal equivalent\n", +"str_in_bin= dec2bin(str_in_dec);// binary equivalent\n", +"disp(str_in_bin,'The binary equivalent of 3BF is : ')\n", +"\n", +"// Note : The answer in the book is wrong because binary equivalent of B = 1011 and in the book they used 1101 which is wrong." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Convert_octal_into_binary.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 8.2\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"str= '527';// given number in octal to convert into binary\n", +"str_in_dec= oct2dec(str);// decimal equivalent\n", +"str_in_bin= dec2bin(str_in_dec);// binary equivalent\n", +"disp(str_in_bin,'The binary equivalent of 527 is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Convert_octal_into_hexadecimal_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 8.3\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"str= '256';// given number in octal to convert into hexadecimal\n", +"str_in_dec= oct2dec(str);// decimal equivalent\n", +"str_in_hex= dec2hex(str_in_dec);// hexadecimal equivalent\n", +"disp(str_in_hex,'The hexadecimal equivalent of 256 is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Convert_decimal_into_octal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 8.4\n", +"format('v',9)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"str= 450;// given number in decimal to convert into octal\n", +"str_in_oct= dec2oct(str);// octal equivalent\n", +"disp(str_in_oct,'The octal equivalent of 450 is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: Maximum_permissible_value_of_RB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 8.9\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R_C= 1;// in k ohm\n", +"V_CC= 5;// in V\n", +"V_CEsat= 0;// in V\n", +"V_BE= 0.7;// in V\n", +"bita_min= 50;\n", +"bita_max= 100;\n", +"// For the transistor to go to saturation,\n", +"I_C= (V_CC-V_CEsat)/R_C;// in mA\n", +"bita= bita_min;// for driving the transistor into saturation\n", +"I_Bmin= I_C/bita;//minimum base current in mA\n", +"// So, (V_CC-V_BE)/R_B >= I_B or\n", +"R_B= (V_CC-V_BE)/I_Bmin;// in k ohm\n", +"disp(R_B,'The maximum permissible value of R_B in k ohm is : ')\n", +"// For actual calculation one may take V_CEsat= 0.3 V\n", +"V_CEsat= 0.3;// in V\n", +"I_C= (V_CC-V_CEsat)/R_C;// in mA\n", +"bita= bita_min;// for driving the transistor into saturation\n", +"I_Bmin= I_C/bita;//minimum base current in mA\n", +"// So, (V_CC-V_BE)/R_B >= I_B or\n", +"R_B= (V_CC-V_BE)/I_Bmin;// in k ohm\n", +"disp('For actual calculation at V_CE(sat) = 0.3 V, the maximum value ')\n", +"disp(R_B,'of R_B in k ohm is : ')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |