diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Applied_Physics_ii_by_H_J_Sawant | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Applied_Physics_ii_by_H_J_Sawant')
7 files changed, 3935 insertions, 0 deletions
diff --git a/Applied_Physics_ii_by_H_J_Sawant/1-Interference_of_Light.ipynb b/Applied_Physics_ii_by_H_J_Sawant/1-Interference_of_Light.ipynb new file mode 100644 index 0000000..b17d01a --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/1-Interference_of_Light.ipynb @@ -0,0 +1,951 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Interference of Light" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_1: find_the_wavelength_of_light_in_the_visible_spectrum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_1,pg 1-11\n", +"\n", +"i=45 //angle of incidence\n", +"\n", +"u=1.2 //refractive index of soap film\n", +"\n", +"t=4*10^-5 //thickness of soap film\n", +"\n", +"r=asind(sind(i)/u) //by Snell's law\n", +"\n", +"//for dark band '2*u*t*cos(r) = n*lam'\n", +"\n", +"wavelength_1=(2*u*t*cosd(r)/1)*10^8 //for n=1\n", +"\n", +"wavelength_2=(2*u*t*cosd(r)/2)*10^8 //for n=2\n", +"\n", +"wavelength_3=(2*u*t*cosd(r)/3)*10^8 //for n=3\n", +"\n", +"//visible range of wavelengths is 4000 A. to 7000 A.\n", +"\n", +"printf('\n for n=1 wavelength = %.1f A.\n',wavelength_1)\n", +"\n", +"printf('\n for n=2 wavelength = %.1f A.\n',wavelength_2)\n", +"\n", +"printf('\n for n=3 wavelength = %.2f A.\n',wavelength_3)\n", +"\n", +"printf('\n hence, none of the wavelengths from the visible region are absent in reflected light ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_2: find_the_wavelength_of_light_in_the_visible_spectrum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_2,pg 1-12\n", +"\n", +"u=1.33 //refractive index of soap film\n", +"\n", +"t=5*10^-5 //thickness of soap film\n", +"\n", +"//for normal incidence \n", +"\n", +"r=0 //angle of refraction\n", +"\n", +"//for constructive interference '2*u*t*cos(r) = (2*n-1)*wavelength/2'\n", +"\n", +"wavelength_1=(2*u*t*cos(r)*2/(2*1-1))*10^8 //for n=1\n", +"\n", +"wavelength_2=(2*u*t*cos(r)*2/(2*2-1))*10^8 //for n=2\n", +"\n", +"wavelength_3=(2*u*t*cos(r)*2/(2*3-1))*10^8 //for n=3\n", +"\n", +"wavelength_4=(2*u*t*cos(r)*2/(2*4-1))*10^8 //for n=4\n", +"\n", +"//visible range of wavelengths is 4000 A. to 7000 A.\n", +"\n", +"printf('\n for n=1 wavelength = %.1f A.\n',wavelength_1)\n", +"\n", +"printf('\n for n=2 wavelength = %.1f A.\n',wavelength_2)\n", +"\n", +"printf('\n for n=3 wavelength = %.1f A.\n',wavelength_3)\n", +"\n", +"printf('\n for n=4 wavelength = %.1f A.\n',wavelength_4)\n", +"\n", +"printf('\n The wavelength will be reflected is wavelength = %.1f A.\n',wavelength_3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_3: find_the_order_of_interference_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_3,pg 1-12\n", +"\n", +"u=4/3 //refractive index of soap film\n", +"\n", +"t=1.5*10^-4 //thickness of soap film \n", +"\n", +"wavelength=5*10^-5 //wavelength of light \n", +"\n", +"i=45 //angle of incidece\n", +"\n", +"r=asind(sind(i)/u) //by Snell's law\n", +"\n", +"n=2*u*t*cosd(r)/wavelength //for nth dark band\n", +"\n", +"printf('\n the order of an interference band is n = %.0f',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_4: find_the_thickness_of_soap_film.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_4,pg 1-13\n", +"\n", +"//for constructive interference 2 u t cos(r) = (2 n -1) wavelength/2\n", +"\n", +"u=1.33\n", +"\n", +"i=45\n", +"\n", +"r=asind(sind(i)/u) //by Snell's law\n", +"\n", +"n=1 //for minimum thickness \n", +"\n", +"wavelength=5896*10^-8\n", +"\n", +"t=(2*n-1)*wavelength/(4*u*cosd(r))\n", +"\n", +"printf('\n the minimum thickness of soap film is t = %.7f cm',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_5: find_the_thickness_of_oil_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_5,pg 1-14\n", +"\n", +"u=1.3 //refractive index of liquid\n", +" \n", +"r=0 //angle of refraction for normal incidence\n", +" \n", +"wavelength_1=7000 //wavelength of light \n", +"\n", +"wavelength_2=5000 //wavelength of light \n", +"\n", +"//for destructive interference '2*u*t*cos(r) = (2*n-1)*wavelength/2'\n", +"\n", +"//'n' order for 'wavelength_1' and 'n+1' order for 'wavelength_2'\n", +"\n", +"//as LHS is same for both the wavelengths, therefore\n", +"\n", +"//(2*n-1)*7000/2 =(2*(n+1)-1)*5000/2\n", +"\n", +"n=3 //number of orders \n", +"\n", +"t=((2*n)-1)*wavelength_1/(4*u*cosd(r))\n", +"\n", +"printf('\nThe thickness of oil layer is t = %.2f A.',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_6: find_the_thickness_of_film.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_6,pg 1-15\n", +"\n", +"n=8 \n", +"\n", +"wavelength=5890*10^-8 //wavelength of light \n", +"\n", +"u=1.46 //refractive index of oil\n", +"\n", +"i=30 //angle of incidence\n", +"\n", +"r=asind(sind(i)/u) //by Snell's law\n", +"\n", +"t=n*wavelength/(2*u*cosd(r))\n", +"\n", +"printf('\n the thickness of an oil film is t =%.7f cm',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_7: find_the_minimum_thickness_of_film.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_7,pg 1-15\n", +"\n", +"u=1.5 //refractive index of thin film\n", +"\n", +"r1=60 //angle of refraction\n", +"\n", +"wavelength=5890*10^-8 //wavelength of light\n", +"\n", +"n=1 //for minimum thickness\n", +"\n", +"t1=n*wavelength/(2*u*cosd(r1))\n", +"\n", +"printf('\n the thickness of an oil film is t =%.7f cm',t1)\n", +"\n", +"r2=0 //for normal incidence \n", +"\n", +"t2=n*wavelength/(2*u*cosd(r2))\n", +"\n", +"printf('\n the thickness of an oil film is t =%.7f cm',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_8: find_the_refractive_index_of_oil.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_8,pg 1-16\n", +"\n", +"V=0.2 //volume of oil\n", +"\n", +"A=10^4 //area\n", +"\n", +"t=V/A //Thickness of oil film\n", +"\n", +"r=0 //for normal incidence\n", +"\n", +"n=1 //for 1st dark band\n", +"\n", +"wavelength=5.5*10^-5 //wavelength of light \n", +"\n", +"u=n*wavelength/(2*t*cosd(r))\n", +"\n", +"printf('\nrefractive index of oil is u = %.3f',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_9: find_the_wavelength_of_light_in_the_visible_region.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_2_9,pg 1-17\n", +"\n", +"u=1.2 //refractive index of oil film\n", +"\n", +"t=2*10^-7 //thickness of oil film\n", +"\n", +"r=60 //angle of refraction\n", +"\n", +"//for destructive interference '2*u*t*cos(r) = (2*n-1)*wavelength/2'\n", +"\n", +"wavelength_1=(2*u*t*cosd(r)*2/(2*1-1))*10^10 //for n=1\n", +"\n", +"wavelength_2=(2*u*t*cosd(r)*2/(2*2-1))*10^10 //for n=2\n", +"\n", +"wavelength_3=(2*u*t*cosd(r)*2/(2*3-1))*10^10 //for n=3\n", +"\n", +"//visible range of wavelengths is 4000*10^-10 m to 7000*10^-10 m\n", +"\n", +"printf('\n for n=1 wavelength = %.f A.\n',wavelength_1)\n", +"\n", +"printf('\n for n=2 wavelength = %.f A.\n',wavelength_2)\n", +"\n", +"printf('\n for n=3 wavelength = %.f A.\n',wavelength_3)\n", +"\n", +"printf('\n The wavelength will be reflected is wavelength = %.f A.\n',wavelength_1)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_1: find_wavelength_of_monochromatic_light.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_1,pg 1-21\n", +"\n", +"N=10 //no of dark fringes \n", +"\n", +"d=1.2 //distance between consecutive fringes \n", +"\n", +"B_air=d/N //fringe width in air\n", +"\n", +"a=(40/3600)*(%pi/180) //angle made by film in radians \n", +"\n", +"wavelength=2*a*B_air //as fringe width in air is 'B_air = wavelength/(2*a)'\n", +"\n", +"printf('\nThe wavelength of monochromatic light is = %.8f cm\n',wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_2: calculate_the_angle_of_wedge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_2,pg 1-22\n", +"\n", +"wavelength=5893*10^-8 //wavelength of light \n", +"\n", +"B=0.1 //fringe width\n", +"\n", +"u=1.52 //refractive index of glass wedge\n", +"\n", +"a=(wavelength/(2*u*B))*3600*(180/%pi) //as fringe spacing is 'B = wavelength/(2*a*u)'\n", +"\n", +"printf('\nThe angle of wedge is a =%.2f seconds \n',a)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_3: calculate_the_wavelength_of_light.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_3,pg 1-22\n", +"\n", +"B=0.25 //fringe width\n", +"\n", +"u=1.4 //refractive index of film\n", +"\n", +"a=(20/3600)*(%pi/180) //angle made by film in radians\n", +"\n", +"wavelength=2*a*B*u //as fringe width is 'B = wavelength/(2*a*u)'\n", +"\n", +"printf('\nThe wavelength of monochromatic light is = %.8f cm\n',wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_4: find_the_number_of_fringes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_4,pg 1-23\n", +"\n", +"wavelength=5.82*10^-5 //wavelength of a monochromatic light\n", +"\n", +"u=1.5 //refractive index of glass\n", +"\n", +"a=(20/3600)*(%pi/180) //angle made by glass film in radians\n", +"\n", +"B=wavelength/(2*u*a) //The fringe width \n", +"\n", +"N=1/B //the number of fringes per cm\n", +"\n", +"printf('\nThe number of fringes per cm = %.f \n',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_5: find_the_diameter_of_wire.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_5,pg 1-24\n", +"\n", +"wavelength=6*10^-5 //wavelength of light \n", +"\n", +"B=0.1 //fringe width(as there are 10 fringes)\n", +"\n", +"u=1 //refractive index of air wedge\n", +"\n", +"a=wavelength/(2*u*B) //as fringe spacing is 'B = wavelength/(2*a*u)'\n", +"\n", +"dist=10 //distance of plane of rectangular pieces from wire \n", +"\n", +"d=a*dist //as for small angle 'tan(a) = a = d/dist'\n", +"\n", +"printf('\nThe diameter of wire is d = %.3f cm\n',d)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_6: find_the_separation_between_consecutive_bright_fringes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_3_6,pg 1-24\n", +"\n", +"a=10^-4 //as for small angle 'tan(a) = a'\n", +"\n", +"wavelength=5900*10^-10 //wavelength of light in air\n", +"\n", +"u=1 //refractive index of air \n", +"\n", +"B=wavelength/(2*u*a) //The fringe width \n", +"\n", +"printf('\nThe fringe width is B = %.5f m\n',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_11: find_the_diameter_of_ring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_11,pg 1-37\n", +"\n", +"D_4=0.4 //diameter of 4th dark ring\n", +"\n", +"D_12=0.7 //diameter of 12th dark ring \n", +"\n", +"const=D_4^2/(4*4) //assume (R*wavelength = const) for 4th dark ring\n", +"\n", +"D_20=sqrt(4*20*const) //For 20th dark ring \n", +"\n", +"printf('\nDiameter of 20th dark ring is D20 = %.3f cm\n',D_20)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_12: calculate_the_wavelength_of_light.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_12,pg 1-38\n", +"\n", +"n_1=5 //5th ring \n", +"\n", +"n_2=15 //15th ring \n", +"\n", +"p=n_2-n_1 //difference between rings\n", +"\n", +"Dn_1=0.336 //diameter of 5th ring \n", +"\n", +"Dn_2=0.59 //diameter of 15th ring\n", +"\n", +"R=100 //Radius of curvature\n", +"\n", +"wavelength=(Dn_2^2-Dn_1^2)/(4*p*R)*10^8 //wavelength of light \n", +"\n", +"printf('\nwavelength of light is = %.f A.',wavelength)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_1: find_the_ring_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_1,pg 1-32\n", +"\n", +"//let the diameter of nth dark ring be double the diameter of that of 40th ring \n", +"\n", +"//as Dn^2 = 4*R*n*wavelength\n", +"\n", +"n_1=40 //40 th dark ring\n", +"\n", +"n=4*n_1 //as diameter is double\n", +"\n", +"printf('\nThe ring number is n= %.f',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_2: find_radius_of_curvature_and_thickness_of_film.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_2,pg 1-32\n", +"\n", +"//For dark rings Dn=sqrt(4*R*n*wavelength)\n", +"\n", +"n=10 //10th ring\n", +"\n", +"Dn=0.5 //diameter of 10th ring \n", +"\n", +"wavelength=5*10^-5 //wavelength of light\n", +"\n", +"R=Dn^2/(4*n*wavelength) //radius of curvature \n", +"\n", +"t=Dn^2/(8*R) //thickness of film\n", +"\n", +"printf('\nThe radius of curvature is R = %.2f cm\n',R)\n", +"\n", +"printf('\nThe thickness of film is t = %.5f cm\n',t)\n", +"\n", +"//mistake in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_3: find_the_radius_of_curvature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_3,pg 1-33\n", +"\n", +"n_1=5 //5th ring \n", +"\n", +"n_2=15 //15th ring \n", +"\n", +"p=n_2-n_1 //difference between rings\n", +"\n", +"Dn_1=0.336 //diameter of 5th ring \n", +"\n", +"Dn_2=0.59 //diameter of 15th ring\n", +"\n", +"wavelength=5890*10^-8 //wavelength of light\n", +"\n", +"R=(Dn_2^2-Dn_1^2)/(4*p*wavelength) //radius of curvature\n", +"\n", +"printf('\nThe radius of curvature is R = %.2f cm\n',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_4: find_the_wavelength_of_light.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_4,pg 1-33\n", +"\n", +"//as n1 = nth ring n2 = (n+8)th ring\n", +"\n", +"p=8 //difference between rings\n", +"\n", +"Dn_1=0.42 //diameter of 5th ring \n", +"\n", +"Dn_2=0.7 //diameter of 15th ring\n", +"\n", +"R=200 //radius of curvature\n", +"\n", +"wavelength=(Dn_2^2-Dn_1^2)/(4*p*R) //wavelength of light\n", +"\n", +"printf('\nThe wavelength of light is wavelength = %.6f cm\n',wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_5: find_the_refractive_index_of_liquid.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter-1,Example1_4_5,pg 1-34\n", +"\n", +"Dn_1=0.218 //Diameter of nth ring\n", +"\n", +"Dn_2=0.451 //Diameter of (n+10)th ring\n", +"\n", +"wavelength=5893*10^-8 //wavelength of light \n", +"\n", +"R=90 //Radius of curvature \n", +"\n", +"p=10\n", +"\n", +"u=(4*p*wavelength*R)/(Dn_2^2-Dn_1^2) //Refractive index of liquid \n", +"\n", +"printf('\nRefractive index of liquid is u = %.3f',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_6: find_the_diameter_of_dark_ring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//chapter-1,Example1_4_6,pg 1-34\n", +"\n", +"//For nth dark ring Dn^2 =4*R*n*wavelength\n", +"\n", +"D_5=0.42 //Diameter of 5th dark ring\n", +"\n", +"D_10=sqrt(2*D_5^2) //as number of ring double, the diameter is sqrt(2) times the diameter of original ring\n", +"\n", +"printf('\nThe diameter of 10th dark ring is D10 = %.3f cm',D_10)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_7: find_the_diameter_of_dark_ring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_7,pg 1-35\n", +"\n", +"R=200 //radius of curvature\n", +"\n", +"wavelength_1=6000*10^-8 //wavelength of light for nth dark ring\n", +"\n", +"wavelength_2=5000*10^-8 //wavelength of light for (n+1)th dark ring\n", +"\n", +"//as nth ring due to wavelength_1= 6000*10^-8 cm is coincide with (n+1)th ring due to wavelength_2=5000*10^-8 cm\n", +"\n", +"//therefore 6*n = 5*(n+1)\n", +"\n", +"n=5\n", +"\n", +"Dn=sqrt(4*R*n*wavelength_1)\n", +"\n", +"printf('\nDiameter of nth dark ring due to wavelength 6000 A. is Dn = %.4f cm\n',Dn)\n", +"\n", +"//wrong ans in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_8: find_the_refractive_index_of_liquid.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_4_8,pg 1-35\n", +"\n", +"D_air=2.3 //Diameter of bright ring in air\n", +"\n", +"D_liquid=2 //Diameter of bright ring in liquid\n", +"\n", +"u=D_air^2/D_liquid^2 //Refractive index of liquid\n", +"\n", +"printf('\n The refractive index of liquid is u = %.4f \n',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7_1: find_the_thickness_of_coating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_7_1,pg 1-42\n", +"\n", +"wavelength=560 //wavelength of light in air\n", +"\n", +"u=2.0 //refractive index of silicon monoxide material\n", +"\n", +"//The wavelength of 'wavelength_1' in a medium of refractive index 'u' is \n", +"\n", +"wavelength_1=wavelength/u\n", +"\n", +"t=wavelength_1/4 //thickness of the film \n", +"\n", +"printf('\nThe thickness of the film is = %.f nm\n',t)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7_2: find_the_thickness_of_coating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1,Example1_7_2,pg 1-42\n", +"\n", +"wavelength=6000 //wavelength of light in air\n", +"\n", +"u=1.2 //refractive index of transparant material\n", +"\n", +"wavelength_1=wavelength/u //The wavelength of wavelength_1 in a medium of refractive index 'u'\n", +" \n", +"t=wavelength_1/4 //thickness of coating\n", +"\n", +"printf('\nThe thickness of coating to eliminate reflection is t = %.f A.\n',t)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/2-Diffraction_of_Light.ipynb b/Applied_Physics_ii_by_H_J_Sawant/2-Diffraction_of_Light.ipynb new file mode 100644 index 0000000..170820a --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/2-Diffraction_of_Light.ipynb @@ -0,0 +1,763 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Diffraction of Light" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_1: calculate_the_width_of_slit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_1,pg 2-10\n", +"\n", +"angle=30 //angle of incidance\n", +"\n", +"n=1 //first minimum\n", +"\n", +"wavelength=6500*10^-8 //wavelength of light \n", +"\n", +"a=(n*wavelength)/sind(angle) //For minimum intensity in single slit\n", +"\n", +"printf('\nvalue of a =%.5f cm\n',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_2: calculate_the_angular_separation_between_first_order_minima.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_2,pg 2-10\n", +"\n", +"a=6*10^-6 //width of slit\n", +"\n", +"n=1 //for first minimum\n", +"\n", +"wavelength=6000*10^-10 //wavelength of light \n", +"\n", +"angle=2*asind(n*wavelength/a) //angular seperation \n", +"\n", +"printf('\nThe angular seperation between first order minima is angle = %.4f degree\n',angle)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_3: calculate_wavelength_of_light.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_3,pg 2-11\n", +"\n", +"n2=2 //for second order minima \n", +"\n", +"n3=3 //for third order minima\n", +"\n", +"wavelength_3=4000 //wavelength of light for third order minima\n", +"\n", +"//as second order minima is coincide with third order minima, n2*wavelength2= n3*wavelength_3\n", +"\n", +"wavelength_2=n3*wavelength_3/n2\n", +"\n", +"printf('\nwavelength of light for second order minima is = %.f A.',wavelength_2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_4: find_half_angular_width_of_a_principal_maximum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_4,pg 2-11\n", +"\n", +"a=0.16*10^-3 //width of slit\n", +"\n", +"n=1 //for first minimum\n", +"\n", +"wavelength=5600*10^-10 //wavelength of light \n", +"\n", +"angle=asind(n*wavelength/a) //angular seperation \n", +"\n", +"printf('\nThe half angular width of a principal maximum is angle = %.4f degrees\n',angle)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_5: find_half_angular_width_of_central_maximum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_5,pg 2-11\n", +"\n", +"a=12*10^-7 //width of slit\n", +"\n", +"n=1 //for first minimum\n", +"\n", +"wavelength=6000*10^-10 //wavelength of light \n", +"\n", +"angle=asind(n*wavelength/a) //angular seperation \n", +"\n", +"printf('\nThe half angular width of the central maximum is angle = %.1f degrees\n',angle)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_6: calculate_the_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_2_6,pg 2-12\n", +"\n", +"a=2*10^-6 //width of slit\n", +"\n", +"n=1 //for first minimum\n", +"\n", +"wavelength=6500*10^-10 //wavelength of light \n", +"\n", +"angle=asind(n*wavelength/a) //angular seperation \n", +"\n", +"printf('\nThe half angular width of a principal maximum is angle =%.2f degrees\n',angle)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3_1: calculate_the_missing_orders.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_3_1,pg 2-16\n", +"\n", +"a=0.16 //width of slit\n", +"\n", +"b=0.8 //width of slit\n", +"\n", +"n=[1 2 3] //no of minima\n", +"\n", +"m=((a+b)/a).*n\n", +"\n", +"printf('\nthe missing orders are m = ')\n", +"\n", +"disp(m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_10: find_the_order_of_absent_spectra.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_10,pg 2-28\n", +"\n", +"N=5000*10^2 //Number of lines per meter \n", +"\n", +"wavelength=6000*10^-10 //wavelength of light \n", +"\n", +"m_max=1/(N*wavelength)\n", +"\n", +"//for absent spectra\n", +"\n", +"n=[1 2 3]\n", +"\n", +"m=3*n //as b = 2a and m = ((a+b)/a)*n\n", +"\n", +"printf('\n The order of absent spectra is m = %.0f ',m_max)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_11: calculate_total_number_of_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_11,pg 2-28\n", +"\n", +"m=1 //first ordr spectrum\n", +"\n", +"wavelength=5790*10^-10 //wavelength of light \n", +"\n", +"angle=19.994 //angle of diffraction\n", +"\n", +"N=2.54*sind(angle)/(m*wavelength*100)\n", +"\n", +"printf('\nNumber of lines per 2.54 cm is N = %.0f lines',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_1: find_the_orders.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_1,pg 2-24\n", +"wavelength_1=5000 //wavelength of light \n", +"wavelength_2=7000 //wavelength of light\n", +"N=4000 //number of lines per cm\n", +"m_1=1/((wavelength_1*10^-8)*N) //for wavelength= 5000 A.\n", +"m_2=1/((wavelength_2*10^-8)*N) //for wavelength= 7000 A.\n", +"printf('\nnumber of orders visible for 7000*10^-10 meter are %.2f\n',m_2)\n", +"printf('\nnumber of orders visible for 5000*10^-10 meter are %.1f\n',m_1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_2: find_the_number_of_lines_per_meter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_2,pg 2-24\n", +"\n", +"//as a mth order of wavelength 5400 A. is superimposed on (m+1)th order of wavelength 4050 A.\n", +"\n", +"angle=30 //angle of diffraction\n", +"\n", +"wavelength_1=5400 //for mth order \n", +"\n", +"wavelength_2=4050 //for (m+1)th order \n", +"\n", +"m=wavelength_2/(wavelength_1-wavelength_2)\n", +"\n", +"N=(sind(angle)/(m*wavelength_1))*10^8 //Number of lines per cm\n", +"\n", +"printf('\nNumber of lines per cm N = %.2f',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_3: calculate_the_wavelength_of_spectral_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_3,pg 2-25\n", +"\n", +"//as 3rd order line of wavelength lam is coincide with 4th order wavelength 4992 A.\n", +"\n", +"m_1=3 //3rd order \n", +"\n", +"m_2=4 //for 4th order\n", +"\n", +"wavelength_2=4992 //for 4th order\n", +"\n", +"wavelength_1=m_2*wavelength_2/m_1 \n", +"\n", +"printf('\nwavelength of light is = %.0f A.',wavelength_1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_4: find_the_angle_of_diffraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_4,pg 2-25\n", +"\n", +"wavelength=6328*10^-10 //wavelength of light \n", +"\n", +"m1=1 //for first order \n", +"\n", +"m2=2 //for second order \n", +"\n", +"N= 6000*10^2 //Number of lines per unit length \n", +"\n", +"angle_1=asind(N*m1*wavelength)\n", +"\n", +"angle_2=asind(N*m2*wavelength)\n", +"\n", +"printf('\nangle of diaffraction for 1st order minima is ang1 = %.2f degrees',angle_1)\n", +"\n", +"printf('\nangle of diaffraction for 2nd order minima is ang2 = %.2f degrees',angle_2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_5: calculate_the_number_of_lines_per_meter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_5,pg 2-26\n", +"\n", +"m=2 //ofr second order principal maximum\n", +"\n", +"wavelength=5*10^-5 //wavelength of light \n", +"\n", +"angle=30 //ang of diaffraction\n", +"\n", +"N=sind(angle)/(m*wavelength)\n", +"\n", +"printf('\nNumber of lines per cm is N = %.f',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_6: find_the_longest_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_6,pg 2-26\n", +"\n", +"m=3 //third order \n", +"\n", +"angle=90 //for normal incidence \n", +"\n", +"N=7000 //Number of lines per meter \n", +"\n", +"wavelength=(sind(angle)/(m*N))*10^8\n", +"\n", +"printf('\nThe longest wavelength is lam = %.0f A. ',wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_7: calculate_the_total_number_of_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_7,pg 2-27\n", +"\n", +"m=1 //first ordr spectrum\n", +"\n", +"wavelength=6560*10^-8 //wavelength of light \n", +"\n", +"angle=16.2 //angle of diffraction\n", +"\n", +"N=2*sind(angle)/(m*wavelength)\n", +"\n", +"printf('\nNumber of lines per 2 cm is N = %.0f',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_8: calculate_total_number_of_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_8,pg 2-27\n", +"\n", +"\n", +"m=1 //first ordr spectrum\n", +"\n", +"wavelength=6.56*10^-5 //wavelength of light \n", +"\n", +"angle=18.23333333 //angle of diffraction\n", +"\n", +"N=2*sind(angle)/(m*wavelength)\n", +"\n", +"printf('\nNumber of lines per 2 cm is N = %.2f',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_9: calculate_the_highest_order_spectrum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_4_9,pg 2-27\n", +"\n", +"N=5000 //Number of lines per meter \n", +"\n", +"wavelength=6*10^-5 //wavelength of light \n", +"\n", +"m_max=1/(N*wavelength)\n", +"\n", +"printf('\nThe highest order spectrum is m = %.0f ',m_max)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_1: find_angular_separation_and_number_of_lines_per_meter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_1,pg 2-31\n", +"\n", +"wavelength_1=5893*10^-10 //wavelength of light\n", +"\n", +"wavelength_2=5896*10^-10 //wavelength of light\n", +"\n", +"m=2 //for second order \n", +"\n", +"N1=3000*10^2/0.5 //Number of lines per meter\n", +"\n", +"angle_1=asind(m*wavelength_1*N1) //for wavelength_1\n", +"\n", +"angle_2=asind(m*wavelength_2*N1) //for wavelength_2\n", +"\n", +"angle_sep=angle_2-angle_1\n", +"\n", +"printf('\nangular seperation is %.4f degrees \n',angle_sep)\n", +"\n", +"d_wavelength=3*10^-10\n", +"\n", +"N=wavelength_1/(m*d_wavelength)\n", +"\n", +"printf('\n The number of lines per meter is N = %.0f\n ',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_2: find_the_smallest_wavelength_interval.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_2,pg 2-32\n", +"\n", +"wavelength=481 //wavelength of light \n", +"\n", +"m=3 //for third order \n", +"\n", +"N=620*5.05 //number of lines per meter\n", +"\n", +"d_wavelength=wavelength/(m*N)\n", +"\n", +"printf('\n The smallest wavelength interval is d_wavelength = %.4f nm\n',d_wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_3: find_the_width_of_grating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_3,pg 2-33\n", +"\n", +"wavelength=5890*10^-10 //wavelength of light \n", +"\n", +"d_wavelength=6*10^-10\n", +"\n", +"m=2 //for second order \n", +"\n", +"N=wavelength/(d_wavelength*m)\n", +"\n", +"W=N/500 //as there are 500 lines/cm\n", +" \n", +"printf('\n The width of grating is W = %.3f cm',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_4: find_the_resolving_power_of_diffraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_4,pg 2-33\n", +"\n", +"N=3*5000 //number of lines\n", +"\n", +"n_l=5000*10^2 //number of lines per meter\n", +"\n", +"wavelength=5890*10^-10 //wavelength of light \n", +"\n", +"m_max=1/(n_l*wavelength)\n", +"\n", +"R_P_max=(m_max)*N\n", +"\n", +"printf('\n The maximum R.P. = %.0f ',R_P_max)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_5: calculate_number_of_lines_and_the_grating_element.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_5,pg 2-34\n", +"\n", +"wavelength=5890*10^-10 //wavelength of light \n", +"\n", +"d_wavelength=6*10^-10\n", +"\n", +"m=2 //for second order \n", +"\n", +"N=wavelength/(d_wavelength*m)\n", +"\n", +"W=3 //width of grating\n", +"\n", +"width=W/N\n", +"\n", +"printf('\nNumber of lines is N = %.0f \n',N)\n", +"\n", +"printf('\n The grating element(width of line) is a+b =%.7f cm',width)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6_6: find_the_resolving_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2,Example2_6_6,pg 2-34\n", +"\n", +"m=2 //for second order \n", +"\n", +"N=40000 //Number of lines\n", +"\n", +"RP=m*N\n", +"\n", +"printf('\n The resolving power is R.P. = %.0f',RP)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/3-Fibre_Optics.ipynb b/Applied_Physics_ii_by_H_J_Sawant/3-Fibre_Optics.ipynb new file mode 100644 index 0000000..81f0316 --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/3-Fibre_Optics.ipynb @@ -0,0 +1,639 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Fibre Optics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_1: find_refractive_index_of_cladding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_1,pg 3-6\n", +"\n", +"NA=0.5 //Numerical aperture\n", +"\n", +"n1=1.54 //refractive index of core\n", +"\n", +"n2=sqrt(n1^2-NA^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'\n", +"\n", +"printf('\nThe refractive index of cladding is n2 = %.3f\n',n2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_2: find_refractive_index_of_core_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_2,pg 3-6\n", +"\n", +"NA=0.2 //Numerical aperture\n", +"\n", +"n2=1.59 //refractive index of cladding\n", +"\n", +"n1=sqrt(n2^2-NA^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'\n", +"\n", +"printf('\nThe refractive index of core is n1 = %.1f\n',n1)\n", +"\n", +"n0=1.33 //refractive index of medium\n", +"\n", +"angle_0=asind(NA/n0) //For medium numerical aperture is 'NA=n0*sin(angle_0)'\n", +"\n", +"printf('\nThe acceptance angle is angle_0 = %.2f Degree\n',angle_0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_3: find_the_numerical_aperture_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_3,pg 3-6\n", +"\n", +"n1=1.49 //refractive index f core\n", +"\n", +"n2=1.44 //refractive index of cladding\n", +"\n", +"NA=sqrt(n1^2 - n2^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2'\n", +"\n", +"printf('\nThe Numerical aperture is N.A. = %.5f\n',NA)\n", +"\n", +"angle_0=asind(NA) //for air numerical aperture is 'NA=sin(angle_0)'\n", +"\n", +"printf('\nThe acceptance angle is angle_0 = %.1f Degree\n',angle_0)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_4: find_the_critical_angle_and_angle_of_acceptance_cone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_4,pg 3-7\n", +"\n", +"n1=1.6 //refractive index f core\n", +"\n", +"n2=1.3 //refractive index of cladding\n", +"\n", +"angle_c=asind(n2/n1) //Critical angle \n", +"\n", +"printf('\nThe critical angle is angle_c = %.2f Degree\n',angle_c)\n", +"\n", +"angle_0=asind(sqrt(n1^2-n2^2)) //for air numerical aperture is 'NA=sin(angle_0)'\n", +"\n", +"angle_cone=2*angle_0\n", +"\n", +"printf('\nThe acceptance angle cone = %.3f Degree\n',angle_cone)\n", +"\n", +"//mistake in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_5: the_refractive_index_of_cladding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_5,pg 3-7\n", +"\n", +"angle_0=30 //acceptance angle \n", +"\n", +"n1=1.4 //refractive index of core\n", +"\n", +"n2=sqrt(n1^2-sind(angle_0)^2) //Numerical aperture is 'NA^2 = n1^2 - n2^2' also numerical aperture is 'NA=sin(angle_0)'\n", +"\n", +"printf('\nThe refractive index of cladding is n2 = %.4f\n',n2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_6: calculate_the_fractional_index_change.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_6,pg 3-8\n", +"\n", +"n1=1.563 //refractive index f core\n", +"\n", +"n2=1.498 //refractive index of cladding\n", +"\n", +"delta=(n1-n2)/n1 //fractional index change \n", +"\n", +"printf('\nThe fractional index change is Delta = %.4f \n',delta)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_7: calculate_the_maximum_refractive_index_of_cladding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_7,pg 3-8\n", +"\n", +"//as total internal reflection takes place for light travlling within 5 degree of the fibre axis \n", +"\n", +"angle_c=90-5 //critical angle\n", +"\n", +"n1=1.50 //refractive index of core\n", +"\n", +"n2=n1*sind(angle_c)\n", +"\n", +"printf('\nThe maximum refractive index of cladding is n2 = %.4f\n',n2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_8: calculate_the_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_3_8,pg 3-8\n", +"\n", +"//In air\n", +"\n", +"angle_0_air=30 //acceptance angle of an optical fibre\n", +"\n", +"NA=sind(angle_0_air) //Numerical aperture is 'NA^2 = n1^2 - n2^2' also numerical aperture is 'NA=sin(angle)'\n", +"\n", +"n0=1.33 //refractive index of medium\n", +"\n", +"angle_0=asind(NA/n0) //For medium numerical aperture is 'NA=n0*sin(angle_0)'\n", +"\n", +"printf('\nThe acceptance angle in medium is angle_0 = %.2f Degree\n',angle_0)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_1: calculate_normalized_frequency_and_number_of_modes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_1,pg 3-10\n", +"\n", +"d=29*10^-6 //diameter of core of step index fibre\n", +"\n", +"wavelength=1.3*10^-6 //wavelength of light\n", +"\n", +"n1=1.52 //refractive index of core\n", +"\n", +"n2=1.5189 //refractive index of cladding\n", +"\n", +"V=%pi*d*sqrt(n1^2-n2^2)/wavelength //Normalized frequency of the fibre\n", +"\n", +"printf('\nThe normalised frequency of fibre is V = %.3f\n',V)\n", +"\n", +"N=V^2/2 //The number of modes\n", +"\n", +"printf('\nThe number of modes = %.f\n',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_2: calculate_the_maximum_radius_for_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_2,pg 3-10\n", +"\n", +"//For single mode fibre, V < 2.405\n", +"\n", +"V=2.405 //normalized frequency of fibre \n", +" \n", +"n1=1.47 //refractive index of core\n", +"\n", +"n2=1.46 //refractive index of cladding \n", +"\n", +"wavelength=1.3 //wavelength\n", +"\n", +"d=V*wavelength/(%pi*sqrt(n1^2-n2^2)) //diameter of core\n", +"\n", +"r=(d/2)\n", +"\n", +"printf('\nThe maximum radius for fibre = %.3f um\n',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_3: find_various_parameters_of_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_3,pg 3-11\n", +"\n", +"wavelength=1*10^-6 //wavelength of light \n", +"\n", +"r=50*10^-6 //radius of core \n", +"\n", +"delta=0.055 //relative refractive index of fibre\n", +"\n", +"n1=1.48 //refractive index of core\n", +"\n", +"n2=n1*(1-delta) //as 'delta= (n1-n2)/n1'\n", +"\n", +"printf('\nThe refractive index of cladding n2 = %.4f \n',n2)\n", +"\n", +"NA=sqrt(n1^2-n2^2) //numerical aperture \n", +"\n", +"printf('\nThe numerical aperture N.A. = %.3f \n',NA)\n", +"\n", +"angle_0=asind(NA) // as N.A.=sin(angle_0)\n", +"\n", +"printf('\nThe acceptance angle is angle_0 = %.2f Degree\n',angle_0)\n", +"\n", +"d=2*r\n", +"\n", +"V=%pi*d*NA/wavelength //Normalized frequency of the fibre\n", +"\n", +"printf('\nThe normalised frequency of fibre is V = %.2f\n',V)\n", +"\n", +"N=V^2/2 //The number of modes\n", +"\n", +"printf('\nThe number of modes = %.f \n',N)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_4: calculate_various_parameters_of_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_4,pg 3-12\n", +"\n", +"wavelength=1*10^-6 //wavelength of light \n", +"\n", +"d=6*10^-6 //diameter of core\n", +"\n", +"n1=1.45 //refractive index of core\n", +"\n", +"n2=1.448 //refractive index of cladding \n", +"\n", +"angle_c=asind(n2/n1) //critical angle is 'sin(angle_c) = n2/n1'\n", +"\n", +"printf('\nThe critical angle is angle_c = %.f Degree\n',angle_c)\n", +"\n", +"NA=sqrt(n1^2-n2^2)\n", +"\n", +"angle_0=asind(NA) //acceptance angle is 'sin(angle_0) = NA = sqrt(n1^2-n2^2)'\n", +"\n", +"printf('\nThe acceptance angle is angle_0 = %.3f Degree\n',angle_0)\n", +"\n", +"N=%pi^2*d^2*NA^2/(2*wavelength^2) //the number of modes propogating through fibre \n", +"\n", +"printf('\nthe number of modes propogating through fibre is N = %.f\n',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_5: calculate_the_number_of_modes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_5,pg 3-12\n", +"\n", +"wavelength=1*10^-6 //wavelength of light \n", +"\n", +"r=50*10^-6 //radius of core\n", +"\n", +"n1=1.50 //refractive index of core\n", +"\n", +"n2=1.48 //refractive index of cladding \n", +"\n", +"NA=sqrt(n1^2-n2^2) //numerical aperture\n", +"\n", +"d=2*r //diameter of core\n", +"\n", +"N=%pi^2*d^2*NA^2/(2*wavelength^2) //the number of modes propogating through fibre \n", +"\n", +"printf('\nthe number of modes propogating through fibre is N = %.f\n',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_6: calculate_various_parameters_of_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_4_6,pg 3-13\n", +"\n", +"wavelength=1.4*10^-6 //wavelength of light \n", +"\n", +"d=40*10^-6 //diameter of core\n", +"\n", +"n1=1.55 //refractive index of core\n", +"\n", +"n2=1.50 //refractive index of cladding \n", +"\n", +"NA=sqrt(n1^2-n2^2) //numerical aperture \n", +"\n", +"printf('\nThe numerical aperture N.A. = %.4f \n',NA)\n", +"\n", +"delta=(n1-n2)/n1 //Fractional index change \n", +"\n", +"printf('\nThe fractional index change Delta = %.5f\n',delta)\n", +" \n", +"V=%pi*d*NA/wavelength //Normalized frequency of the fibre\n", +"\n", +"printf('\nthe V-number is V = %.2f \n',V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_1: calculate_the_fibre_attenuation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_6_1,pg 3-17\n", +"\n", +"Pin=1 //Input power in mW\n", +"\n", +"Pout=0.3 //output power in mW\n", +"\n", +"Pl=(-10)*log10(Pout/Pin) //Power loss or attenuation\n", +"\n", +"L=0.1 //Length of cable in km\n", +"\n", +"a=Pl/L //fibre attenuation\n", +"\n", +"printf('\nThe fibre attenuation is a = %.2f dB/km\n',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_2: calculate_the_output_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_6_2,pg 3-18\n", +"\n", +"L=3 //length of fibre in km\n", +" \n", +"a=1.5 //Loss specification in dB/km\n", +"\n", +"Pin=9.0 //input power in uW\n", +"\n", +"Pl=a*L //Power loss \n", +"\n", +"Pout=Pin*10^(-Pl/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)\n", +"\n", +"printf('\nThe output power Pout = %.3f uW\n',Pout)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_3: calculate_the_fractional_initial_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_6_3,pg 3-18\n", +"\n", +"a=2.2\n", +"\n", +"//ratio= Pout/Pin\n", +"\n", +"//For a length of L=2 km\n", +"\n", +"Pl1=a*2\n", +"\n", +"ratio_1=10^(-Pl1/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)\n", +"\n", +"printf('\nThe fractional initial intensity after 2 km is %.3f \n',ratio_1)\n", +"\n", +"//For a length of L=6 km\n", +"\n", +"Pl2=a*6\n", +"\n", +"ratio_2=10^(-Pl2/10) //as Power loss or attenuation is Pl=(-10)*log10(Pout/Pin)\n", +"\n", +"printf('\nThe fractional initial intensity after 6 km is %.3f \n',ratio_2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_4: find_the_loss_specification_in_cable.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3,Example3_6_4,pg 3-19\n", +"\n", +"Pin=8.6 //Input power in mW\n", +"\n", +"Pout=7.5 //output power in mW\n", +"\n", +"Pl=(-10)*log10(Pout/Pin) //Power loss or attenuation\n", +"\n", +"L=0.5 //Length of cable in km\n", +"\n", +"a=Pl/L //Loss secification\n", +"\n", +"printf('\nThe loss specification in cable is a = %.3f dB/km\n',a)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/4-Lasers.ipynb b/Applied_Physics_ii_by_H_J_Sawant/4-Lasers.ipynb new file mode 100644 index 0000000..00c42dc --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/4-Lasers.ipynb @@ -0,0 +1,135 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Lasers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6_1: find_the_number_of_emitted_photons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4,Example4_6_1,pg 4-7\n", +"\n", +"P=3.147*10^-3 //output power \n", +"\n", +"t=60 //time\n", +"\n", +"wavelength=632.8*10^-9 //wavelength of He-Ne laser\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"N=P*t*wavelength/(h*c) //No. of photons emitted \n", +"\n", +"printf('\nNo. of photons emitted each minute\n')\n", +"\n", +"disp(N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6_2: find_the_ratio_of_population_of_two_energy_levels.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4,Example4_6_2,pg 4-7\n", +"\n", +"wavelength=694.3*10^-9 //wavelength of He-Ne laser\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"k=1.38*10^-23 //Boltzmann constant\n", +"\n", +"T=300 //ambient temperature in kelvin\n", +"\n", +"ratio=%e^-(h*c/(wavelength*k*T)) //ratio of population of two energy level in laser \n", +"\n", +"printf('\nRatio of population of two energy level in laser N2/N1 is\n')\n", +"\n", +"disp(ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6_3: calculate_the_wavelength_of_photons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4,Example4_6_3,pg 4-8\n", +"\n", +"P=100*10^3 //avrage power per pulse\n", +"\n", +"t=20*10^-9 //time duration\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"N=6.981*10^15 //No. of photons per pulse\n", +"\n", +"wavelength=N*h*c/(P*t)*10^10 \n", +"\n", +"printf('\nWavelength of photons = %.f A.\n',wavelength)\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/5-Quantum_Mechanics.ipynb b/Applied_Physics_ii_by_H_J_Sawant/5-Quantum_Mechanics.ipynb new file mode 100644 index 0000000..3ca4b2f --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/5-Quantum_Mechanics.ipynb @@ -0,0 +1,1123 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Quantum Mechanics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_1: find_the_energy_of_an_electron_for_different_states.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_1,pg 5-41\n", +"\n", +"//En=(n^2*h^2)/(8*m*e*L^2) n=1,2,3,....\n", +"\n", +"e=1.6*10^-19 //charge of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"L=2*10^-10 //width\n", +"\n", +"E1=h^2/(8*m*e*L^2) //For ground state n=1\n", +"\n", +"printf('\nThe energy of an electron in ground state E1 = %.2f eV\n',E1)\n", +"\n", +"E2=4*E1 //For first excited state n=2\n", +"\n", +"printf('\nThe energy of an electron in ground state E2 = %.2f eV\n',E2)\n", +"\n", +"E3=9*E1 //For second excited state n=3\n", +"\n", +"printf('\nThe energy of an electron in ground state E3 = %.2f eV\n',E3)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_2: find_the_ground_state_energy_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_2,pg 5-42\n", +"\n", +"//En=(n^2*h^2)/(8*m*e*L^2) n=1,2,3,....\n", +"\n", +"//as width 'L' gets double ,the ground state energy becomes one-fourth\n", +"\n", +"E=5.6*10^-3 //Ground state energy of an electron\n", +"\n", +"E_new=E/4 //width is doubled\n", +"\n", +"printf('\nThe new energy of an electron in ground state E = %.4f\n',E_new)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_3: calculate_the_probability_of_finding_the_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_3,pg 5_42\n", +"\n", +"//for box of width a , the normalised eigen functions are \n", +"\n", +"// 'sci = sqrt(2/a)*sin(n*%pi*x/a)'\n", +"\n", +"// 'sci_c = sqrt(2/a)*sin(n*%pi*x/a)' complex conjugate \n", +"\n", +"//for first excitation \n", +"\n", +"n=2\n", +"\n", +"//probability of finding the particle is P = integral a/4 to 3a/4 of sci * sci_c\n", +"\n", +"//as 'a' is constant width \n", +"//assume\n", +"a=1\n", +"\n", +"function y=f(x),y= (2/a)*(sin(n*%pi*x/a))^2, // y = sci * sci_c\n", +"endfunction\n", +"\n", +"P=intg(a/4,3*a/4,f)\n", +"\n", +"printf('\nThe probability of finding the particle is P = %.1f',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_4: find_the_probability_of_finding_the_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_4,pg 5_43\n", +"\n", +"//probability of finding the particle is P = integral x1 to x2 of sci * sci_c\n", +"\n", +"//interval is (0,1/2)\n", +"\n", +"x1=0\n", +"\n", +"x2=1/2\n", +"\n", +"//sci= x*sqrt(3)\n", +"\n", +"//complex conjugate is sci_c = x*sqtr(3)\n", +"\n", +"function y=f(x),y=(x*sqrt(3))^2, // y = sci * sci_c\n", +"endfunction\n", +"\n", +"P=intg(x1,x2,f)\n", +"\n", +"printf('\nThe probability of finding the particle is P = %.3f',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_5: find_the_lowest_energy_states.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_5,pg 5-44\n", +"\n", +"//for an electron\n", +"\n", +"e=1.6*10^-19 //electron charge\n", +"\n", +"m_e=9.1*10^-31 //mass of an electron\n", +"\n", +"L=10^-9 //width of well\n", +"\n", +"h=6.63*10^-34 //Plank's constant\n", +"\n", +"//the energy level are given by En = n^2 *h^2/(8*m*L^2)\n", +"\n", +"Ee1=(1^2)*(h^2)/(8*m_e*e*(L^2)) //for n = 1\n", +"\n", +"Ee2=(2^2)*(h^2)/(8*m_e*e*(L^2)) //for n = 2\n", +"\n", +"Ee3=(3^2)*(h^2)/(8*m_e*e*(L^2)) //for n = 3\n", +"\n", +"printf('\n FOR AN ELECTRON')\n", +"printf('\n the lowest three energy states are obtained ')\n", +"printf('\n for n = 1 Ee1 = %.4f eV',Ee1)\n", +"printf('\n for n = 2 Ee2 = %.4f eV',Ee2)\n", +"printf('\n for n = 3 Ee3 = %.4f eV',Ee3)\n", +"\n", +"\n", +"//for the grain of dust \n", +"\n", +"m=10^-9 //mass of grain of dust \n", +"\n", +"l=10^-4 //width of well\n", +"\n", +"E1=(1^2)*(h^2)/(8*m*e*(l^2)) //for n = 1\n", +"\n", +"E2=(2^2)*(h^2)/(8*m*e*(l^2)) //for n = 2\n", +"\n", +"E3=(3^2)*(h^2)/(8*m*e*(l^2)) //for n = 3\n", +"\n", +"printf('\n\n FOR THE GRAIN OF DUST ')\n", +"printf('\n the lowest three energy states are obtained ')\n", +"printf('\n for n = 1 E1 = ')\n", +"disp(E1)\n", +"printf(' eV')\n", +"printf('\n for n = 2 E2 = ')\n", +"disp(E2)\n", +"printf(' eV')\n", +"printf('\n for n = 3 E3 = ')\n", +"disp(E3)\n", +"printf(' eV')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_6: calculate_the_width_of_the_well.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_6,pg 1-45\n", +"\n", +"E=38 //potential energy \n", +"\n", +"e=1.6*10^-19 //charge of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"//the lowest energy of an electron for n=1 is E=h^2/(8*m*e*L^2) \n", +"\n", +"L=sqrt(h^2/(8*m*e*E)) //width of the well\n", +"\n", +"printf('\nThe width of the well is L =\n')\n", +"\n", +"disp(L)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15_7: calculate_the_energy_and_wavelength_of_the_emitted_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_15_7,pg 1-45\n", +"\n", +"e=1.6*10^-19 //charge of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"c=3*10^8 //speed of light in air\n", +"\n", +"//The energy eigen values are given by E=(h^2*n^2)/(8*m*e*L^2) \n", +"\n", +"L=5*10^-10 //width of potential well\n", +"\n", +"//as electron makes a transittion from its n=2 to n=1 energy level\n", +"\n", +"E1=(1*h^2)/(8*m*e*L^2) //for n=1\n", +"\n", +"E2=(4*h^2)/(8*m*e*L^2) //for n=2\n", +"\n", +"E=E2-E1 //The energy of emitted photon\n", +"\n", +"printf('\nThe energy of emitted photon is E2-E1 = %.2f eV\n',E)\n", +"\n", +"//The energy of photon in terms of wavelength is (h*c)/lam\n", +"\n", +"wavelength=(h*c)/(E*e)\n", +"\n", +"printf('\nThe wavelength of emitted photon is = %.9f m\n',wavelength)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_10: calculate_the_de_Broglie_wavelength_and_momentum_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_10,pg 5-11\n", +"\n", +"V=10*10^3 //Potential difference\n", +"\n", +"wavelength=12.27/sqrt(V) // de Broglie wavelength of an eThelectron accelerated through a potential difference of 'V'\n", +"\n", +"printf('\nThe de Broglie wavelength of an electron accelerated through a potential difference of V is = %.4f A.\n',wavelength)\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"p=h/(wavelength*10^-10) //The momentum of an electron\n", +"\n", +"printf('\nThe momentum of an electron\n')\n", +"\n", +"disp(p)\n", +"\n", +"printf('kg-meter/sec\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_11: calculate_the_ratio_of_de_Broglie_wavelengths.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_11,pg 5-11\n", +"\n", +"//a proton and alpha particle are accelerated by the same potential difference\n", +"\n", +"m_p=1.67*10^-27 //mass of proton\n", +"\n", +"m_a=4*m_p //mass of alpha particle (assume mass of alpha particle to be 4 times the mass of proton)\n", +"\n", +"e=1.6*10^-19 //charge of proton\n", +"\n", +"e_a=2*e //charge of an alpha particle\n", +"\n", +"h=6.63*10^-34 //plancks constant\n", +"\n", +"wavelength_p=h/sqrt(2*m_p*e) //wavelength of proton\n", +"\n", +"wavelength_a=h/sqrt(2*m_a*e_a) //wavelength of an alpha particle\n", +" \n", +"ratio=wavelength_p/wavelength_a //ratio of the de Broglie wavelengths associated with proton and alpha particle\n", +"\n", +"printf('\nthe ratio of wavelengths associated with proton and alpha particle = %.3f\n',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_12: calculate_the_velocity_and_de_Broglie_wavelength_of_an_alpha_particle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_12,pg 5-12\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=6.68*10^-27 //mass of alpha particle \n", +"\n", +"E=1.6*10^-16 //energy asociated with alpha particle\n", +"\n", +"wavelength=h/sqrt(2*m*E)\n", +"\n", +"printf('\nThe de Broglie wavelength of an alpha particle\n')\n", +"\n", +"disp(wavelength)\n", +"\n", +"printf('meter\n')\n", +"\n", +"v=h/(m*wavelength) //velocity of an alpha particle\n", +"\n", +"printf('\nThe velocity of an alpha particle v = %.2f m/s\n',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_13: find_the_de_Broglie_wavelengths_of_photon_and_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_13,pg 5-12\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"c=3*10^8 //velocity of light in air \n", +"\n", +"E=1.6*10^-19 //energy of photon\n", +"\n", +"wavelength_ph=h*c/E //The energy of photon is E=h*c/lamph\n", +"\n", +"printf('\nThe de Broglie wavelength of a photon\n')\n", +"\n", +"disp(wavelength_ph)\n", +"\n", +"printf('meter\n')\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"wavelength_e=h/sqrt(2*m*E)\n", +"\n", +"\n", +"printf('\nThe de Broglie wavelength of an electron\n')\n", +"\n", +"disp(wavelength_e)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_14: find_the_de_Broglie_wavelength_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_14,pg 5-13\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m_0=9.1*10^-31 //rest mass of electron\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"E=m_0*c^2 //kinetic energy associated with \n", +"\n", +"wavelength=h/sqrt(2*m_0*E) //The de broglie wavelength of an electron\n", +"\n", +"printf('\nThe de Broglie wavelength of an electron\n')\n", +"\n", +"disp(wavelength)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_1: calculate_de_Broglie_wavelength_and_velocity_and_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_1,pg 5-5\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=10^-2 //mass of an moving object\n", +"\n", +"v1=1 //velocity of that object\n", +"\n", +"wavelength_1=h/(m*v1)\n", +"\n", +"printf('\nThe de Broglie Wavelength is\n')\n", +"\n", +"disp(wavelength_1)\n", +"\n", +"printf('meter\n')\n", +"\n", +"wavelength_2=10^-10 //new de Broglie wavelength\n", +"\n", +"v2=h/(m*wavelength_2) //new velocity of an object \n", +"\n", +"printf('\nThe new velocity of an object is\n')\n", +"\n", +"disp(v2)\n", +"\n", +"printf('meter/sec\n')\n", +"\n", +"d=10^-3 //Distance travelled with speed v2\n", +"\n", +"t=(d/v2)/(365*24*60*60) //time required to travel distance\n", +"\n", +"printf('\nTime required to travel distance is\n')\n", +"\n", +"disp(t)\n", +"\n", +"printf('years\n')\n", +"\n", +"//mistake in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_2: calculate_the_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_2,pg 5-6\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"wavelength=10^-10 //de Broglie wavelength of an electron\n", +"\n", +"v=h/(m*wavelength) //velocity of an electron\n", +"\n", +"printf('\nThe velocity of an electron is v = %.1f m/s\n',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_3: calculate_kinetic_energy_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_3,pg 5-6\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"wavelength=5000*10^-10 //de Broglie wavelength of an electron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"E=h^2/(2*m*wavelength^2*e) //Kinetic energy of an electron \n", +"\n", +"printf('\nKinetic energy of an electron is E = %.9f eV\n',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_4: find_the_wavelength_of_a_beam_of_neutron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_4,pg 5-7\n", +"\n", +"E=0.025 //energy of neutron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=1.676*10^-27 //mass of a neutron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"wavelength=h/sqrt(2*m*E*e) //The Wavelength of a beam of neutron\n", +"\n", +"printf('\nThe Wavelength of a beam of neutron is\n')\n", +"\n", +"disp(wavelength)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_5: find_the_de_Broglie_wavelength_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_5,pg 5-7\n", +"\n", +"E=120 //kinetic energy of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"wavelength=h/sqrt(2*m*E*e) //The de Broglie Wavelength of an electron\n", +"\n", +"printf('\nThe de Broglie Wavelength of an electron is\n')\n", +"\n", +"disp(wavelength)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_6: calculate_the_velocity_and_kinetic_energy_of_neutron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_6,pg 5-7\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=1.67*10^-27 //mass of a neutron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"wavelength=10^-10 //The de Broglie Wavelength of a neutron\n", +"\n", +"v=h/(m*wavelength) //velocity of a neutron\n", +"\n", +"printf('\nThe velocity of a neutron is v= %.f m/s\n',v)\n", +"\n", +"E=h^2/(2*m*wavelength^2*e) //Kinetic energy of a neutron\n", +"\n", +"printf('\nKinetic energy of a neutron is E= %.5f eV\n',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_7: find_the_de_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_7,pg 5-8\n", +"\n", +"//(1)\n", +"V=182 //Potential difference \n", +"\n", +"wavelength_1=12.27*10^-10/sqrt(V) //The de Broglie wavelength of an electron accelerated through a potential diff. of 'V'\n", +"\n", +"\n", +"printf('\nThe de Broglie wavelength of an electron accelerated through a potential diff. of V is\n')\n", +"\n", +"disp(wavelength_1)\n", +"\n", +"printf('meter\n')\n", +"\n", +"//(2)\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=1\n", +"\n", +"v=1\n", +"\n", +"wavelength_2=h/(m*v)\n", +"\n", +"printf('\nThe de Broglie wavelength of an object is\n')\n", +"\n", +"disp(wavelength_2)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_8: find_the_momentum_and_energy_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_8,pg 5-9\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"e=1.6*10^-19 //charge on electron\n", +"\n", +"wavelength=10^-14 //The de Broglie wavelength of an electron\n", +"\n", +"p=h/wavelength //as the de Broglie wavelength of an electron is (lam=h/p)\n", +"\n", +"printf('\nThe momentum of an electron is\n')\n", +"\n", +"disp(p)\n", +"\n", +"printf('kg-meter/sec\n')\n", +"\n", +"E=p^2/(2*m*e)*10^-6 //energy corresponds to momentum\n", +"\n", +"printf('\nenergy of an electron is E = %.2f MeV\n',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3_9: find_the_parameters_for_an_electron_wave.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_3_9,pg 5-10\n", +"\n", +"V=3000 //Potential difference \n", +"\n", +"wavelength=12.27/sqrt(V) //The de Broglie wavelength of an electron accelerated through a potential diff. of 'V'\n", +"\n", +"printf('\nThe de Broglie wavelength of an electron accelerated through a potential diff. of V is %.3f A.\n',wavelength)\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"p=h/(wavelength*10^-10) //as the de Broglie wavelength of an electron is (wavelength=h/p)\n", +"\n", +"printf('\nThe momentum of an electron is\n')\n", +"\n", +"disp(p)\n", +"\n", +"printf('kg-meter/sec\n')\n", +"\n", +"wave_no=1/(wavelength*10^-10) //wave number \n", +"\n", +"printf('\nThe wave number = %.f/m\n',wave_no)\n", +"\n", +"d=2.04 //distance between planes\n", +"\n", +"n=1 //For first ordet reflection\n", +"\n", +"angle=asind(n*wavelength/(2*d)) //By Bragg's law '2dsin(angle)=n*wavelength' \n", +"\n", +"printf('\nThe Bragg angle = %.3f Degree\n',angle)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_1: find_the_accuracy_in_position_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_1,pg 5-26\n", +"\n", +"unc=1*10^-4 //as uncertainty is 0.01%\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"v=400 //speed of an electron\n", +"\n", +"delta_v=unc*v //error in measurement of speed \n", +"\n", +"delta_x=h/(4*%pi*m*delta_v) //By Heisenberg's uncertainty priciple\n", +"\n", +"printf('\nThe accuracy in position of an electron Delta_x = %.5f m\n',delta_x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_2: calculate_the_percentage_of_uncertainty.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_2,pg 5-27\n", +"\n", +"delta_x=10*10^-9 //position is located within this distance\n", +"\n", +"h=6.63*10^-34 //plancks constant\n", +"\n", +"delta_px=h/(4*%pi*delta_x) //By Heisenberg's uncertainty priciple\n", +"\n", +"E=1.6*10^-16 //Energy associated with an electron\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"p=sqrt(2*m*E) //momentum of an electron\n", +"\n", +"percentage=delta_px*100/p //percentage uncertainty in momentum\n", +"\n", +"printf('\npercentage uncertainty in momentum of an electron = %.4f \n',percentage)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_3: find_the_accuracy_in_position_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_3,pg 5-27\n", +"\n", +"\n", +"uncertainty=1*10^-4 //as uncertainty is 0.01%\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"v=4*10^5 //speed of an electron\n", +"\n", +"delta_v=uncertainty*v //error in measurement of speed \n", +"\n", +"delta_x=h/(4*%pi*m*delta_v) //By Heisenberg's uncertainty priciple\n", +"\n", +"printf('\nThe accuracy in position of an electron Delta_x = %.8f m\n',delta_x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_4: find_the_accuracy_in_position_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_4,pg 5-27\n", +"\n", +"uncertainty=1*10^-2 //as uncertainty is 1%\n", +"\n", +"m=9.1*10^-31 //mass of an electron\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"v=1.88*10^6 //speed of an electron\n", +"\n", +"delta_v=uncertainty*v //error in measurement of speed \n", +"\n", +"delta_x=h/(4*%pi*m*delta_v) //By Heisenberg's uncertainty priciple\n", +"\n", +"printf('\nThe accuracy in position of an electron Delta_x =\n')\n", +"\n", +"disp(delta_x)\n", +"\n", +"printf('meter\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_5: calculate_the_minimum_time_spent_by_the_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_5,pg 5-28\n", +"\n", +"//By Heisenberg's uncertainty principle\n", +"\n", +"//(delta_E*delta_t)>=h/(4*%pi)\n", +"\n", +"//therefore (h*c*delta_wavelength*delta_t/wavelength^2) >= h/(4*%pi)\n", +"\n", +"wavelength=4*10^-7 //wavelength of spectral line\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"delta_wavelength=8*10^-15 //width of spectral line\n", +"\n", +"delta_t=wavelength^2/(4*%pi*c*delta_wavelength)\n", +"\n", +"printf('\nThe minimum time required by the electrons in upper energy state Delta_t = \n')\n", +"\n", +"disp(delta_t)\n", +"\n", +"printf('sec\n')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_6: calculate_the_uncertainty_in_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_6,pg 5-29\n", +"\n", +"h=6.63*10^-34 //Plancks constant\n", +"\n", +"e=1.6*10^-19 //charge of an electron\n", +"\n", +"delta_t=1.4*10^-10 //time spent in excited state\n", +"\n", +"delta_E=h/(4*%pi*delta_t*e) //By Heisenberg's uncertainty principle (delta_E*delta_t)>= h/(4*%pi)\n", +"\n", +"printf('\nThe uncertainty in energy of Iradium in the excited state Delta_E = %.8f eV\n',delta_E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7_7: find_the_time_spent_by_an_atom_in_excited_state.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5,Example5_7_7,pg 5-29\n", +"\n", +"//By Heisenberg's uncertainty principle\n", +"\n", +"//(delta_E*delta_t)>=h/(4*%pi)\n", +"\n", +"//therefore (h*c*delta_wavelength*delta_t/wavelength^2) >= h/(4*%pi)\n", +"\n", +"wavelength=546*10^-9 //wavelength of spectral line\n", +"\n", +"c=3*10^8 //velocity of light in air\n", +"\n", +"delta_wavelength=10^-14 //width of spectral line\n", +"\n", +"delta_t=wavelength^2/(4*%pi*c*delta_wavelength)\n", +"\n", +"printf('\nThe time spent by an atom in the excited state \n')\n", +"\n", +"disp(delta_t)\n", +"\n", +"printf('sec\n')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/6-Motion_of_Charged_Particle_in_Electric_and_Magnetic_Fields.ipynb b/Applied_Physics_ii_by_H_J_Sawant/6-Motion_of_Charged_Particle_in_Electric_and_Magnetic_Fields.ipynb new file mode 100644 index 0000000..3cde7ff --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/6-Motion_of_Charged_Particle_in_Electric_and_Magnetic_Fields.ipynb @@ -0,0 +1,168 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Motion of Charged Particle in Electric and Magnetic Fields" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1_1: calculate_radius_of_revolution_and_distance_covered.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6,Example6_1_1,pg 6-6\n", +"\n", +"m=9.1*10^-31 //mass of an electron in kg\n", +"\n", +"v=2.5*10^6 //velocity of an electron\n", +"\n", +"B=0.94*10^-4 //strength of uniform magnetic field\n", +"\n", +"e=1.6*10^-19 //charge of an electron \n", +"\n", +"angle=30 //angle between velocity vector and field direction\n", +"\n", +"r=m*v*sind(angle)/(B*e)*10^3 //radius of revolution\n", +"\n", +"printf('\nradius of revolution r = %.2f mm \n',r)\n", +"\n", +"l=5*v*cosd(angle)*2*%pi*m/(B*e) //distance coverd in five revolutions\n", +"\n", +"printf('distance coverd in five revolutions 5l =%.3f m',l)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1_2: calculate_radius_and_pitch.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6,Example6_1_2,pg 6-7\n", +"\n", +"m=9.1*10^-31 //mass of an electron in kg\n", +"\n", +"v=3*10^7 //velocity of an electron\n", +"\n", +"B=0.23 //strength of uniform magnetic field\n", +"\n", +"e=1.6*10^-19 //charge of an electron \n", +"\n", +"angle=45 //angle between velocity vector and field direction\n", +"\n", +"r=m*v*sind(angle)/(B*e)*10^3 //radius of revolution\n", +"\n", +"printf('\nradius of revolution r = %.3f mm\n',r)\n", +"\n", +"l=v*cosd(angle)*2*%pi*m/(B*e)*10^3 //pitch f helical path\n", +"\n", +"printf('pitch of helical path l = %.1f mm\n',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1_3: find_the_input_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6,Example6_1_3,pg 6-7\n", +"\n", +"y=1.5 //deflection in the beam\n", +"\n", +"d=0.42 //distance between two plates \n", +"\n", +"D=28 //distance of screen from center of plates \n", +"\n", +"l=1.8 //length of plates\n", +"\n", +"Va=1.6*10^3 //anode voltage\n", +"\n", +"V=2*y*d*Va/(D*l)\n", +"\n", +"Vin=V/6 //as amplifier gain is 60\n", +"\n", +"printf('\napplied voltage is Vin = %.2f V\n',Vin)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5_1: calculate_phase_change.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6,Example6_5_1,pg 6-16\n", +"\n", +"dA=0.8 //minor axis \n", +"\n", +"dB=2 //major axis\n", +"\n", +"phase_shift=asind(dA/dB) //phase calculation\n", +"\n", +"printf('\n phase shift = %.2f Degrees\n',phase_shift)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Applied_Physics_ii_by_H_J_Sawant/7-Superconductivity.ipynb b/Applied_Physics_ii_by_H_J_Sawant/7-Superconductivity.ipynb new file mode 100644 index 0000000..b927820 --- /dev/null +++ b/Applied_Physics_ii_by_H_J_Sawant/7-Superconductivity.ipynb @@ -0,0 +1,156 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Superconductivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_1: calculate_critical_temperature_of_element.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7,Example7_3_1,pg 7-6\n", +"\n", +"Ho=2*10^5 //critical field at absolute zero\n", +"\n", +"Hc=1*10^5 //critical field at given temperature\n", +"\n", +"T=8 //temperature\n", +"\n", +"Tc=T/sqrt(1-(Hc/Ho))\n", +"\n", +"printf('\ncritical temperature of the element Tc = %.2f Kelvin' ,Tc)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_2: find_the_critical_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7,Example7_3_2,pg 7-7\n", +"\n", +"Bo=3.06*10^-2 //critical field at absolute zero\n", +"\n", +"Tc=3.7 //critical temperature\n", +"\n", +"T=2 //temperature\n", +"\n", +"Bc=Bo*(1-(T/Tc)^2)\n", +"\n", +"printf('\ncritical field of wire Bc = %.5f T',Bc)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_3: calculate_the_critical_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7,Example7_3_3,pg 7-7\n", +"\n", +"Ho=6.5*10^4 //critical field at absolute zero\n", +"\n", +"Tc=7.18 //critical temperature\n", +"\n", +"T=4.2 //temperature\n", +"\n", +"r=0.5*10^-3 //radius of lead wire\n", +"\n", +"Hc=Ho*(1-(T/Tc)^2)\n", +"\n", +"Ic=2*%pi*r*Hc\n", +"\n", +"printf('\ncritical current for wire Ic = %.2f Amperes\n',Ic)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_4: calculate_the_isotopic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7,Example7_3_4,pg 7-8\n", +"\n", +"Tc1=4.185 //critical temperature 1\n", +"\n", +"Tc2=4.133 //critical temperature 2\n", +"\n", +"M1=199.5 //isotopic mass of a metal at temperature T1\n", +"\n", +"a=0.5\n", +"\n", +"M2=(Tc1*sqrt(M1)/Tc2)^2\n", +"\n", +"printf('\nisotopic mass is M2 = %.2f',M2)\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |