summaryrefslogtreecommitdiff
path: root/Advance_Semiconductor_Devices_by_S_Sharma
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Advance_Semiconductor_Devices_by_S_Sharma
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Advance_Semiconductor_Devices_by_S_Sharma')
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/1-Semiconductor_Materials_and_Their_Properties.ipynb618
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/2-Carrier_Transport_in_Semiconductor.ipynb946
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/3-Excess_Carriers_In_Semiconductors.ipynb773
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/4-Junctions_and_Interfaces.ipynb765
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/6-Microwave_Diodes.ipynb71
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/7-Optoelectonic_Devices.ipynb133
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/8-Metal_Semiconductor_Field_Effect_Transistor.ipynb594
-rw-r--r--Advance_Semiconductor_Devices_by_S_Sharma/9-MOS_Transistors.ipynb1501
8 files changed, 5401 insertions, 0 deletions
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/1-Semiconductor_Materials_and_Their_Properties.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/1-Semiconductor_Materials_and_Their_Properties.ipynb
new file mode 100644
index 0000000..f4fed0b
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/1-Semiconductor_Materials_and_Their_Properties.ipynb
@@ -0,0 +1,618 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Semiconductor Materials and Their Properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: Wavelength_of_X_ray.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"a = 3.65;// in Å\n",
+"a = 3.65*10^-10;// in m\n",
+"h = 1;\n",
+"k = 0;\n",
+"l = 0;\n",
+"d= a/(sqrt(h^2+k^2+l^2));// in m\n",
+"n = 1;\n",
+"theta = 60;// in degree\n",
+"lembda = 2*d*sind(theta);// in m\n",
+"lembda = lembda * 10^10;// in Å\n",
+"disp(lembda,'Wavelength of X ray in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Glacing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"lembda = 1.54;// in Å\n",
+"density = 9.024;// in gm/cc\n",
+"n = 1;\n",
+"MI = 100;\n",
+"At_W = 63.54;// atomic weight\n",
+"N_A = 6.023*10^23;\n",
+"m = At_W/N_A;// in gm\n",
+"a =(density*m)^(1/3);// in cm\n",
+"h = 1;\n",
+"k = 0;\n",
+"l = 0;\n",
+"d= a/(sqrt(h^2+k^2+l^2));\n",
+"theta = asind( (lembda * 10^-8)/(2*d) );// in degree\n",
+"disp(theta,'The glancing angle in degree is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Wavelength_of_X_ray.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"a = 3.615;// in Å\n",
+"theta = 22;// in degree\n",
+"n = 1;\n",
+"h = 1;\n",
+"k = h;\n",
+"l = k;\n",
+"d = a/(sqrt( ((h)^2) + ((k)^2) + ((l)^2) ));// in Å\n",
+"lembda = 2*d*sind(theta);// in Å\n",
+"disp(lembda,'The wavelength of X ray in Å is');\n",
+"theta2 =asind( lembda/d );// in degree\n",
+"theta2 = theta2 * 2;// in degree\n",
+"disp(theta2,'To get the 2nd order spectrum the position of the detector in degree is'); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Lattice_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n = 1;\n",
+"lembda = 1.54;// in Å\n",
+"theta = 21.7;// in degree\n",
+"d = lembda/(2*sind(theta));// in Å\n",
+"h = 1;\n",
+"k = h;\n",
+"l = k;\n",
+"a = d*sqrt(h^2+k^2+l^2);// in Å\n",
+"disp(a,'Lattice constant in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: Distance_between_d211_planes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"h = 2;\n",
+"k = 1;\n",
+"l = 1;\n",
+"a = 4.8;// in Å\n",
+"d_211 = a/(sqrt(h^2+k^2+l^2));// in Å\n",
+"disp(d_211,'The distance between planes in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: Density_of_copper.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"r = 1.28;// in Å\n",
+"a = (4*r)/(sqrt(2));// in Å\n",
+"a = a * 10^-8;// in cm\n",
+"n = 4;\n",
+"M = 63.5;\n",
+"N_A = 6.023*10^23;\n",
+"Rho = (n*M)/( N_A*((a)^3) );// in gm/cc\n",
+"disp(Rho,'Density in gm/cc is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: Number_of_atom_per_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"M = 55.85;\n",
+"a = 2.9;// in Å\n",
+"a = a * 10^-8;// in cm\n",
+"Rho = 7.87;// in gm/cc\n",
+"N_A = 6.023*10^23;\n",
+"n = (Rho*N_A*((a)^3))/M;// atom per unit\n",
+"disp('A lattice having '+string(round(n))+' atom per unit cell is a BCC structure');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: Radius_of_element_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"M = 60;// in gm/mole\n",
+"Rho = 6.23;// in gm/cc\n",
+"n = 4;\n",
+"N_A = 6.023*10^23;\n",
+"a = ((n*M)/(N_A * Rho))^(1/3);// in cm\n",
+"r = (a*sqrt(2))/n;//radius of atom in cm\n",
+"r = r * 10^8;// in Å\n",
+"disp(r,'Radius of atom in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: Packing_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 5.96;// in gm/cc\n",
+"M = 50;\n",
+"n = 2;\n",
+"N_A = 6.023*10^23;\n",
+"a =((n*M)/(Rho*N_A))^(1/3);// in cm\n",
+"r = (a*sqrt(3))/4;// in cm\n",
+"P_f = (2*(4/3)*%pi*((r)^3))/((a)^3);// packing factor\n",
+"disp(P_f,'Packing factor is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: Number_of_unit_cell.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"M = 120;\n",
+"n = 2;\n",
+"N_A = 6.023*10^23;\n",
+"m1 = M/N_A;//mass of 1 atom in gm\n",
+"m2 = n*m1;//mass of unit cell in gm\n",
+"disp(20/m2,'Number of unit cell in 20 gms of element is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: Distance_between_K_and_F.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 2.48;// in gm/c.c\n",
+"n = 4;\n",
+"M = 58;\n",
+"N_A = 6.023*10^23;\n",
+"a = ( (n*M)/(Rho*N_A) )^(1/3);// in cm\n",
+"a = a * 10^8;// in Å\n",
+"r = (a*sqrt(2))/n;// in Å\n",
+"r = 2*r;// in Å\n",
+"disp(r,'The center to center distance between ions in Å is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Volume_density_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"a = 5.3;// in Å\n",
+"a= a * 10^-10;// in m\n",
+"N_A = 6.023*10^23;\n",
+"At_Si = 28;// atomic weight of Si\n",
+"n = 4;\n",
+"m = At_Si/N_A;// in gm\n",
+"m= m*10^-3;// in kg\n",
+"V = a^3;// in m^3\n",
+"Rho = (m*n)/V;// in kg/m^3\n",
+"disp(Rho,'Density of silicon crystal in kg/m^3 is');\n",
+"\n",
+"// Note: There is calculation error to find the value of density. So the answer in the book is wrong.\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Density_of_copper_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n = 4;\n",
+"r = 1.278;// in Å\n",
+"a = (4*r)/(sqrt(2));// in Å\n",
+"a = a * 10^-10;// in m\n",
+"V = (a)^3;// in m^3\n",
+"At_W = 63.5;// atomic weight\n",
+"N_A = 6.023*10^23;\n",
+"m = At_W /N_A;// in gm\n",
+"m = m*10^-3;// in kg\n",
+"Rho = (m*n)/V;// in kg/m^3\n",
+"disp(Rho,'Density of the crystal in kg/m^3 is');\n",
+"\n",
+"\n",
+"// Note: There is calculation error to find the value of density. So the answer in the book is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Wavelength_of_X_ray.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"d = 2.82;// in Å\n",
+"d = d * 10^-10;// in m\n",
+"n = 1;\n",
+"theta1 = 10;// in degree\n",
+"lembda = 2*d*sind(theta1);// in m\n",
+"lembda = lembda * 10^10;// in Å\n",
+"disp(lembda,'Wavaelength of X ray in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Spacing_of_automatic_layer_in_the_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"lembda = 1.6;// in Å\n",
+"theta = 14.2;// in degree\n",
+"n = 1;\n",
+"d = (n*lembda)/(2*sind(theta));// in Å\n",
+"disp(d,'The spacing of atomic layer in crystal in Å is');\n",
+"\n",
+"// Note: The unit of the answer in the book is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Interplaner_spacing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n = 1;\n",
+"theta1 = 30;// in degree\n",
+"lembda = 1.78;// in Å\n",
+"d = (n*lembda)/(2*sind(theta1));// in Å\n",
+"disp(d,'The interplanner spacing in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Interplaner_spacing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"lembda = 0.58;// in Å\n",
+"n = 1;\n",
+"theta1 = 6.45;// in degree\n",
+"d = (n*lembda)/(2*sind(theta1));// in Å \n",
+"disp(d,'Part (i) : At angle of 6.45°, Interplaner spacing of the crystal in Å is ');\n",
+"theta2 = 9.15;// in degree\n",
+"d1 = (n*lembda)/(2*sind(theta2));// in Å \n",
+"disp(d1,'Part(ii) : At angle of 9.15°, Interplaner spacing of the crystal in Å is ');\n",
+"theta3 = 13;// in degree\n",
+"n2 = 1;\n",
+"d2 = (n2*lembda)/(2*sind(theta3));// in Å \n",
+"disp(d2,'Part(iii) : At angle of 13°, Interplaner spacing of the crystal in Å is ');\n",
+"// For \n",
+"n=2;\n",
+"d2 = (n*lembda)/(2*sind(theta3));// in Å \n",
+"disp(d2,'Part (iv) : The interplaner spacing in Å is : ')\n",
+"disp(d1,'The interplaner spacing for some other set of reflecting in Å is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Glacing_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"a = 2.814;// in Å\n",
+"l = 0;\n",
+"h = l;\n",
+"k = 0;\n",
+"//d= a/(sqrt(h^2+k^2+l^2)), So\n",
+"d=a;// in Å\n",
+"n = 2;\n",
+"lembda = 0.710;// in Å\n",
+"theta = asind(n*lembda/(2*d));\n",
+"disp(theta,'The glancing angle for a cubic in degree is :'); "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/2-Carrier_Transport_in_Semiconductor.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/2-Carrier_Transport_in_Semiconductor.ipynb
new file mode 100644
index 0000000..6a6631f
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/2-Carrier_Transport_in_Semiconductor.ipynb
@@ -0,0 +1,946 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Carrier Transport in Semiconductor"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Conductivity_of_pure_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Miu_e = 1500;// in cm^2/volt.sec\n",
+"Miu_h = 500;// in cm^2/volt.sec\n",
+"n_i = 1.6*10^10;// in /cm^3\n",
+"e = 1.6*10^-19;// in C\n",
+"Sigma_i = n_i*(Miu_e+Miu_h)*e;// in mho/cm\n",
+"Sigma = Sigma_i;// in mho/cm\n",
+"disp(Sigma,'The conductivity of pure silicon in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Number_of_donor_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Miu_d = 500;// in cm^2/V.S\n",
+"Rho = 10;// in ohm cm \n",
+"e = 1.6*10^-19;// in C\n",
+"n_d = 1/(Rho*e*Miu_d);// in /cm^3... correction\n",
+"disp(n_d,'The number of donor atom per cm^3 is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Conductivity_of_speciman.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"d = 5.32;// in gm/cc\n",
+"N_A = 6.02*10^23;// in atoms/gm.mole\n",
+"At = 72.6;//atomic weight\n",
+"Miu = 3800;// in cm^2/v.s\n",
+"n_d = (N_A/At) * d;// in /cm^3\n",
+"n_d = n_d * 10^-8;// in /cc\n",
+"e = 1.6*10^-19;// in C\n",
+"Sigma = n_d * Miu * e;// in mho/cm\n",
+"disp(Sigma,'The conductivity of specimen in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Mobility_of_electrons_in_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 0.3623*10^-3;// in ohm m\n",
+"d = 4.42*10^28;// Ge density in atoms/m^3\n",
+"Sigma = 1/Rho;// in mho/m\n",
+"n_d = d*10^-6;// in atoms/m^3\n",
+"e = 1.6*10^-19;// in C\n",
+"Miu = Sigma/(n_d*e);// in m^2/V.sec\n",
+"disp(Miu,'The electron mobility in m^2/V-sec is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Density_and_mobility_of_holes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_A = 6.025*10^26;// in /kg.Mole\n",
+"At = 72.59;// atomic weight\n",
+"d = 5.36*10^3;// in kg/m^3\n",
+"R = 0.42;// in ohm m\n",
+"B_i = 10^-6;//rate of boron impurity in %\n",
+"e = 1.6*10^-19;// in C\n",
+"n = (N_A/At)*d;// number of Ge atoms\n",
+"h = n/10^8;//holes per unit volume\n",
+"Miu_h = 1/(R*h*e);// in m^2/V.sec\n",
+"disp(Miu_h,'The Mobility of holes in m^2/V-sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Current_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 2*10^19;// in /m^3\n",
+"Miu_e = 0.36;// in m^2/v.s\n",
+"Miu_h = 0.17;// in m^2/v.s\n",
+"A = 1*10^-4;// in m^2\n",
+"V = 2;// in Volts\n",
+"l = 0.3;// in mm\n",
+"l = l * 10^-3;// in m\n",
+"e = 1.6*10^-19;// in C\n",
+"Sigma_i = n_i * e * (Miu_e+Miu_h);// in mho/m\n",
+"I = (Sigma_i * V*A)/l;// in amp \n",
+"disp(I,'The current in amp is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Resistivity_of_doped_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"d = 4.2*10^28;// in atoms/m^3\n",
+"n_d = d/10^6;// in atoms/m^3\n",
+"e = 1.6*10^-19;// in C\n",
+"Miu_e = 0.36;// in m^2/V-sec\n",
+"Sigma_n = n_d *e *Miu_e;// in mho/m\n",
+"Rho_n = 1/Sigma_n;// in ohm m\n",
+"disp(Rho_n,'The resistivity in Ωm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: Current_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1*10^19;// in /m^3\n",
+"Miu_e = 0.36;// in m^2/volt.sec\n",
+"Miu_h = 0.17;// in m^2/volt.sec\n",
+"A = 2;// in cm^2\n",
+"A = A * 10^-4;// in m^2\n",
+"t = 0.1;// in mm\n",
+"t = t*10^-3;// in m\n",
+"V = 4;// in volts\n",
+"e = 1.6*10^-19;// in C\n",
+"Sigma_i = n_i * e * (Miu_e + Miu_h);// mho/m\n",
+"J = Sigma_i * (V/t);// in Amp/m^2\n",
+"I = J*A;// in Amp\n",
+"disp(I,'The current in Amp is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: Conductivity_of_pure_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Miu_h = 500;// in cm^2/V.s\n",
+"Miu_e = 1500;// in cm^2/V.s\n",
+"n_i = 1.6*10^10;// in /cm^3\n",
+"e = 1.6*10^-19;// in C\n",
+"Sigma_i = n_i * e * (Miu_e+Miu_h);// in mho/cm\n",
+"disp(Sigma_i,'The conductivity of pure silicon in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: Hall_voltage_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Si_density = 10.5;// in gm/cc\n",
+"N_A = 6.025*10^23;\n",
+"At = 108;//atomic weight\n",
+"B = 0.8;// in Tesla\n",
+"w = 0.50;// in cm\n",
+"w = w * 10^-2;// in m\n",
+"t = 0.10;// in mm\n",
+"t = t * 10^-3;// in m\n",
+"A = w*t;// in m^2\n",
+"q = 1.6*10^-19;// in C\n",
+"I = 2;// in ampere\n",
+"n = (N_A/At) * Si_density ;// in /cc\n",
+"n = n * 10^6;// in /m^3\n",
+"V_H = (B*I*t)/(n*q*A);// in volts\n",
+"disp(V_H,'The hall voltage produced in volts is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Energy_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"lembda = 11000;// in Å\n",
+"lembda = lembda * 10^-10;\n",
+"h = 6.625*10^-34;\n",
+"c = 3*10^8;\n",
+"q = 1.6*10^-19;// in C\n",
+"E_g = h*c/lembda;// in J\n",
+"E_g= E_g/q;// in eV\n",
+"disp(E_g,'The energy gap in Si in eV is');\n",
+"\n",
+"// Note: The answer in the book is not correct "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: Hall_coefficient_and_mobility_of_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Sigma = 5.8*10^7;// in mho/m\n",
+"l = 1;// in m\n",
+"d = 1;// in cm\n",
+"d = d * 10^-2;// in m\n",
+"W = 1;// in mm \n",
+"W = W*10^-3;// in m\n",
+"I = 1;// in Amp\n",
+"B = 1;// in Tesla\n",
+"V_H = 0.074*10^-6;// in Volts\n",
+"A = 10^-2 * 10^-3;// in m^2\n",
+"R_H = (V_H*A)/(B*I*d);// in m^3/c\n",
+"disp(R_H,'Hall coefficient in m^3/c is');\n",
+"Miu = Sigma * R_H;// in m^2/volt.sec\n",
+"disp(Miu,'The mobility of electron in m^2/volt.sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: Ratio_of_electron_to_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.4*10^18;// in /m^3\n",
+"n_D = 1.4*10^24;// in /m^3\n",
+"n = n_D;// in /m^3\n",
+"p = n_i^2/n;// in /m^3\n",
+"disp(p,'Concentration of holes per m^3 is');\n",
+"R_e = n/p;// Ratio of electron \n",
+"disp(R_e,'Ratio of electron to hole concentration is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: Hall_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"B = 0.48;// in Wb/m^2\n",
+"R_H = 3.6 * 10^-4;// in m^3/c\n",
+"R = 9*10^-3;// in ohm-m\n",
+"Sigma = 1/R;// in (ohm-m)^-1\n",
+"Rho = 1/R_H;// in coulomb/m^3\n",
+"e = 1.6*10^-19;// in C\n",
+"n = Rho/e;// in /m^3\n",
+"Miu = Sigma * R_H;// in m^2/volt-s\n",
+"disp(Miu,'The mobility of electron in m^2/volt-s is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.23: Current_density_in_speciman.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e = 1.6*10^-19;// in C\n",
+"R_H = 0.0145;// in m^3/coulomb\n",
+"Miu_e = 0.36;// m^2/v-s\n",
+"E = 100;// V/m\n",
+"n = 1/(e*R_H);// in /m^3\n",
+"J= n*e*Miu_e*E;// in A/m^2\n",
+"disp(J,'The current density in A/m^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24: Relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e = 1.6*10^-19;// in C\n",
+"Miu_e = 7.04*10^-3;// in m^2/volt-sec\n",
+"n = 5.8*10^28;// number of electron/m^3\n",
+"m = 9.1*10^-31;\n",
+"E_F = 5.5;// in eV\n",
+"Torque = (Miu_e/e)*m;// in sec \n",
+"disp(Torque,'Relaxtion time in sec is');\n",
+"Rho = 1/(n*e*Miu_e);// in ohm cm\n",
+"disp(Rho,'Resistivity of conductor in Ωm is');\n",
+"V_F = sqrt( (2*E_F*e)/m );// in m/s\n",
+"disp(V_F,'Velocity of electron with the fermi energy in m/s is');\n",
+"\n",
+"// Note: The calculation of Part (ii) is wrong also the unit of resistivity of conductor is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.25: Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.25\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"E= 5.95;// in eV\n",
+"EF= 6.25;// in eV\n",
+"delE= 0.01;\n",
+" // delE= 1-1/(1+exp((E-EF)/KT))\n",
+"K=1.38*10^-23;// Boltzman Constant in J/K\n",
+"T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K;// in K\n",
+"disp(T,'The temperature in K is : ')\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.26: Thermal_equilibrium_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.26\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"T1 = 400;// in K\n",
+"T2 = 300;// in K\n",
+"N_V = 1.04*10^19;// in cm^-3\n",
+"N1 = N_V*((T1/T2)^(3/2));// in cm^-3\n",
+"KT = 0.0259*(T1/T2);// in eV\n",
+"FermiLevel= 0.27;// in eV\n",
+"P_O = N1*exp( (-FermiLevel)/KT );// in cm^-3\n",
+"disp(P_O,'The thermal equillibrium hole concentration in cm^-3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.27: Required_doping_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.27\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"T1 = 550;// in K\n",
+"T2 = 300;// in K\n",
+"N1 = 1.04*10^19;\n",
+"N_V = N1*((T1/T2)^(3));\n",
+"N_C = 2.8*10^19;\n",
+"E_g = -1.12;\n",
+"KT = 0.0259*(T1/T2);\n",
+"n_i = sqrt(N_C*N_V*exp(E_g/KT));// in cm^-3\n",
+"disp(n_i,'The value of n_i in cm^-3 is : ')\n",
+"//Formula n_o= Nd/2+sqrt((Nd/2)^2+n_i^2) and n_o = 1.05*N_d;\n",
+"Nd= sqrt(n_i^2/((1.05-1/2)^2-(1/2)^2))\n",
+"disp(Nd,'The value of N_d in cm^-3 is : ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.28: Quasi_Fermi_energy_levels.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.28\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_o = 10^15;// in cm^-3\n",
+"n_i = 10^10;// in cm^-3\n",
+"p_o = 10^5;// in cm^-3\n",
+"del_p = 10^13;// in cm^-3\n",
+"del_n = del_p;// in cm^-3\n",
+"KT= 0.0259;// in eV\n",
+"Fermi_level= KT*log(n_o/n_i);// in eV\n",
+"disp(Fermi_level,'Fermi level for thermal equillibrium in eV is :')\n",
+"Fermi_level= KT*log((n_o+del_n)/n_i);// in eV\n",
+"disp(Fermi_level,'Quasi-Fermi level for electrons in non equillibrium in eV is :')\n",
+"Fermi_level= KT*log((p_o+del_p)/n_i);// in eV\n",
+"disp(Fermi_level,'Quasi-Fermi level for holes in non equillibrium in eV is :')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"E_g = 0.75;// in eV\n",
+"q=1.6*10^-19;// in C\n",
+"E_g = E_g*q;// in J\n",
+"h = 6.63*10^-34;// in J\n",
+"c = 3*10^8;// in m/s\n",
+"lembda = (h*c)/E_g;// in m\n",
+"lembda = lembda * 10^10;// in Å\n",
+"disp(lembda,'The wavelength in Å is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_E = 0.3;//value of E_C-E_F in eV\n",
+"T1 = 330;// in K\n",
+"T = 300;// in K\n",
+"del_E1 = del_E*(T1/T);//value of E_C-E_F in eV\n",
+"disp(del_E1,'The position of fermi level in eV is');\n",
+"disp('Hence the Fermi level will be '+string(del_E1)+' eV below the conduction band')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Probability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"K = 8.63*10^-5;\n",
+"T = 300;// in K\n",
+"N_C = 2.8*10^19;// in cm^-3\n",
+"del_E = 0.25;\n",
+"f_F = exp( (-del_E)/(K*T) );\n",
+"disp(f_F,'The probability is : ');\n",
+"n_o = N_C*exp( (-del_E)/(K*T) );// in cm^-3\n",
+"disp(n_o,'The thermal equillibrium electron concentration in cm^-3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Thermal_equilibrium_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_V = 1.04*10^19;// in cm^-3\n",
+"T1 = 400;// in K\n",
+"T2 = 300;// in K\n",
+"del_E = 0.27;//value of E_F-E_V in eV\n",
+"K = 0.0259;\n",
+"N_V= N_V*(T1/T2)^(3/2);// in cm^-3\n",
+"KT = K*(T1/T2);// in eV\n",
+"p_o = N_V*exp( (-del_E)/(KT) );// in /cm^3\n",
+"disp(p_o,'The hole concentration per cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Mobility_of_electrons_in_copper.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N = 6.02*10^23;\n",
+"A = 63.5;// atomic weight\n",
+"Rho = 1.7*10^-6;// in ohm cm\n",
+"d = 8.96;// in gm/cc\n",
+"n = (N/A)*d;// in /cc\n",
+"e = 1.6*10^-19;// in C\n",
+"Miu_e = 1/(Rho*n*e);// in cm^2/volt-sec\n",
+"disp(Miu_e,'The mobility of electron in cm^2/volt.sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Density_of_free_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"d = 8.96;// in gm/cc\n",
+"At = 63.5;// atomic weight\n",
+"N_A = 6.02*10^23;// in /gm mole\n",
+"l = 0.1;// in m\n",
+"e = 1.6*10^-19;// in C\n",
+"A = 1.7*10^-6;// in m^2\n",
+"R = 0.1;// in ohm\n",
+"n = (N_A/At)*d;// in /cc\n",
+"n = n * 10^6;// in /m^3\n",
+"Rho = (R*A)/l;// in ohm.m\n",
+"Sigma = 1/Rho;// in mho/m\n",
+"Miu_e = Sigma/(n*e);// in m^2/V-sec\n",
+"disp(Miu_e,'The electron mobility in m^2/V-sec is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_A = 6.025*10^23;// in /gm mole\n",
+"d = 10.5;// in gm/cc\n",
+"At = 108;// atomic weight of \n",
+"n = (N_A/At)*d;// in /cm^3\n",
+"n = n * 10^6;// in /m^3\n",
+"r = 10^-3;// in m\n",
+"A = %pi * ((r)^2);// in m^2\n",
+"q = 1.6*10^-19;\n",
+"I = 2;// in A\n",
+"V = I/(n*q*A);// in m/s\n",
+"disp(V,'The drift velocity of an electron in m/s is');\n",
+"\n",
+"// Note: There is calculation error to find the value of V (i.e. drift velocity), So the answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Mobility_of_charge_carriers.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e= 1.6*10^-19;// in C\n",
+"d= 1.03;// in mm\n",
+"d= d*10^-3;// in m\n",
+"R= 6.51;// in ohm\n",
+"l= 300;// in m\n",
+"n= 8.4*10^28;// per m^3\n",
+"r= d/2;// in m (radius)\n",
+"A= %pi*r^2;// in m^2\n",
+"rho= R*A/l;// in ohm meter\n",
+"sigma= 1/rho;// in mho/m\n",
+"disp(sigma,'The coductivity of copper in mho/m is : ')\n",
+"miu_e= sigma/(n*e);// m^2/V-sec\n",
+"disp(miu_e,'The mobility of charge carriers in m^2/V-sec is : ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/3-Excess_Carriers_In_Semiconductors.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/3-Excess_Carriers_In_Semiconductors.ipynb
new file mode 100644
index 0000000..30e3894
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/3-Excess_Carriers_In_Semiconductors.ipynb
@@ -0,0 +1,773 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Excess Carriers In Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Ratio_of_donor_atoms_to_Si_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 9.6*10^-2;// ohm-m\n",
+"Sigma_n = 1/Rho;// in (ohm-m)^-1\n",
+"Miu_n = 1300;// in cm^2/V-s\n",
+"Miu_n = Miu_n * 10^-4;// in m^2/V-s\n",
+"q = 1.6*10^-19;// in C\n",
+"N_D = Sigma_n/(Miu_n*q);// in atoms/m^3\n",
+"d = 5*10^22;// in atoms/cm^3\n",
+"d = d * 10^6;// in atoms/m^3\n",
+"R_d = N_D/d;// Ratio \n",
+"disp(R_d,'Ratio of donor atom to silicon atoms per unit volume is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: Equillibrium_electron_and_hole_densities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5*10^10;// in /cm^3\n",
+"n_n = 2.25*10^15;//in /cm^3\n",
+"p_n = ((n_i)^2)/n_n;// in /cm^3\n",
+"disp(p_n,'The concentration of holes per cm^3 is');\n",
+"disp(n_n,'Donor impurity per cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: Carrier_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_A = 2*10^16;// in /cm^3\n",
+"N_D = 10^16;// in /cm^3\n",
+"C = N_A-N_D;// in /cm^3\n",
+"disp(C,'Carrier concentration in holes/cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: Generation_rate_due_to_irradiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.13\n",
+"// GIven data\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"del_n = 10^15;// in /cm^3\n",
+"Torque_p = 10*10^-6;// in sec\n",
+"R_G = del_n/Torque_p;// in electron hole pairs/sec/cm^3\n",
+"disp('The rate of generation of minority carrier is : '+string(R_G)+' electron hole pairs/sec/cm^3');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: Mobility_of_minority_charge_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V = 1/20;// in cm/µsec\n",
+"V=V*10^6;// in cm/sec\n",
+"E = 10;// in V/cm\n",
+"Miu = V/E;// in cm^2/V-sec\n",
+"disp(Miu,'The mobility of minority charge carrier in cm^2/V-sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Hole_and_electron_diffusion_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"N_D = 4.5 * 10^15;// in /cm^3\n",
+"del_p = 10^21;\n",
+"e=10;// in cm\n",
+"A = 1;// in mm^2\n",
+"A = A * 10^-14;// cm^2\n",
+"l = 10;// in cm\n",
+"Torque_p = 1;// in microsec\n",
+"Torque_p = Torque_p * 10^-6;// in sec\n",
+"Torque_n = 1;// in microsec\n",
+"Torque_n = Torque_n * 10^-6;// in sec\n",
+"n_i = 1.5 * 10^10;// in /cm^3\n",
+"D_n = 30;// in cm^2/sec\n",
+"D_p = 12;// in cm^2/sec\n",
+"n_o = N_D;// in /cm^3\n",
+"p_o = (n_i)^2/n_o;// in /cm^3\n",
+"disp(p_o,'Hole concentration at thermal equilibrium per cm^3 is');\n",
+"l_n = sqrt(D_n * Torque_n);// in cm\n",
+"disp(l_n,'Diffusion length of electron in cm is');\n",
+"l_p = sqrt(D_p * Torque_p);// in cm\n",
+"disp(l_p,'Diffusion length of holes in cm is');\n",
+"x=34.6*10^-4;// in cm\n",
+"dpBYdx = del_p *e;// in cm^4\n",
+"disp(dpBYdx,'Concentration gradient of holes at distance in cm^4 is');\n",
+"e1 = 1.88 * 10^1;// in cm\n",
+"dnBYdx = del_p * e1;// in cm^4 check this also...........................\n",
+"disp(dnBYdx,'Concentration gradient of electrons in per cm^4 is');\n",
+"J_P = -(q) * D_p * dpBYdx;// in A/cm^2\n",
+"disp(J_P,'Current density of holes due to diffusion in A/cm^2 is');\n",
+"J_n = q * D_n * dnBYdx;// in A/cm^2\n",
+"disp(J_n,'Current density of electrons due to diffusion in A/cm^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: Energy_band_gap_of_semiconductor_material_used.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"h = 6.626 * 10^-34;// in J-s\n",
+"q= 1.6*10^-19;// in C\n",
+"h= h/q;// in eV\n",
+"c = 3*10^8;\n",
+"lembda = 5490*10^-10;// in m\n",
+"E = h*c/lembda;// in eV\n",
+"disp(E,'The energy band gap in eV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: Current_density_in_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Gievn data\n",
+"D_n = 35;// in cm^2/sec\n",
+"q = 1.6*10^-19;// in C\n",
+"y2 = 6*10^16;// in /cm^3\n",
+"y1 = 10^17;// in /cm^3\n",
+"x2 = 2*10^-4;\n",
+"x1 = 0;\n",
+"dnBYdx = (y2-y1)/(x2-x1);\n",
+"J_n = q*D_n*dnBYdx;// in A/cm^2\n",
+"disp(J_n,'The current density in A/cm^2 is'); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: Resistance_of_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6*10^-19;// in C\n",
+"n_n = 5*10^20;// in /m^3\n",
+"n_n = n_n * 10^-6;// in /cm^3\n",
+"Miu_n = 0.13;// in m^2/V-sec\n",
+"Miu_n = Miu_n * 10^4;// in cm^2/V-sec\n",
+"Sigma_n = q*n_n*Miu_n;// in ohm-cm^-1\n",
+"Rho = 1/Sigma_n;\n",
+"A = 100;// in µm^2\n",
+"A = A * 10^-8;// in cm^2\n",
+"l = 0.1;// in cm\n",
+"R = Rho * (l/A);// in ohm\n",
+"disp(round(R*10^-6),'The resistance of the bar in M ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: Depletion_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"w = 3;// in µm\n",
+"D = w/9;// in µm\n",
+"disp(D,'Depletion width on P side in µm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Hole_concentration_at_equilibrium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_o = 10^17;// in /cm^3\n",
+"n_i = 1.5*10^10;// in /cm^3\n",
+"p_o = ((n_i)^(2))/n_o;// in holes/cm^3\n",
+"disp(p_o,'The hole concentration in holes/cm^3 is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: Minority_carrier_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5*10^16;// in /m^3\n",
+"n_n = 5*10^20;// in /m^3\n",
+"p_n = ((n_i)^2)/n_n;// in /m^3\n",
+"disp(p_n,'The minority carrier density per m^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: Collector_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"y2 = 10^14;// in /cm^3\n",
+"y1 = 0;\n",
+"x1=-0.5;// in µm\n",
+"x1= x1*10^-4;// in cm\n",
+"x2=0;\n",
+"dnBYdx = (y2-y1)/(x2-x1);// in /cm^4\n",
+"q = 1.6*10^-19;// in C\n",
+"D_n = 25;// in cm^2/sec\n",
+"J_n = q*D_n*dnBYdx;// in A/cm^2\n",
+"disp(J_n,'The collector current density in A/cm^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22: Band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"h = 6.64*10^-34;// in J-s\n",
+"q=1.6*10^-19;// in C\n",
+"h= h/q;// in eV\n",
+"c = 3*10^8;// in m/s\n",
+"lembda = 0.87*10^-6;// in m\n",
+"E_g = (h*c)/lembda;// in eV\n",
+"disp(E_g,'The band gap in eV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23: Total_energy_absorbed_by_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"alpha = 5*10^4;// in cm^-1\n",
+"l = 0.46*10^-4;// in cm\n",
+"hv = 2;// in eV\n",
+"I_o = 10^-2;// in W\n",
+"I_t = I_o*exp(-alpha*l);// in W\n",
+"A_p = I_o-I_t;//absorbed power in W or J/s\n",
+"disp(A_p,'Total energy absorbed in J/s is');\n",
+"c = 1.43;\n",
+"A_E = (hv-c)/hv*A_p;// in J/s\n",
+"disp(A_E,'Rate of excess thermal energy in J/s is');\n",
+"e = 1.6*10^-19;// in C\n",
+"P = A_p/(e*hv);//Perfect quantum efficiency in photon/s\n",
+"disp(P,'Perfect quantum efficiency in photon/s is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24: Hole_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"format('v',13)\n",
+"Mu_p = 500;// in cm^2/v-s\n",
+"kT = 0.0259;\n",
+"Toh_p = 10^-10;// in sec\n",
+"p_o = 10^17;// in cm^-3\n",
+"q= 1.6*10^-19;// in C\n",
+"A=0.5;// in square meter\n",
+"del_p = 5 * 10^16;// in cm^-3\n",
+"n_i= 1.5*10^10;// in cm^-3 \n",
+"D_p = kT * Mu_p;// in cm/s\n",
+"L_p = sqrt(D_p * Toh_p);// in cm\n",
+"x = 10^-5;// in cm\n",
+"p = p_o+del_p* %e^(x/L_p);// in cm^-3\n",
+"// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p\n",
+"Eip= log(p/n_i)*kT;// in eV\n",
+"Ecp= 1.1/2-Eip;// value of E_c-E_p in eV\n",
+"Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A\n",
+"disp(Ip,'The hole current in A is : ')\n",
+"Qp= q*A*del_p*L_p;// in C\n",
+"disp(Qp,'The value of Qp in C is : ')\n",
+"\n",
+"// Note: There is a calculation error to evalaute the value of hole current hence the value of hole current in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5 * 10 ^10;// in /cm^3 for silicon\n",
+"N_d = 10^17;// in atoms/cm^3\n",
+"n_o = 10^17;// electrons/cm^3\n",
+"KT = 0.0259;\n",
+"// E_r - E_i = KT * log(n_o/n_i)\n",
+"del_E = KT * log(n_o/n_i);// in eV\n",
+"disp('The energy band for this type material is Ei + '+string(del_E)+' eV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Diffusion_coefficients_of_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"K = 1.38*10^-23;// in J/K\n",
+"T = 27;// in degree C\n",
+"T = T + 273;// in K\n",
+"e = 1.6*10^-19;\n",
+"Miu = 0.17;// in m^2/v-s\n",
+"Miu1 = 0.025;// in m^2/v-s\n",
+"D_n = ((K*T)/e)*Miu;// in m^2/s\n",
+"disp(D_n,'The diffusion coefficient of electrons in m^2/s is');\n",
+"D_p = ((K*T)/e)*Miu1;// in m^2/s\n",
+"disp(D_p,'The diffusion coefficient of holes in m^2/s is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Diffusion_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Miu_n = 0.15;// in m^2/v-s\n",
+"K = 1.38*10^-23;\n",
+"T = 300;// in K\n",
+"e = 1.6*10^-19;// in C\n",
+"D_n = Miu_n*((K*T)/e);// in m^2/s\n",
+"Torque_n = 10^-7;// in s\n",
+"L_n = sqrt(D_n*Torque_n);// in m\n",
+"disp(L_n,'The diffusion length in m is');\n",
+"del_n = 10^20;// in electrons/m^3\n",
+"J_n = (e*D_n*del_n)/L_n;// in A/m^2\n",
+"disp(J_n,'The diffusion current density in A/m^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Concentration_of_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Sigma_n = 0.1;// in (ohm-cm)^-1\n",
+"Miu_n = 1300;\n",
+"q = 1.6*10^-19;// in C\n",
+"n_n = Sigma_n/(Miu_n*q);// in electrons/cm^3 \n",
+"disp(n_n*10^6,'Concentration of electrons per m^3 is ');\n",
+"n_i = 1.5*10^10;\n",
+"p_n = ((n_i)^2)/n_n;// in holes/cm^3\n",
+"p_n = p_n * 10^6;// in holes/m^3\n",
+"disp(p_n,'Concentration of holes per m^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Electron_transit_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"L = 100*10^-6;// in m\n",
+"Miu_e = 0.13;// in m^2/V-s\n",
+"Torque_h = 10^-6;// in s\n",
+"Miu_h = 0.05;// in m^2/v-s\n",
+"V = 12;// in V\n",
+"Torque_n = ((L)^2)/(Miu_e*V);// in s\n",
+"disp(Torque_n,'Electron transit time in sec is');\n",
+"P = (Torque_h/Torque_n)*(1+(Miu_h/Miu_e));\n",
+"disp(P,'Photoconductor gain is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Resistivity_drops.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6*10^-19;// in C\n",
+"n_i = 2.5*10^13;\n",
+"Miu_n = 3800;// in cm^2/V-s\n",
+"Miu_p = 1800;// in cm^2/V-s\n",
+"Sigma = n_i*(Miu_n + Miu_p)*q;// in (ohm-cm)^-1\n",
+"Rho = 1/Sigma;// in ohm-cm\n",
+"disp(Rho,'The resistivity in ohm-cm is');\n",
+"N_D =4.4*10^22/10^8 ;// in atoms/cm^3\n",
+"Sigma_n = N_D * Miu_n*q;// in (ohm-cm)^-1 \n",
+"Rho1 = 1/Sigma_n;// in ohm cm\n",
+"disp(Rho1,'The resistivity drops in ohm cm is'); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: Electron_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 10^16;// in /m^3\n",
+"N_D = 10^22;// in /m^3\n",
+"n = N_D;// in /m^3\n",
+"disp(n,'The concentration of electrons per m^3 is');\n",
+"p = ((n_i)^2)/n;// in /m^3\n",
+"disp(p,'The concentration of holes per m^3 is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/4-Junctions_and_Interfaces.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/4-Junctions_and_Interfaces.ipynb
new file mode 100644
index 0000000..c441edb
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/4-Junctions_and_Interfaces.ipynb
@@ -0,0 +1,765 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Junctions and Interfaces"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Eta = 1;\n",
+"T = 125;// in °C\n",
+"T = T + 273;// in K\n",
+"V_T = 8.62 * 10^-5 * 398;// in V\n",
+"I_o = 30;// in µA\n",
+"I_o= I_o*10^-6;// in A\n",
+"v = 0.2;// in V\n",
+"r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm\n",
+"disp(r_f,'The dynamic resistance in the forward direction in ohm is ');\n",
+"r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm\n",
+"disp(r_r*10^-3,'The dynamic resistance in the reverse direction in kohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Barrier_capacitance_of_a_Ge_pn_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"epsilon = 16/(36 * %pi * 10^11);// in F/cm\n",
+"A = 1 * 10^-2;\n",
+"W = 2 * 10^-4;\n",
+"C_T = (epsilon * A)/W;// in F\n",
+"disp(C_T*10^12,'The barrier capacitance in pF is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: Width_of_the_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"A = 1;// in mm^2\n",
+"A = A * 10^-6;// in m^2\n",
+"N_A = 3 * 10^20;// in atoms/m^3\n",
+"q = 1.6 *10^-19;// in C\n",
+"V_o = 0.2;// in V\n",
+"epsilon_r=16;\n",
+"epsilon_o= 8.854*10^-12;// in F/m\n",
+"epsilon=epsilon_r*epsilon_o;\n",
+"// Part (a)\n",
+"V=-10;// in V\n",
+"// V_o - V = 1/2*((q * N_A )/epsilon) * W^2\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"C_T1 = (epsilon * A)/W;// in F\n",
+"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 10V in µm is ');\n",
+"// Part (b)\n",
+"V=-0.1;// in V\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"C_T2 = (epsilon * A)/W;// in F\n",
+"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ');\n",
+"// Part (c)\n",
+"V=0.1;// in V\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"disp(W*10^6,'The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ');\n",
+"// Part (d)\n",
+"disp(C_T1*10^12,'The space charge capacitance for an applied reverse voltage of 10V in pF is');\n",
+"disp(C_T2*10^12,'The space charge capacitance for an applied reverse voltage of 0.1V in pF is');\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: Current_in_the_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 1.8 * 10^-9;// A\n",
+"v = 0.6;// in V\n",
+"Eta = 2;\n",
+"V_T = 26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I = I_o *(%e^(v/(Eta * V_T)));// in A\n",
+"disp(I*10^3,'The current in the junction in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: Forward_biasing_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 2.4 * 10^-14;\n",
+"I = 1.5;// in mA\n",
+"I=I*10^-3;// in A\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"v =log((I + I_o)/I_o) * V_T;// in V\n",
+"disp(v,'The forward biasing voltage across the junction in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: Theoretical_diode_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 10;// in nA\n",
+"// I = I_o * ((e^(v/(Eta * V_T))) - 1)\n",
+"// e^(v/(Eta * V_T)<< 1, so neglecting it\n",
+"I = I_o * (-1);// in nA\n",
+"disp(I,'The Diode current in nA is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.16: Diode_dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R = 4.5;// in ohm\n",
+"I = 44.4;// in mA\n",
+"I=I*10^-3;// in A\n",
+"V = R * I;// in V\n",
+"Eta = 1;\n",
+"V_T = 26;//in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I_o = I/((%e^(V/(Eta * V_T))) -1);// in A\n",
+"// At\n",
+"V = 0.1;// in V\n",
+"r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm\n",
+"disp(r_f,'The diode dynamic resistance in Ω is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.17: DC_load_line_and_operating_point.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_D = 10;// in V\n",
+"// V_S = i*R_L + V_D\n",
+"V_S = V_D;// in V (i * R_L = 0)\n",
+"disp(V_S,'when diode is OFF, the voltage in volts is : ');\n",
+"R_L = 250;// in ohm\n",
+"I = V_S/R_L;// in A\n",
+"disp(I*10^3,'when diode is ON, the current in mA is');\n",
+"V_D= 0:0.1:10;// in V\n",
+"I= (V_S-V_D)/R_L*1000;// in mA\n",
+"plot(V_D,I)\n",
+"xlabel('V_D in volts');\n",
+"ylabel('Current in mA')\n",
+"title('DC load line');\n",
+"disp('DC load line shown in figure')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.18: AC_resistance_of_a_Ge_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V = 0.25;// in V\n",
+"I_o = 1.2;// in µA\n",
+"I_o = I_o * 10^-6;// in A\n",
+"V_T = 26;// in mV\n",
+"V_T = V_T * 10^-3;// in V\n",
+"Eta = 1;\n",
+"r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm\n",
+"disp(r,'The ac resistance of the diode in ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.19: Width_of_the_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"N_A = 3 * 10^20;// in /m^3\n",
+"A = 1;// in µm^2\n",
+"A = A * 10^-6;// in m^2\n",
+"V = -10;// in V\n",
+"V_J = 0.25;// in V\n",
+"V_B = V_J - V;// in V\n",
+"epsilon_o = 8.854;// in pF/m\n",
+"epsilon_o = epsilon_o * 10^-12;// in F/m\n",
+"epsilon_r = 16;\n",
+"epsilon = epsilon_o * epsilon_r;\n",
+"W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m \n",
+"disp(W*10^6,'The width of depletion layer in µm is');\n",
+"C_T = (epsilon * A)/W;// in pF\n",
+"disp(C_T*10^12,'the space charge capacitance in pF is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.20: Diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"C_T = 100;// in pF\n",
+"C_T=C_T*10^-12;// in F\n",
+"epsilon_r = 12;\n",
+"epsilon_o = 8.854 * 10^-12;// in F/m\n",
+"epsilon = epsilon_r * epsilon_o;\n",
+"Rho_p = 5;// in ohm-cm\n",
+"Rho_p = Rho_p * 10^-2;// in ohm-m\n",
+"V_j = 0.5;// in V\n",
+"V = -4.5;// in V\n",
+"Mu_p = 500;// in cm^2\n",
+"Mu_p = Mu_p * 10^-4;// in m^2\n",
+"Sigma_p = 1/Rho_p;// in per ohm-m\n",
+"qN_A = Sigma_p/ Mu_p;\n",
+"V_B = V_j - V;\n",
+"W = sqrt((V_B * 2 * epsilon)/qN_A);// in m\n",
+"//C_T = (epsilon * A)/W;\n",
+"A = (C_T * W)/ epsilon;// in m\n",
+"D = sqrt(A * (4/%pi));// in m\n",
+"D = D * 10^3;// in mm\n",
+"disp(D,'The diameter in mm is');\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.21: Temperature_of_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"Mu_p = 500;// in cm^2/V-sec\n",
+"Rho_p = 3.5;// in ohm-cm\n",
+"Mu_n = 1500;// in cm^2/V-sec\n",
+"Rho_n = 10;// in ohm-cm\n",
+"N_A = 1/(Rho_p * Mu_p * q);// in /cm^3\n",
+"N_D = 1/(Rho_n * Mu_n * q);// in /cm^3\n",
+"V_J = 0.56;// in V\n",
+"n_i = 1.5 * 10^10;// in /cm^3\n",
+"V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V\n",
+"// V_T = T/11600\n",
+"T = V_T * 11600;// in K\n",
+"T = T - 273;// in °C\n",
+"disp(T,'The Temperature of junction in °C is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.22: Reverse_saturation_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R = 5;// in ohm\n",
+"I = 50;// in mA\n",
+"I=I*10^-3;// in A\n",
+"V = R * I;// in V\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A\n",
+"disp(I_o*10^6,'Reverse saturation current in µA is');\n",
+"v1 = 0.2;// in V\n",
+"r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm\n",
+"disp(r,'Dynamic resistance of the diode in Ω is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Junction_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_D = 10^17 * 10^6;// in atoms/m^3\n",
+"N_A = 0.5*10^16*10^6;// in atoms/m^3\n",
+"Epsilon_r = 10;\n",
+"Epsilon_o = 8.85*10^-12;\n",
+"Epsilon = Epsilon_r*Epsilon_o;// in F/m\n",
+"e = 1.602*10^-19;// in C\n",
+"V = 0;\n",
+"V_B = 0.7;// in V\n",
+"W = sqrt( ((2*Epsilon*V_B)/e)*(1/N_A+1/N_D) );// in m\n",
+"disp(W,'The junction width in meter when no external voltage is applied is');\n",
+"V_o = V_B;// in V\n",
+"V1 = -10;// in V\n",
+"V_B1 = V_o-V1;// in V\n",
+"W = sqrt( ((2*Epsilon*V_B1)/e)*(1/N_A+1/N_D) );// in m\n",
+"disp(W,'Junction width in meter with an external voltage of -10V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Diode_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V = 5;// in V\n",
+"V_Gamma = 0.6;// in V\n",
+"r_F = 12;// in ohm\n",
+"R = 1;// in k ohm\n",
+"R = R * 10^3;// in ohm\n",
+"I_F = (V-V_Gamma)/(R+r_F);// in A\n",
+"disp(I_F*10^3,'The forward diode current in mA is');\n",
+"V_F = V_Gamma + (I_F*r_F);// in V\n",
+"disp(V_F,'The diode voltage in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Contact_difference_of_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n = 4.4*10^22;// total number of Ge atoms/cm^3\n",
+"n_a = 1*10^8;// number of impurity atoms\n",
+"N_A = n/n_a;// in atoms/cm^3\n",
+"N_A = N_A * 10^6;// in atoms/m^3\n",
+"n_i = 2.5*10^13;// in atoms/cm^3\n",
+"n_i = n_i * 10^6;// in atoms/m^3\n",
+"N_D = 10^3 * N_A;// in atoms/m^3\n",
+"V_T = 26*10^-3;// in A\n",
+"V_J = V_T*log( (N_A*N_D)/((n_i)^2) );// in V\n",
+"disp(V_J,'The contact difference of potential in V is');\n",
+"disp('For a silicon P-N junction')\n",
+"n = 5*10^22;\n",
+"N_A = n/n_a;// in atoms/cm^3\n",
+"N_A = N_A * 10^6;// in atoms/m^3\n",
+"N_D = 10^3 * N_A;// in atoms/m^3\n",
+"n_i = 1.5*10^10;// in /cm^3\n",
+"V_J = V_T*log(N_A*N_D/n_i^2);// in V\n",
+"disp(V_J,'The contact difference of potential in V is');\n",
+"\n",
+"// Note: There is a calculation error to find the value of V_J in the book, so the answer in the book is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Height_of_the_potential_energy_barrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho_p = 2;// in ohm-cm\n",
+"Rho_n = 1;// in ohm cm\n",
+"q = 1.6*10^-19;// in C\n",
+"n_i = 2.5*10^13;// atoms per cm^3\n",
+"Miu_p = 1800;\n",
+"Miu_n = 3800;\n",
+"N_A = 1/(Rho_p*q*Miu_p);// in /cm^3\n",
+"N_D = 1/(Rho_n*q*Miu_n);// in /cm^3\n",
+"V_T = 26;//in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"V_J = V_T*log((N_A*N_D)/((n_i)^2));//in V\n",
+"disp(V_J,'The height of the potential energy barrier in V is');\n",
+"Miu_p = 500;\n",
+"N_A = 1/(Rho_p*q*Miu_p);// in /cm^3\n",
+"Miu_n = 1300;\n",
+"N_D = 1/(Rho_n*q*Miu_n);// in /cm^3\n",
+"n_i = 1.5*10^10;\n",
+"V_J = V_T*log((N_A*N_D)/((n_i)^2));//in V\n",
+"disp('For silicon P-N juction')\n",
+"disp(V_J,'The height of the potential energy barrier in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"// I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o;\n",
+"V= log(1-0.9)*V_T;// in V\n",
+"disp(V,'The voltage in volts is : ')\n",
+"// Part (ii)\n",
+"V1=0.05;// in V\n",
+"V2= -0.05;// in V\n",
+"ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)\n",
+"disp(ratio,'The ratio of the current for a forward bias to reverse bias is : ')\n",
+"// Part (iii)\n",
+"Io= 10;// in µA\n",
+"Io=Io*10^-3;// in mA\n",
+"//For \n",
+"V=0.1;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I,'For v=0.1 V , the value of I in mA is : ')\n",
+"//For \n",
+"V=0.2;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I,'For v=0.2 V , the value of I in mA is : ')\n",
+"//For \n",
+"V=0.3;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I*10^-3,'For v=0.3 V , the value of I in A is : ')\n",
+"disp('From three value of I, for small rise in forward voltage, the diode current increase rapidly')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Anticipated_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"// Part (i)\n",
+"T1= 25;// in °C\n",
+"T2= 80;// in °C\n",
+"// Formula Io2= Io1*2^((T2-T1)/10)\n",
+"AntiFactor= 2^((T2-T1)/10);\n",
+"disp(round(AntiFactor),'Anticipated factor for Ge is : ')\n",
+"// Part (ii)\n",
+"T1= 25;// in °C\n",
+"T2= 150;// in °C\n",
+"AntiFactor= 2^((T2-T1)/10);\n",
+"disp(round(AntiFactor),'Anticipated factor for Si is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Leakage_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I=5;// in µA\n",
+"V=10;// in V\n",
+"T1= 0.11;// in °C^-1\n",
+"T2= 0.07;// in °C^-1\n",
+"// Io+I_R=I (i)\n",
+"// dI_by_dT= dIo_by_dT (ii)\n",
+"// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So\n",
+"Io= T2*I/T1;// in µA\n",
+"I_R= I-Io;// in µA\n",
+"R= V/I_R;// in MΩ\n",
+"disp(R,'The leakage resistance in MΩ is : ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/6-Microwave_Diodes.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/6-Microwave_Diodes.ipynb
new file mode 100644
index 0000000..a6fafd6
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/6-Microwave_Diodes.ipynb
@@ -0,0 +1,71 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Microwave Diodes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Tuning_range_of_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 6.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"C1_min= 5;// in pF\n",
+"C1_max= 50;// in pF\n",
+"C2_min= 5;// in pF\n",
+"C2_max= 50;// in pF\n",
+"C1_min=C1_min*10^-12;// in F\n",
+"C2_min=C2_min*10^-12;// in F\n",
+"C1_max=C1_max*10^-12;// in F\n",
+"C2_max=C2_max*10^-12;// in F\n",
+"L = 10;// in mH\n",
+"L = L * 10^-3;// in H\n",
+"C_T_min = (C1_min*C2_min)/(C2_min+C2_min);// in F\n",
+"f_o_max = 1/( 2*%pi*(sqrt(L*C_T_min)) );//in Hz \n",
+"f_o_max = f_o_max * 10^-6;// in MHz\n",
+"C_T_max = (C1_max*C2_max)/(C2_max+C2_max);// in F\n",
+"f_o_min = 1/( 2*%pi*(sqrt(L*C_T_max)) );//in Hz \n",
+"f_o_min = f_o_min * 10^-3;// in kHz\n",
+"disp('The tuning range for circuit will be : '+string(round(f_o_min))+' kHz to '+string(round(f_o_max))+' MHz')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/7-Optoelectonic_Devices.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/7-Optoelectonic_Devices.ipynb
new file mode 100644
index 0000000..1d15e8b
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/7-Optoelectonic_Devices.ipynb
@@ -0,0 +1,133 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Optoelectonic Devices"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Component_value.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 7.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Vout = 5;// in V\n",
+"V = 1.5;//ON state voltage drop across LED in V\n",
+"I = 5;// in mA\n",
+"I = I*10^-3;// in A\n",
+"R = (Vout-V)/I;// in ohm\n",
+"disp(R,'Resistance in ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Open_circuit_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 7.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_A = 7.5*10^24;// in atoms/m^3\n",
+"N_D = 1.5*10^22;// in atoms/m^3\n",
+"D_e = 25*10^-4;// in m^2/s\n",
+"D_n = 1*10^-3;// in m^2/s\n",
+"V_T = 26*10^-3;// in V\n",
+"Torque_eo = 500*10^-9;// in sec\n",
+"Torque_ho = 100*10^-9;// in sec\n",
+"e = 1.6*10^-19; // in C\n",
+"n_i = 1.5*10^16;// in /m^3\n",
+"I_lambda = 12.5;// in mA/cm^2\n",
+"I_lambda= I_lambda*10^-3;// in A/cm^2\n",
+"L_e = sqrt(D_e*Torque_eo);// in m\n",
+"L_n = sqrt(D_n*Torque_ho);// in m\n",
+"J_s = e*((n_i)^2)*( ((D_e)/(L_e*N_A)) + ((D_n)/(L_n*N_D)) );// in A/m^2\n",
+"J_s= J_s*10^-4;// in A/cm^2\n",
+"V_OC = V_T*(log(1+(I_lambda/J_s)));// in V\n",
+"disp(V_OC,'Open circuit voltage in volts is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Photocurrent_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 7.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Phi_o = 1*10^21;// in m^-2s^-1\n",
+"alpha =1*10^5;// in m^-1\n",
+"e= 1.6*10^-19;// in C\n",
+"G_L1 = alpha*Phi_o;// in m^-3s^-1\n",
+"W = 26;// in µm\n",
+"W = W * 10^-6;// in m\n",
+"G_L2 = alpha*Phi_o*(%e^((-alpha)*W));// in m^-3s^-1\n",
+"J_L = e*Phi_o*(1-%e^(-(alpha)*W));// in A/m^2\n",
+"J_L = J_L * 10^3*10^-4;// in mA/cm^2\n",
+"disp(J_L,'Photo current density in mA/cm^2 is ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/8-Metal_Semiconductor_Field_Effect_Transistor.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/8-Metal_Semiconductor_Field_Effect_Transistor.ipynb
new file mode 100644
index 0000000..b02f6b5
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/8-Metal_Semiconductor_Field_Effect_Transistor.ipynb
@@ -0,0 +1,594 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Metal Semiconductor Field Effect Transistor"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: Value_of_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_D1 = 1.9;// in mA\n",
+"I_D2 = 1;// in mA\n",
+"del_I_D = I_D1-I_D2;// in mA\n",
+"V_GS2 = -3.3;// in V\n",
+"V_GS1 = -3;// in V\n",
+"del_V_GS = V_GS1-V_GS2;// in V\n",
+"g_m = del_I_D/del_V_GS;// in mA/V\n",
+"g_m = g_m * 10^3;// in µ mhos\n",
+"disp(g_m,'The value of transconductance in µ mhos is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: AC_drain_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DS1 = 14;// in V\n",
+"V_DS2 = 5;// in V\n",
+"del_V_DS = V_DS1-V_DS2;// in V\n",
+"I_D1 = 3.3;// in mA\n",
+"I_D2 = 3;// in mA\n",
+"del_I_D = I_D1-I_D2;// in mA\n",
+"r_d = del_V_DS/del_I_D;// in k ohms\n",
+"disp(r_d,'The drain resistance in k ohms is');\n",
+"V_GS1 = 0.4;// in V\n",
+"V_GS2 = 0.1;// in V\n",
+"del_V_GS = V_GS1-V_GS2;// in V\n",
+"I_D1 = 3.3;// in mA\n",
+"I_D2 = 0.71;// in mA\n",
+"del_I_D = I_D1-I_D2;// in mA\n",
+"g_m = del_I_D/del_V_GS;// in mA/V\n",
+"g_m = g_m * 10^3;// in µmhos\n",
+"disp(g_m,'The transconductance in µmhos is');\n",
+"Miu =r_d*10^3*g_m*10^-6;\n",
+"disp(Miu,'Amplification factor is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.12: Pinch_off_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6*10^-19;// in C\n",
+"N_D = 10^15*10^6;//electrons/m^3\n",
+"a = 3*10^-4;// in cm\n",
+"a=a*10^-2;// in m\n",
+"Epsilon_o = (36 * %pi * 10^9)^-1;\n",
+"Epsilon = 12*Epsilon_o;\n",
+"V_P = (q*N_D*((a)^2))/(2*Epsilon);// in V\n",
+"disp(V_P,'Pinch off voltage in V is');\n",
+"V_GS = 1;// in V\n",
+"V_P = 2;// in V\n",
+"// Formula V_GS= V_P*(1-b/a)^2\n",
+"b = a*( 1-sqrt(V_GS/V_P) );// in m\n",
+"b = b * 10^6;// in µm\n",
+"disp(b,'The channel half width in µm is');\n",
+"\n",
+"// Note: In the book, the unit of channel half width is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.13: Value_of_VGS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 8;// in mA\n",
+"V_P = -4;// in V\n",
+"a = 3*10^-4;// in cm\n",
+"N_D = 10^15;// in electrons/cm^3\n",
+"I_D = 3;// in mA\n",
+"V_GS = V_P*( 1-sqrt(I_D/I_DSS) );// in V\n",
+"disp(V_GS,'The value of V_GS in V is');\n",
+"V_DS_sat = V_GS-V_P;// in V\n",
+"disp(V_DS_sat,'The value of V_DS_sat in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.14: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P = -4;// in V\n",
+"I_DSS = 9;// in mA\n",
+"V_GS = -2;// in V\n",
+"I_D = I_DSS*(( 1-(V_GS/V_P) )^2);// in mA\n",
+"disp(I_D,'The drain current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.15: Value_of_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 12;// in mA\n",
+"V_P = -6;// in V\n",
+"V_GS = -1;// in V\n",
+"g_mo = (-2*I_DSS)/V_P;// in mA/V\n",
+"g_m = g_mo*(1-(V_GS/V_P));// in mS\n",
+"disp(g_m,'The value of transconductance in mS is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.16: Value_of_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 10;// in mA\n",
+"V_P = -5;// in V\n",
+"V_GS = -2.5;// in V\n",
+"g_m = ((-2*I_DSS)/V_P)*(1-(V_GS/V_P));// in mS .... correction\n",
+"disp(g_m,'The transconductance in mS is');\n",
+"I_D = I_DSS * ((1-(V_GS/V_P))^2);// in mA\n",
+"disp(I_D,'The drain current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 15;// in mA\n",
+"V_GS_off = -5;// in V\n",
+"V_GS = 0;// in V\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS=0, the drain current in mA is');\n",
+"V_GS = -1;// in V\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS=-1V, the drain current in mA is');\n",
+"V_GS = -4;// in V\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS=-4 V, the drain current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Transconductance_curve.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_GS_off = -20;// in V\n",
+"I_DSS = 12;// in mA\n",
+"V_GS = 0;// in V\n",
+"// For\n",
+"V_GS= -20;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -20 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -15;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -15 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -10;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -10 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -5;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -5 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= 0;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = 0 V, the drain current in mA is');\n",
+"V_GS= 0:-0.1:-20\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"plot(V_GS,I_D);\n",
+"xlabel('Gate to source voltage in V')\n",
+"ylabel('Drain current in mA')\n",
+"title('The transconductance curve')\n",
+"disp('The transconductance curve shown in figure')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Maximum_and_minimum_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"// For maximum transconductance curve\n",
+"disp('For Maximum Transconductance curve')\n",
+"V_GS_off = -2;// in V\n",
+"I_DSS = 8;// in mA\n",
+"V_GS = 0;// in V\n",
+"// For\n",
+"V_GS= -2;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -2 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -1.5;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -1.5 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -1;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -1 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -0.5;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -0.5 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= 0;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = 0 V, the drain current in mA is');\n",
+"\n",
+"// For maximum transconductance curve\n",
+"disp('For Maximum Transconductance curve')\n",
+"V_GS_off = -6;// in V\n",
+"I_DSS = 20;// in mA\n",
+"V_GS = 0;// in V\n",
+"// For\n",
+"V_GS= -6;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -6 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -4;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -4 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= -2;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = -2 V, the drain current in mA is');\n",
+"// For\n",
+"V_GS= 0;\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"disp(I_D,'When V_GS = 0 V, the drain current in mA is');\n",
+"// For maximum transconductance curve\n",
+"V_GS_off=-6;// in V\n",
+"I_DSS= 20;// in mA\n",
+"V_GS= 0:-0.1:-6;// in volt\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"// For minimum transconductance curve\n",
+"plot(V_GS,I_D);\n",
+"V_GS_off=-2;// in V\n",
+"I_DSS= 8;// in mA\n",
+"V_GS= 0:-0.1:-2;// in volt\n",
+"I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA\n",
+"plot(V_GS,I_D);\n",
+"xlabel('Gate to source voltage in V')\n",
+"ylabel('Drain current in mA')\n",
+"title('The minimum and maximum transconductance curve')\n",
+"disp('The minimum and maximum transconductance curve shown in figure')\n",
+"\n",
+"// Note: For maximum transconductance curve the value of drain current at V_GS =-2 is wrong.\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 20;// in mA\n",
+"V_P = -8;// in V\n",
+"g_mo = 5000;// in µs\n",
+"V_GS = -4;// in V\n",
+"I_D = I_DSS*((1-(V_GS/V_P))^2);// in mA\n",
+"disp(I_D,'The value of drain current in mA is');\n",
+"g_m = g_mo*(1-(V_GS/V_P));// in µs\n",
+"disp(g_m,'The transconductance in µs is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_D1 = 10;// in mA\n",
+"V_GS = -12;// in V\n",
+"V_GSth = -3;// in V\n",
+"K = I_D1/( (V_GS-V_GSth)^2 );// in mA/V\n",
+"V_GS= -6;// in V\n",
+"I_D = K*((V_GS-V_GSth)^2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Minimum_value_of_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_GS = -2;// in V\n",
+"V_P = -5;// in V\n",
+"V_DS = V_GS-V_P;// in V\n",
+"I_DSS = 8;// in mA\n",
+"disp(V_DS,'The minimum value of V_DS in V is');\n",
+"I_D = I_DSS*((1-(V_GS/V_P))^2);// in mA\n",
+"disp(I_D,'The drain current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Value_of_Vgs_and_gm.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P = -2;// in V\n",
+"I_DSS = 1.65;// in mA\n",
+"I_D = 0.8;// in mA\n",
+"V_DD = 24;// in V\n",
+"V_GS = V_P*(1- sqrt(I_D/I_DSS) );// in V\n",
+"disp(V_GS,'The value of V_GS in V is');\n",
+"g_mo = -(2*I_DSS)/V_P;// in mS\n",
+"g_m = g_mo*(1-(V_GS/V_P));// in mS\n",
+"disp(g_m,'The value of g_m in mS is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: Gate_source_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 8.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P = 5;// in V\n",
+"I_DSS = -40;// in mA\n",
+"I_D = -15;// in mA\n",
+"V_GS = V_P*(sqrt(I_D/I_DSS)-1 );// in V\n",
+"disp(abs(V_GS),'The gate source voltage in V is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Advance_Semiconductor_Devices_by_S_Sharma/9-MOS_Transistors.ipynb b/Advance_Semiconductor_Devices_by_S_Sharma/9-MOS_Transistors.ipynb
new file mode 100644
index 0000000..06abde8
--- /dev/null
+++ b/Advance_Semiconductor_Devices_by_S_Sharma/9-MOS_Transistors.ipynb
@@ -0,0 +1,1501 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: MOS Transistors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Value_of_Rs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_GS = 4;// in V\n",
+"V_P = 2;// in V\n",
+"R2 = 10;// in k ohm\n",
+"R1 = 30;// in k ohm\n",
+"R_D= 2.5;// in kohm\n",
+"I_D= 15;// in mA\n",
+"I_D= I_D*10^-3;// in A\n",
+"V_DD = 25;// in V\n",
+"V_G = (V_DD/R_D)*V_DD/(R1+R2);// in V\n",
+"R_S = (V_G-V_GS)/I_D;// in ohm\n",
+"disp(R_S,'The value of R_S in ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: ID_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k= 0.1;// in mA/V^2\n",
+"V_T= 1;// in V\n",
+"R2= 87*10^3;// in Ω\n",
+"R1= 110*10^3;// in Ω\n",
+"R_S=2;// in kΩ\n",
+"R_D=2;// in kΩ\n",
+"//R_D=3*10^3;// in Ω\n",
+"V_DD= 6;// in V\n",
+"V_SS= 6;// in V\n",
+"V_G= (V_DD+V_SS)*R2/(R1+R2);// in V\n",
+"// V_S= I_D*R_S-V_SS\n",
+"// V_GS= V_G-V_S= V_G+V_SS-(I_D*R_S)\n",
+"// I_D= k*[V_GS-V_T]^2 = k*[(V_G+V_SS-V_T)-(I_D*R_S)]^2\n",
+"//(I_D*R_S)^2- I_D*(2*R_S*(V_G+V_SS-V_T)+1/k) +(V_G+V_SS-V_T)^2\n",
+"A= R_S^2;// assumed\n",
+"B= -(2*R_S*(V_G+V_SS-V_T)+1/k);// assumed\n",
+"C= (V_G+V_SS-V_T)^2;// assumed\n",
+"I_D= [A B C]\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"// Applying KVL to drain source loop, V_DD+V_SS= I_D*R_D+V_DS+I_D*R_S\n",
+"V_DS=V_DD+V_SS-I_D*R_D-I_D*R_S;// in V\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: NMOS_CS_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k = 0.16;// in mA/V^2\n",
+"V_T = 2;// in V\n",
+"I_D = 0.5;// in mA\n",
+"V_DD = 6;// in V\n",
+"V_SS = -6;// in V\n",
+"V_GS = V_T + (sqrt(I_D/k));// in V\n",
+"R_S = 2;// in k ohm\n",
+"V_S = (I_D*R_S) - V_DD;// in V\n",
+"V_G = V_GS+V_S;// in V\n",
+"I = 0.1*I_D;// in mA\n",
+"R2 = (V_G+V_DD)/I;// in k ohm\n",
+"disp(R2,'The value of R2 in k ohm is');\n",
+"R1 = (V_DD - V_G)/I;// in k ohm\n",
+"disp(R1,'The value of R1 in k ohm is');\n",
+"R_D = 10;// in k ohm\n",
+"V_DS = (V_DD-V_SS) - (I_D*(R_S+R_D));// in V\n",
+"disp(V_DS,'The value of V_DS in V is');\n",
+"V_DSsat = V_GS-V_T;// in V\n",
+"disp(V_DSsat,'The value of V_DS(sat) in V is');\n",
+"if V_DS>V_DSsat then\n",
+" disp('The MOSFET is in saturation region')\n",
+"end\n",
+"\n",
+"// Note: The value of R1 is in k ohm but in the book it is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.13: Value_of_IDQ_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DD = 6;// in V\n",
+"V_D = 3;// in V\n",
+"R_D = 10;// in k ohm\n",
+"I_DQ = (V_DD-V_D)/R_D;// in mA\n",
+"disp(I_DQ,'The value of I_DQ in mA is');\n",
+"V_T = 0.8;// in V\n",
+"k = 0.12;// in mA/V^2\n",
+"V_GS = sqrt(I_DQ/k) + V_T;// in V\n",
+"V_S = -V_GS;// in V\n",
+"V_DS = V_D-V_S;// in V\n",
+"disp(V_DS,'The value of V_DS in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Region_of_MOSFET.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_D = 0.3;// in mA\n",
+"k = 0.12;// in mA/V^2\n",
+"V_T = 1;// in V\n",
+"V_GS = V_T + (sqrt(I_D/k));// in V\n",
+"V_S = -V_GS;// in V\n",
+"V_DD = 6;// in V\n",
+"V_D = 3;// in V\n",
+"I_DQ = 0.3;// in mA\n",
+"R_D = (V_DD-V_D)/I_DQ;// in k ohm\n",
+"disp(R_D,'The value of R_D in k ohm is');\n",
+"V_DS = V_D - V_S;// in V\n",
+"disp(V_DS,'The value of V_DS in V is');\n",
+"V_DSsat = V_GS - V_T;// in V\n",
+"disp(V_DSsat,'The value of V_DS(sat) in V is');\n",
+"if V_DS>V_DSsat then\n",
+" disp('The MOSFET is in saturation region')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: VGS_VDS_and_ID.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k= 0.05;// in mA/V^2\n",
+"V_T= 1;// in V\n",
+"V_DD= 6;// in V\n",
+"R_S= 9.1;//in kΩ\n",
+"//V_GS= V_DD-I_D*R_S\n",
+"//I_D= k*(V_DD-I_D*R_S)^2\n",
+"//I_D^2*R_S^2-I_D*(2*V_DD*R_S+1/k)+V_DD^2\n",
+"A= R_S^2;// assumed\n",
+"B=-(2*V_DD*R_S+1/k);// assumed\n",
+"C= V_DD^2;// assumed\n",
+"I_D= [A B C];\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"V_GS= V_DD-I_D*R_S;// in V\n",
+"V_DS= V_GS;// in V\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.16: All_dc_voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k1= 0.01;// in mA/V^2\n",
+"k2= 0.05;// in mA/V^2\n",
+"V_DD= 5;// in V\n",
+"V_T1=1;// in V\n",
+"V_T2=1;// in V\n",
+"// Analysis for Vi= 5V\n",
+"Vi= 5;// in V\n",
+"//I_D1= k1*(V_GS1-V_T1)^2 and I_D2= k2*(2*(V_GS2-V_T2)*V_DS2-V_DS2^2)\n",
+"// But V_GS2= Vi, V_DS2= Vo, V_GS1= V_DS1= V_DD-Vo\n",
+"//Vo^2*(k1+k2)-Vo*[2*k1*(V_DD-V_T1)+2*k2*(Vi-V_T2)]+k1*(V_DD-V_T1)^2\n",
+"A=(k1+k2);\n",
+"B=-[2*k1*(V_DD-V_T1)+2*k2*(Vi-V_T2)];\n",
+"C=k1*(V_DD-V_T1)^2;\n",
+"Vo= [A B C]\n",
+"Vo= roots(Vo);// in V\n",
+"Vo= Vo(2);// in V\n",
+"V_GS2= Vi;// in V\n",
+"V_DS2= Vo;// in V\n",
+"V_GS1= V_DD-Vo;// in V\n",
+"I_D1= k1*(V_GS1-V_T1)^2;// in mA\n",
+"I_D2= I_D1;// in mA\n",
+"disp('Part (i) For Vi = 5 V')\n",
+"disp(Vo,'The output voltage in volts is : ')\n",
+"disp(I_D1,'The value of I_D1 in mA is : ')\n",
+"disp(I_D2,'The value of I_D2 in mA is : ')\n",
+"// Analysis for Vi= 1.5V\n",
+"Vi= 1.5;// in V\n",
+"//I_D2= k2*(V_GS2-V_T2)^2 and I_D1= k1*(V_GS1-V_T1)^2\n",
+"// But V_GS2= Vi, V_DS2= Vo, V_GS1= V_DS1= V_DD-Vo\n",
+"//k2*(Vi-V_T2)^2= k1*(V_DD-Vo-V_T1)^2 or \n",
+"Vo= V_DD-V_T1-sqrt(k2/k1)*(Vi-V_T2);// in V\n",
+"I_D2= k2*(Vi-V_T2)^2;//in mA\n",
+"I_D1= I_D2;// in mA\n",
+"disp('Part (ii) For Vi = 1.5 V')\n",
+"disp(Vo,'The output voltage in volts is : ')\n",
+"disp(I_D1,'The value of I_D1 in mA is : ')\n",
+"disp(I_D2,'The value of I_D2 in mA is : ')\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.17: Value_of_ID_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k = 0.12;// in mA/V^2\n",
+"V_T = -2.5;// in V\n",
+"V_GS = 0;\n",
+"I_D = k*((V_GS-V_T)^2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is');\n",
+"V_DD = 6;// in V\n",
+"R_S = 4.7;// in k ohm \n",
+"V_DS = V_DD -(I_D*R_S);// in V\n",
+"disp(V_DS,'The value of V_DS in V is '); \n",
+"V_S = 0;// in V \n",
+"V_DSsat = V_S - V_T;// in V\n",
+"disp(V_DSsat,'The value of V_DS(sat) in V is');\n",
+"if V_DS<V_DSsat then\n",
+" disp('The device is in the non saturation region')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.18: Various_voltage_and_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k4 = 0.125;// in mA/V^2\n",
+"k3 = k4;// in mA/V^2\n",
+"k2 = k4;// in mA/V^2\n",
+"k1 = 0.25;// in mA/V^2\n",
+"V_T1 = 0.8;// in V\n",
+"V_T2 = V_T1;// in V\n",
+"V_T3 = V_T1;// in V\n",
+"V_T4 = V_T1;// in V\n",
+"V_SS = -5;// in V\n",
+"V_DD = 5;// in V\n",
+"R_D = 10;// in k ohm\n",
+"V_GS3 = ((sqrt(k4/k3) * (-V_SS - V_T4))+V_T3)/(1+sqrt(k4/k3));// in V\n",
+"I_Q = k2*((V_GS3-V_T2)^2);// in mA\n",
+"I_D1 = I_Q;// in mA\n",
+"V_GS1 = V_T1 + (sqrt(I_D1/k1));// in V\n",
+"disp(V_GS1,'The value of V_GS1 in V is');\n",
+"V_DS2 = (-V_SS-V_GS1);// in V\n",
+"disp(V_DS2,'The value of V_DS2 in V is');\n",
+"V_DS1 = V_DD - (I_Q*R_D) - (V_SS + V_DS2);// in V\n",
+"disp(V_DS1,'The value of V_DS1 in V is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.19: Q_point_values.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R2 = 20;// in k ohm\n",
+"R1 = 30;// in k ohm\n",
+"R_D = 20;// in k ohm\n",
+"R_D=R_D*10^3;// in ohm\n",
+"V_DD = 5;// in V\n",
+"V_G = (R2/(R1+R2))*V_DD;// in V\n",
+"V_S = 0;// in V\n",
+"V_GS = V_G;// in V\n",
+"k = 100*10^-6;// in A/V^2\n",
+"V_T = 1;// in V\n",
+"I_DQ = k*((V_GS-V_T)^2);// in A\n",
+"disp(I_DQ * 10^6,'The value of I_DQ in µA is');\n",
+"//R_D =R_D * 140^3;// in ohm\n",
+"V_DSQ = V_DD - (I_DQ*R_D);// in V \n",
+"disp(V_DSQ,'The value of V_DSQ in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Value_of_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_TN = 0.7;// in V\n",
+"W = 45*10^-4;// in cm\n",
+"L = 4;// in µm\n",
+"L = L * 10^-4;// in cm\n",
+"t_ox = 450;// in Å\n",
+"t_ox = t_ox*10^-8;// in cm\n",
+"V_GS = 1.4;// in V\n",
+"Miu_n = 700;// in cm^2/V-s\n",
+"Epsilon_ox = (8.85*10^-14)*(3.9);// in F/cm\n",
+"k_n = (W*Miu_n*Epsilon_ox)/(2*L*t_ox);// A/V^2\n",
+"disp(k_n*10^3,'The value of k_n in mA/V^2 is : ')\n",
+"I_D = k_n*((V_GS-V_TN)^2);// in A\n",
+"disp(I_D*10^3,'The current in mA is ');\n",
+"\n",
+"// Note: There is a calculation error to find the value of k_n, So the answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.20: IDQ_VGSQ_and_VD.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P= -8;// in V\n",
+"R_S= 2.4;// in kΩ\n",
+"//R_D= 1800;// in Ω\n",
+"I_DSS= 8;// in mA\n",
+"V_DD= 20;// in V\n",
+"R_D= 6.2;// in kΩ\n",
+"// V_GS= -I_D*R_S\n",
+"// I_D= I_DSS*(1-V_GS/V_P)^2 or I_DSS*(1-(-I_D*R_S)/V_P)^2\n",
+"//I_D^2*R_S^2+I_D*(2*R_S*(V_P-V_G)-V_P^2/I_DSS)+(V_P)^2\n",
+"A= R_S^2\n",
+"B=(2*R_S*(V_P)-V_P^2/I_DSS)\n",
+"C=(V_P)^2\n",
+"I_D= [A B C]\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"I_DQ= I_D;// in mA\n",
+"disp(I_DQ,'The value of I_DQ in mA is : ')\n",
+"V_GSQ= -I_D*R_S;\n",
+"disp(V_GSQ,'The value of V_GSQ in volts ')\n",
+"V_D= V_DD-I_D*R_D;// in V\n",
+"disp(V_D,'The value of V_D in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.21: ID_VD_VS_and_VG.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k= 75*10^-3;//in mA/V^2\n",
+"Vth= -0.8;// in V\n",
+"R2 = 100;// in k ohm\n",
+"R1 = 100;// in k ohm\n",
+"R_S= 6;// in kΩ\n",
+"R_D= 3;// in kΩ\n",
+"V_SS = 10;// in V\n",
+"V_G = (R2/(R1+R2))*V_SS;// in V\n",
+"I_D= poly(0,'I_D');\n",
+"V_S= V_SS-I_D*R_S;// in V\n",
+"V_GS= V_G-V_S;//in V\n",
+"I_D= I_D-k*(V_GS-Vth)^2;\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"V_DS= -V_SS+I_D*(R_D+R_S);// in V\n",
+"V_D= I_D*R_D;// in V\n",
+"V_S= I_D*R_S;// in V\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"disp(V_D,'The value of V_D in volts is : ')\n",
+"disp(V_S,'The value of V_S in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.22: Value_of_RD.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_T = 1;// in V\n",
+"k = 160*10^-6;// in A/V^2\n",
+"I_DQ = 160*10^-6;// in A\n",
+"V_GS = V_T + sqrt(I_DQ/k);// in V\n",
+"V_DD = 5;// in V\n",
+"V_DSQ = 3;// in V\n",
+"R_D = (V_DD - V_DSQ)/(I_DQ);// in ohm\n",
+"R_D = R_D * 10^-3;// in k ohm\n",
+"disp(R_D,'The value of R_D in k ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.23: Coordinates_of_operating_point.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DD= 12;// in V\n",
+"V_T= 2;// in V\n",
+"kn= 0.5;// in mA/V^2\n",
+"R1 = 2.2;// in M ohm\n",
+"R2 = 1.8;// in M ohm\n",
+"R_S= 1.5;// in kΩ\n",
+"R_D= 3.9;// in kΩ\n",
+"V_G = (R2/(R1+R2))*V_DD;// in V\n",
+"I_D= poly(0,'I_D')\n",
+"V_GS= V_G-I_D*R_S;// V\n",
+"I_D= I_D-kn*(V_GS-V_T)^2;// in mA\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"I_DQ= I_D;// in mA\n",
+"V_DSQ= V_DD-I_D*(R_D+R_S);// in V\n",
+"disp(I_DQ,'The value of I_DQ in mA is : ')\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')\n",
+"V_GS= V_G-I_D*R_S;// V\n",
+"V_DSsat= V_GS-V_T;// in V\n",
+"disp('The value of V_DS ( '+string(V_DSQ)+' V ) is greater than the value of ')\n",
+"disp('V_DSsat ( '+string(V_DSsat)+' V ), So the MOSFET is in saturation region')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.24: IDSQ_VGSQ_and_VDSQ.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"kn= 0.5;// in mA/V^2\n",
+"V_T= 1;// in V\n",
+"R2 = 40;// in k ohm\n",
+"R1 = 60;// in k ohm\n",
+"R_S= 1;// in k ohm\n",
+"R_D= 2;// in k ohm\n",
+"V_DD = 5;// in V\n",
+"V_SS = -5;// in V\n",
+"V_R2 = (R2/(R2+R1))*(V_DD-V_SS);// in V\n",
+"V_G = V_R2 - V_DD;// in V\n",
+"I_D= poly(0,'I_D');\n",
+"V_S= I_D*R_S+V_SS;// in V\n",
+"V_GS= V_G-V_S;// in V\n",
+"I_D=I_D-kn*(V_GS-V_T)^2;// in mA\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"I_DQ= I_D;// in mA\n",
+"V_S= I_D*R_S+V_SS;// in V\n",
+"V_GS= V_G-V_S;// in V\n",
+"V_DSQ= V_DD-V_SS-I_D*(R_D+R_S);// in V\n",
+"disp(I_DQ,'The value of I_DQ in mA is : ')\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.25: ID_VDS_VGS_and_Av.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.25\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R_S1 = 100*10^-3;// in k ohm\n",
+"R_S2 = 100*10^-3;// in k ohm\n",
+"R_S = R_S1+R_S2;// in k ohm\n",
+"R_D= 1.8;// in k ohm\n",
+"I_DSS= 12;// in mA\n",
+"Vp= -3.5;// in V\n",
+"V_DD= 22;// in V\n",
+"rd= 25;// in k ohm\n",
+"R_L= 47;// in k ohm\n",
+"I_D= poly(0,'I_D');\n",
+"V_GS= -I_D*R_S;// in V\n",
+"I_D= I_D-I_DSS*(1-V_GS/Vp)^2;// in mA\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"V_GS= -I_D*R_S;// in V\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"V_DS= V_DD-I_D*(R_D+R_S);// in V\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"gmo= -2*I_DSS/Vp;// in mS\n",
+"gm= gmo*(1-V_GS/Vp);// in mS\n",
+"miu= gm*rd;\n",
+"Av= -miu*R_D*R_L/(R_D+R_L)/(rd+R_D*R_L/(R_D+R_L)+(1+miu)*R_S1);\n",
+"disp(Av,'The value of Av is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.26: VGS_ID_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.26\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_T = 1;// in V\n",
+"k = 0.5;// in mA/V^2\n",
+"R2 = 40;// in k ohm\n",
+"R1 = 60;// in k ohm\n",
+"R_S= 1;// in k ohm\n",
+"R_D= 2;// in k ohm\n",
+"V_DD = 5;// in V\n",
+"V_G = (R2/(R2+R1))*V_DD;// in V\n",
+"I_D= poly(0,'I_D');\n",
+"V_GS= V_G-I_D*R_S;// in V\n",
+"I_D= I_D-k*(V_GS-V_T)^2;\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"V_GS= V_G-I_D*R_S;// in V\n",
+"V_DS= V_DD-I_D*(R_D+R_S);// in V\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.27: Drain_current_and_source_to_drain_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.27\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R_D = 7.5;// in k ohm\n",
+"V_T = -0.8;// in V\n",
+"k = 0.2;// in mA/V^2\n",
+"R2 = 50;// in ohm\n",
+"R1 = 50;// in ohm\n",
+"V_DD = 5;// in V\n",
+"V_S = 5;// in V\n",
+"V_G = (R2/(R2+R1))*V_DD;// in V\n",
+"V_GS = V_G - V_S;// in V\n",
+"I_D = k*((V_GS-V_T)^2);// in mA\n",
+"disp(I_D,'Drain current in mA is');\n",
+"V_SD = V_DD - (I_D*R_D);// in V\n",
+"disp(V_SD,'Source to drain voltage in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.28: IDQ_VGSQ_VD_and_VS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.28\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_Don = 5*10^-3;// in A\n",
+"V_GSon = 6;// in V\n",
+"V_GSth = 3;// in V\n",
+"k = I_Don/(V_GSon-V_GSth)^2;// in A/V^2 \n",
+"R2 = 6.8;// in M ohm\n",
+"R1 = 10;// in M ohm\n",
+"R_S= 750;// in ohm\n",
+"R_D= 2.2*10^3;// in ohm\n",
+"V_DD = 24;// in V\n",
+"R_S = 750;// in ohm\n",
+"V_G= R2*V_DD/(R1+R2);// in V\n",
+"I_D= poly(0,'I_D');\n",
+"V_GS= V_G-I_D*R_S;// in V\n",
+"I_D= I_D-k*(V_GS-V_GSth)^2;\n",
+"I_D= roots(I_D);// in A\n",
+"I_D= I_D(2);// in A\n",
+"I_DQ= I_D;// in A\n",
+"V_GS= V_G-I_D*R_S;// in V\n",
+"V_GSQ= V_GS;// in V\n",
+"V_DSQ= V_DD-I_DQ*(R_D+R_S);// in V\n",
+"disp(I_D*10^3,'The value of I_D in mA is : ')\n",
+"disp(V_GSQ,'The value of V_GSQ in volts is : ')\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.29: VDD_RD_and_VGS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.29\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_Don = 4*10^-3;// in A\n",
+"V_GSon = 6;// in V\n",
+"V_GSth = 3;// in V\n",
+"V_DS= 6;// in V\n",
+"I_D= I_Don;// in A\n",
+"k = I_Don/((V_GSon-V_GSth)^2);// in A/V^2\n",
+"V_GS= poly(0,'V_GS')\n",
+"V_GS= I_D-k*(V_GS-V_GSth)^2;\n",
+"V_GS= roots(V_GS);// in V\n",
+"V_GS= V_GS(1);// in V\n",
+"V_DD= 2*V_DS;// in V\n",
+"// V_GS= V_DD-I_D*R_D\n",
+"R_D= (V_DD-V_GS)/I_D;// in ohm\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"disp(V_DD,'The value of V_DD in volts is : ')\n",
+"disp(R_D*10^-3,'The value of R_D in kΩ is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: IDQ_and_VDSQ.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_Don = 6;// in mA\n",
+"I_Don= I_Don*10^-3;// in A\n",
+"V_GSon = 8;// in V\n",
+"V_GSth = 3;// in V\n",
+"V_DD = 12;// in V\n",
+"R_D= 2*10^3;// in Ω\n",
+"k= I_Don/(V_GSon-V_GSth)^2;// in A/V^2\n",
+"// I_D= k*[V_GS-V_GSth]^2 but V_GS= V_DD-I_D*R_D, So\n",
+"// I_D= k*(V_DD-I_D*R_D-V_GSth)^2 or\n",
+"// I_D^2*R_D^2+I_D*(2*R_D*V_GSth-2*R_D*V_DD-1/k)+(V_DD-V_GSth)^2\n",
+"A= R_D^2;// assumed\n",
+"B= 2*R_D*V_GSth-2*R_D*V_DD-1/k;// assumed\n",
+"C= (V_DD-V_GSth)^2;// assumed\n",
+"root= [A B C]\n",
+"root= roots(root);// in A\n",
+"I_DQ= root(2);// in A\n",
+"disp(I_DQ*10^3,'The value of I_DQ in mA is : ')\n",
+"V_DSQ= V_DD-I_DQ*R_D;// in V\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.30: ID_VDS_VG_VS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.30\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DD= 20;// in mA\n",
+"R2 = 10;// in k ohm\n",
+"R1 = 30;// in k ohm\n",
+"R_S= 1.2;// in k ohm\n",
+"R_D= 500*10^-3;// in k ohm\n",
+"V_DD = 12;// in V\n",
+"Vp= -6;// in V\n",
+"V_G = (R2/(R2+R1))*V_DD;// in V\n",
+"I_D= poly(0,'I_D')\n",
+"V_GS= V_G-I_D*R_S;// in V\n",
+"I_D=I_D-I_DD*(1-V_GS/Vp)^2;\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"V_DS= V_DD-I_D*(R_D+R_S);// in V\n",
+"V_D= V_DD-I_D*R_D;// in V\n",
+"V_S= V_D-V_DS;// in V\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"disp(V_D,'The value of V_D in volts is : ')\n",
+"disp(V_S,'The value of V_S in volts is : ')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.31: Voltage_at_all_nodes_and_currents_through_all_branches.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.31\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DD = 5;// in V\n",
+"V_T= 1;// in V\n",
+"k= 1;// in mA/V^2\n",
+"R1 = 1;// in M ohm\n",
+"R2 = 1;// in M ohm\n",
+"R_S= 2;// in k ohm\n",
+"R_D= 2;// in k ohm\n",
+"I1 = V_DD/(R1+R2);// in A\n",
+"disp(I1,'The value of I1 in µA is : ')\n",
+"V_A = (R2/(R2+R1))*V_DD;// in V\n",
+"disp(V_A,'The value of V_A and V_G in volts is : ')\n",
+"I_D= poly(0,'I_D');\n",
+"V_C= I_D*R_S;// in V\n",
+"V_GS= V_A-V_C;// in V\n",
+"I_D= I_D-k*(V_GS-V_T)^2;\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is : ')\n",
+"V_B= V_DD-I_D*R_D;// in V\n",
+"V_C= I_D*R_S;// in V\n",
+"V_DS= V_B-V_C;// in V\n",
+"disp(V_B,'The value of V_B in volts is : ')\n",
+"disp(V_C,'The value of V_C in volts is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"\n",
+"// Note: In the book, the calculated values are wrong, this is why the answer in the book is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.32: Value_of_Av_Ri_and_Ro.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.32\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 12;// in mA\n",
+"I_DSS= I_DSS*10^-3;// in A\n",
+"V_P = -3;// in V\n",
+"r_d = 45;// in k ohm\n",
+"r_d= r_d*10^3;// in ohm\n",
+"g_m = I_DSS/abs(V_P);// in S\n",
+"// Part (i)\n",
+"R1 = 91;// in M ohm\n",
+"R1=R1*10^6;//in ohm\n",
+"R2 = 10;// in M ohm\n",
+"R2= R2*10^6;// in ohm\n",
+"Ri= R1*R2/(R1+R2);// in ohm\n",
+"disp(Ri*10^-6,'The value of Ri in Mohm is : ')\n",
+"// Part (ii)\n",
+"R_S = 1.1;// in k ohm\n",
+"R_S = R_S * 10^3;// in ohm\n",
+"R_o= (R_S*1/g_m)/(R_S+1/g_m);// in ohm\n",
+"disp(R_o,'The value of R_C in ohm is : ')\n",
+"// Part (iii)\n",
+"R_desh_o= R_o*r_d/(R_o+r_d);// in ohm\n",
+"disp(R_desh_o,'The value of R_desh_o in ohm is : ');\n",
+"// Part (iv)\n",
+"Av= g_m*(R_S*r_d/(R_S+r_d))/(1+g_m*(R_S*r_d/(R_S+r_d)));\n",
+"disp(Av,'The value of Av is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.34: Current_flow_through_M1_MOSFET.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.34\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_S2 = -2;// in V\n",
+"V_GS2 = -V_S2;// in V\n",
+"I_DS2 = (V_GS2-1)^2;// in mA\n",
+"I = 2;// in mA\n",
+"I_DS1 = I-I_DS2;// in mA\n",
+"disp(I_DS1,'The current flow through M1 MOSFET in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.35: Value_of_R_and_VD.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.35\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DD= 10;// in V\n",
+"I_D= 0.4*10^3;// in A\n",
+"W= 100;// in µm\n",
+"L= 10;// in µm\n",
+"uACox= 20;// in A/V^2\n",
+"Vt= 2;// in V\n",
+"R= poly(0,'R')\n",
+"V_GS= V_DD-I_D*R;// in V\n",
+"R= I_D-1/2*uACox*W/L*(V_GS-Vt)^2;\n",
+"R= roots(R);// in Mohm\n",
+"R= R(2);// in Mohm\n",
+"disp(R*10^3,'The value of R in kΩ is : ')\n",
+"V_D= V_DD-I_D*R;// in V\n",
+"disp(V_D,'The value of V_D in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.36: ID_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.36\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_GSth= 2;// in V\n",
+"k= 2*10^-4;// in A/V^2\n",
+"V_DD= 12;// in V\n",
+"R_D= 5*10^3;// in ohm\n",
+"I_D= poly(0,'I_D');\n",
+"V_DS= V_DD-I_D*R_D;// in V\n",
+"I_D= I_D-k*(V_DS-V_GSth)^2;\n",
+"I_D= roots(I_D);// in A\n",
+"I_D= I_D(2);// in A\n",
+"V_DS= V_DD-I_D*R_D;// in V\n",
+"disp(I_D*10^3,'The value of I_D in mA is : ')\n",
+"disp(V_DS,'The value of V_DS in volts is : ')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Biasing_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_GS = 6;// in V\n",
+"I_D = 4;// in mA\n",
+"V_GSth = 2;// in V\n",
+"V_DS = V_GS;// in V\n",
+"V_DD = 2*V_DS;// in V\n",
+"disp(V_DD,'The value of V_DD in V is')\n",
+"R_D = (V_DD-V_DS)/I_D;// in k ohm\n",
+"disp(R_D,'The value of R_D in k ohm is ');\n",
+"disp('The very high value for the gate to drain resistance is : 10 MΩ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: IDQ_VGSQ_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_Don = 3*10^-3;\n",
+"V_GSon = 10;// in V\n",
+"V_GSth= 5;// in V\n",
+"R2= 18*10^6;// in Ω\n",
+"R1= 22*10^6;// in Ω\n",
+"R_S=820;// in Ω\n",
+"R_D=3*10^3;// in Ω\n",
+"V_DD= 40;// in V\n",
+"V_G= V_DD*R2/(R1+R2);// in V\n",
+"k= I_Don/(V_GSon-V_GSth)^2;// in A/V^2\n",
+"// V_G= V_GS+V_RS= V_GS+I_D*R_S or V_GS= V_G-I_D*R_S\n",
+"// I_D= k*[V_GS-V_GSth]^2 or \n",
+"// I_D= k*(V_G-I_D*R_D-V_GSth)^2 or\n",
+"// I_D^2*R_D^2+I_D*(2*R_D*V_GSth-2*R_D*V_DD-1/k)+(V_DD-V_GSth)^2\n",
+"A= R_S^2;// assumed\n",
+"B= 2*R_S*V_GSth-2*R_S*V_G-1/k;// assumed\n",
+"C= (V_G-V_GSth)^2;// assumed\n",
+"I_D= [A B C]\n",
+"I_D= roots(I_D);// in A\n",
+"I_D= I_D(2);// in A\n",
+"I_DQ= I_D;// in A\n",
+"disp(I_DQ*10^3,'The value of I_DQ in mA is : ')\n",
+"V_GSQ= V_G-I_D*R_S;// in V\n",
+"disp(V_GSQ,'The value of V_GSQ in volts is : ')\n",
+"V_DSQ= V_DD-I_DQ*(R_D+R_S);// in V\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: IDSQ_VGSQ_and_VDSQ.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_D= '0.3*(V_GS-V_P)^2';// given expression\n",
+"V_DD= 30;// in V\n",
+"V_P= 4;// in V\n",
+"R_GS = 1.2*10^6;// in Ω\n",
+"R_G = 1.2*10^6;// in Ω\n",
+"Req= R_GS/(R_GS+R_G);// in Ω\n",
+"R_D= 15;// in Ω\n",
+"// V_DS= V_DD-I_D*R_D (applying KVL to drain circuit)\n",
+"// V_GS= Req*V_DS= (V_DD-I_D*R_D)*Req\n",
+"// from given expression\n",
+"//I_D^2*(R_D*Req)^2 - I_D*(2*R_D*Req*(V_DD*Req-V_P)+1/0.3 + (V_DD*Req-V_P)^2)\n",
+"A= (R_D*Req)^2;// assumed\n",
+"B= -(2*R_D*Req*(V_DD*Req-V_P)+1/0.3);// assumed\n",
+"C= (V_DD*Req-V_P)^2;// assumed\n",
+"I_D= [A B C]\n",
+"I_D= roots(I_D);// in mA\n",
+"I_D= I_D(2);// in mA\n",
+"I_DSQ= I_D;// in mA\n",
+"disp(I_DSQ,'The value of I_DSQ in mA is : ')\n",
+"V_GS= (V_DD-I_D*R_D);// in V\n",
+"disp(V_GS,'The value of V_GS in volts is : ')\n",
+"V_DS= Req*V_GS;// in V\n",
+"disp(V_DS,'The value of V_DS in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Value_of_ID_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"k = 0.1;// in mA/V^2\n",
+"V_T = 1;// in V\n",
+"R1 = 33;//in k ohm\n",
+"R2 = 21;// in k ohm\n",
+"V_DD = 6;// in V\n",
+"R_D = 18;// in k ohm\n",
+"V_G = (R2/(R2+R1))*V_DD;// in V\n",
+"V_S = 0;// in V\n",
+"V_GS = V_G-V_S;// in V\n",
+"I_D = k*((V_GS-V_T)^2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is');\n",
+"V_DS = V_DD - (I_D*R_D);// in V\n",
+"disp(V_DS,'The value of V_DS in V is'); \n",
+"V_DSsat = V_GS-V_T;// in V\n",
+"disp(V_DSsat,'The value of V_DS(sat) in V is');\n",
+"if V_DS>V_DSsat then\n",
+" disp('MOSFET is in saturation region')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: DC_load_line_and_operating_point.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_DD= 6;// in V\n",
+"R_D= 18;// in kohm\n",
+"// for maximum value of I_D\n",
+"V_DS=0;// in V\n",
+"I_Dmax= (V_DD-V_DS)/R_D;// in mA\n",
+"// for maximum value of V_DS\n",
+"I_D=0;// in mA\n",
+"V_DSmax=V_DD-I_D*R_D;// in V\n",
+"V_DS= 0:0.1:V_DSmax;// in V\n",
+"I_D= (V_DD-V_DS)/R_D;// in mA\n",
+"plot(V_DS,I_D)\n",
+"xlabel('V_DS in volts')\n",
+"ylabel('I_D in mA')\n",
+"title('DC load line')\n",
+"disp('DC load line shown in figure');\n",
+"disp('Q-points are : 2.8V,0.178 mA')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: Region_of_MOSFET.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R2 = 18;// in k ohm\n",
+"R1 = 33;// in k ohm\n",
+"V_DD = 6;// in V\n",
+"V_G = (R2/(R1+R2))*V_DD;// in V\n",
+"V_S = V_DD;// in V\n",
+"V_SG = V_S-V_G;// in V\n",
+"disp(V_SG,'The value of V_SG in V is');\n",
+"k = 0.1;\n",
+"V_T = -1;// in V\n",
+"I_D = k*((V_SG+V_T)^2);// in mA\n",
+"disp(I_D,'The value of I_D in mA is');\n",
+"R_D = 3;// in k ohm\n",
+"V_SD = V_DD - (I_D*R_D);// in V\n",
+"disp(V_SD,'The value of V_SD in V is');\n",
+"V_SDsat = V_SG+V_T;// in V\n",
+"disp(V_SDsat,'The value of V_SD(sat) in V is');\n",
+"if V_SD>V_SDsat then\n",
+" disp('The p MOSFET is indeed biased in the saturation region')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: IDQ_and_VDSQ.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 9.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_G= 1.5;// in V\n",
+"V_P= -3;// in V\n",
+"R_S= 750;// in Ω\n",
+"R_D= 1800;// in Ω\n",
+"I_DSS= 6*10^-3;// in A\n",
+"V_DD= 18;// in V\n",
+"// V_GS= V_G-I_D*R_S\n",
+"// I_D= I_DSS*(1-V_GS/V_P)^2 or I_DSS*(1-(V_G-I_D*R_S)/V_P)^2\n",
+"//I_D^2*R_S^2+I_D*(2*R_S*(V_P-V_G)-V_P^2/I_DSS)+(V_P-V_G)^2\n",
+"A= R_S^2\n",
+"B=(2*R_S*(V_P-V_G)-V_P^2/I_DSS)\n",
+"C=(V_P-V_G)^2\n",
+"I_D= [A B C]\n",
+"I_D= roots(I_D);// in A\n",
+"I_D= I_D(2);// in A\n",
+"I_DQ= I_D;// in A\n",
+"V_DS= V_DD-I_D*(R_D+R_S);// in V\n",
+"V_DSQ= V_DS;// in V\n",
+"disp(I_DQ*10^3,'The value of I_DQ in mA is : ')\n",
+"disp(V_DSQ,'The value of V_DSQ in volts is : ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}