1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
//Example 9.13
//Determination of stability with a hysteresis nonlinearity.
xdel(winsid())//close all graphics Windows
clear;
clc;
//------------------------------------------------------------------
//System Model
s=poly(0,'s');
num=1;
den=(s^2+s);
Gs=syslin('c',num/den);
//------------------------------------------------------------------
//Nyquist Plot of the system
nyquist(Gs,0.25,3)
// Nyquist Plot of Describing Function for hysteresis nonlinearity
N=1;
h=0.1;
i=1;
for omegat=0:0.05:%pi-0.1;
a=sin(omegat);
DF_nyq(i,1)=-%pi/4/N*(sqrt(a^2-h^2) + h * %i)
i=i+1;
end
plot(real(DF_nyq),imag(DF_nyq),'m-.')
exec .\fig_settings.sci; // custom script for setting figure properties
zoom_rect([-0.3 -0.3 0 0.3])
title('Nyquist plot of system and describing function to...
determine limit cycle','fontsize',3)
//limit cycle points
plot(-0.1714,-0.0785,'ro');
xstring(-0.25,0,"limit cycle point");
xarrows([-0.2;-0.172],[0;-0.077],-1);
//------------------------------------------------------------------
//Response of the system
K=2;
r=1
figure(1);
importXcosDiagram(".\Ex9_13_model.xcos")
xcos_simulate(scs_m,4);
scs_m.props.context
plot(yt.time,yt.values)
xlabel('Time (sec.)');
ylabel('Output, y');
title("Step response displaying limit cycle oscillations",'fontsize',3);
exec .\fig_settings.sci; //custom script for setting figure properties
//------------------------------------------------------------------
|