diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb')
-rw-r--r-- | A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb b/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb new file mode 100644 index 0000000..62830d9 --- /dev/null +++ b/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb @@ -0,0 +1,264 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: calculation_of_probability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.2\n", +"//calculation of probability\n", +"\n", +"//given values\n", +"T=300;//temp in K\n", +"kT=.026;//temperture equivalent at room temp in eV\n", +"Eg=5.6;//forbidden gap in eV\n", +"\n", +"//calculation\n", +"f=1/(1+%e^(Eg/(2*kT)));\n", +"\n", +"disp(f,'probability of an e being thermally promoted to conduction band is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.3: calculation_of_fraction_of_e_in_CB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.3\n", +"//calculation of fraction of e in CB\n", +"\n", +"//given values\n", +"T=300;//temp in K\n", +"kT=.026;//temperture equivalent at room temp in eV\n", +"Eg1=.72;//forbidden gap of germanium in eV\n", +"Eg2=1.1;//forbidden gap of silicon in eV\n", +"Eg3=5.6;//forbidden gap of diamond in eV\n", +"\n", +"//calculation\n", +"f1=%e^(-Eg1/(2*kT));\n", +"disp(f1,'fraction of e in conduction band of germanium is');\n", +"f2=%e^(-Eg2/(2*kT));\n", +"disp(f2,'fraction of e in conduction band of silicon is');\n", +"f3=%e^(-Eg3/(2*kT));\n", +"disp(f3,'fraction of e in conduction band of diamond is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.4: calculation_of_fractionional_change_in_no_of_e.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.3\n", +"//calculation of fractionional change in no of e\n", +"\n", +"//given values\n", +"T1=300;//temp in K\n", +"T2=310;//temp in K\n", +"Eg=1.1;//forbidden gap of silicon in eV\n", +"k=8.6*10^-5;//boltzmann's constant in eV/K\n", +"\n", +"//calculation\n", +"n1=(10^21.7)*(T1^(3/2))*10^(-2500*Eg/T1);//no of conduction e at T1\n", +"n2=(10^21.7)*(T2^(3/2))*10^(-2500*Eg/T2);//no of conduction e at T2\n", +"x=n2/n1;\n", +"disp(x,'fractional change in no of e is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.5: calculation_of_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.5\n", +"//calculation of resistivity\n", +"\n", +"//given values\n", +"e=1.6*10^-19;\n", +"ni=2.5*10^19;//intrinsic density of carriers per m^3\n", +"ue=.39;//mobility of e \n", +"uh=.19;//mobility of hole\n", +"\n", +"\n", +"//calculation\n", +"c=e*ni*(ue+uh);//conductivity\n", +"r=1/c;//resistivity\n", +"disp(r,'resistivity in ohm m is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.6: calculation_of_conductivity_of_intrinsic_and_doped_semiconductors.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.6\n", +"//calculation of conductivity of intrinsic and doped semiconductors\n", +"\n", +"//given values\n", +"h=4.52*10^24;//no of holes per m^3\n", +"e=1.25*10^14;//no of electrons per m^3\n", +"ue=.38;//e mobility\n", +"uh=.18;//hole mobility\n", +"q=1.6*10^-19;//charge of e in C\n", +"//calculation\n", +"ni=sqrt(h*e);//intrinsic concentration\n", +"ci=q*ni*(ue+uh);\n", +"disp(ci,'conductivity of semiconductor(in S/m) is');\n", +"cp=q*h*uh;\n", +"disp(cp,'conductivity of doped semiconductor (in S/m) is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.7: calculation_of_hole_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.7\n", +"//calculation of hole concentration\n", +"\n", +"//given values\n", +"ni=2.4*10^19;//carrier concentration per m^3\n", +"N=4*10^28;//concentration of ge atoms per m^3\n", +"\n", +"//calculation\n", +"ND=N/10^6;//donor cocntrtn\n", +"n=ND;//no of electrones\n", +"\n", +"p=ni^2/n;\n", +"disp(p,'concentartion of holes per m^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.8: calculation_of_Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;clear;\n", +"//Example 18.8\n", +"//calculation of Hall voltage\n", +"\n", +"//given values\n", +"ND=10^21;//donor density per m^3\n", +"B=.5;//magnetic field in T\n", +"J=500;//current density in A/m^2\n", +"w=3*10^-3;//width in m\n", +"e=1.6*10^-19;//charge in C\n", +"\n", +"//calculation\n", +"\n", +"\n", +"V=B*J*w/(ND*e);//in volts\n", +"disp(V*10^3,'Hall voltage in mv is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |