summaryrefslogtreecommitdiff
path: root/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb')
-rw-r--r--A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb264
1 files changed, 264 insertions, 0 deletions
diff --git a/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb b/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb
new file mode 100644
index 0000000..62830d9
--- /dev/null
+++ b/A_Textbook_Of_Engineering_Physics_by_M_N_Avadhanulu/18-Semiconductors.ipynb
@@ -0,0 +1,264 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: calculation_of_probability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.2\n",
+"//calculation of probability\n",
+"\n",
+"//given values\n",
+"T=300;//temp in K\n",
+"kT=.026;//temperture equivalent at room temp in eV\n",
+"Eg=5.6;//forbidden gap in eV\n",
+"\n",
+"//calculation\n",
+"f=1/(1+%e^(Eg/(2*kT)));\n",
+"\n",
+"disp(f,'probability of an e being thermally promoted to conduction band is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.3: calculation_of_fraction_of_e_in_CB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.3\n",
+"//calculation of fraction of e in CB\n",
+"\n",
+"//given values\n",
+"T=300;//temp in K\n",
+"kT=.026;//temperture equivalent at room temp in eV\n",
+"Eg1=.72;//forbidden gap of germanium in eV\n",
+"Eg2=1.1;//forbidden gap of silicon in eV\n",
+"Eg3=5.6;//forbidden gap of diamond in eV\n",
+"\n",
+"//calculation\n",
+"f1=%e^(-Eg1/(2*kT));\n",
+"disp(f1,'fraction of e in conduction band of germanium is');\n",
+"f2=%e^(-Eg2/(2*kT));\n",
+"disp(f2,'fraction of e in conduction band of silicon is');\n",
+"f3=%e^(-Eg3/(2*kT));\n",
+"disp(f3,'fraction of e in conduction band of diamond is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.4: calculation_of_fractionional_change_in_no_of_e.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.3\n",
+"//calculation of fractionional change in no of e\n",
+"\n",
+"//given values\n",
+"T1=300;//temp in K\n",
+"T2=310;//temp in K\n",
+"Eg=1.1;//forbidden gap of silicon in eV\n",
+"k=8.6*10^-5;//boltzmann's constant in eV/K\n",
+"\n",
+"//calculation\n",
+"n1=(10^21.7)*(T1^(3/2))*10^(-2500*Eg/T1);//no of conduction e at T1\n",
+"n2=(10^21.7)*(T2^(3/2))*10^(-2500*Eg/T2);//no of conduction e at T2\n",
+"x=n2/n1;\n",
+"disp(x,'fractional change in no of e is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.5: calculation_of_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.5\n",
+"//calculation of resistivity\n",
+"\n",
+"//given values\n",
+"e=1.6*10^-19;\n",
+"ni=2.5*10^19;//intrinsic density of carriers per m^3\n",
+"ue=.39;//mobility of e \n",
+"uh=.19;//mobility of hole\n",
+"\n",
+"\n",
+"//calculation\n",
+"c=e*ni*(ue+uh);//conductivity\n",
+"r=1/c;//resistivity\n",
+"disp(r,'resistivity in ohm m is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6: calculation_of_conductivity_of_intrinsic_and_doped_semiconductors.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.6\n",
+"//calculation of conductivity of intrinsic and doped semiconductors\n",
+"\n",
+"//given values\n",
+"h=4.52*10^24;//no of holes per m^3\n",
+"e=1.25*10^14;//no of electrons per m^3\n",
+"ue=.38;//e mobility\n",
+"uh=.18;//hole mobility\n",
+"q=1.6*10^-19;//charge of e in C\n",
+"//calculation\n",
+"ni=sqrt(h*e);//intrinsic concentration\n",
+"ci=q*ni*(ue+uh);\n",
+"disp(ci,'conductivity of semiconductor(in S/m) is');\n",
+"cp=q*h*uh;\n",
+"disp(cp,'conductivity of doped semiconductor (in S/m) is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.7: calculation_of_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.7\n",
+"//calculation of hole concentration\n",
+"\n",
+"//given values\n",
+"ni=2.4*10^19;//carrier concentration per m^3\n",
+"N=4*10^28;//concentration of ge atoms per m^3\n",
+"\n",
+"//calculation\n",
+"ND=N/10^6;//donor cocntrtn\n",
+"n=ND;//no of electrones\n",
+"\n",
+"p=ni^2/n;\n",
+"disp(p,'concentartion of holes per m^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.8: calculation_of_Hall_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;clear;\n",
+"//Example 18.8\n",
+"//calculation of Hall voltage\n",
+"\n",
+"//given values\n",
+"ND=10^21;//donor density per m^3\n",
+"B=.5;//magnetic field in T\n",
+"J=500;//current density in A/m^2\n",
+"w=3*10^-3;//width in m\n",
+"e=1.6*10^-19;//charge in C\n",
+"\n",
+"//calculation\n",
+"\n",
+"\n",
+"V=B*J*w/(ND*e);//in volts\n",
+"disp(V*10^3,'Hall voltage in mv is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}