summaryrefslogtreecommitdiff
path: root/Working_Examples/3432/CH7/EX7.18/DEPENDENCIES/acker_dk.sci
blob: 3391d2454c6ca8c789d0aa673e6bdba611502292 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
//------------------------------------------------------------------
//------------------------------------------------------------------
//A function written by Deepti Khimani.
//Usage:-
//[K, lambda]=acker_dk(a, b, pl)
//K=acker_dk(a, b, pl)
//a:- System matrix.
//b:- input matrix.
//p:- Desired poles.
//K:-State feedback gain for the control law u=-Kx.
//lambda:- Eigen values of (a-b*k)
//------------------------------------------------------------------
//------------------------------------------------------------------

function [K, lambda]=acker_dk(a, b, pl)
        [lhs,rhs]=argn(0)

    if rhs == 0 then
        disp(["K=acker_dk(a, b, pl)";"[K, lambda]=acker_dk(a, b, pl)"]);
        disp(["a:- System matrix";"b:- input matrix";"p:- Desired poles"]);
        disp(["K:-State feedback gain for the control law u=-Kx";...
 "lambda:- Eigen values of (a-b*k)"]);
        return;
    end
[ra ca]=size(a);
[rb cb]=size(b);
l=length(pl);

CO=cont_mat(a,b);

if ra~=l then
    error(["Dimension error:";"number of desired poles must equal...
 to order of the system"]);
elseif ra~=ca then
    error(["Dimension error:";"system matrix should be...
 a sqaure matrix"]);
elseif rb~=ra then
    error (["Dimension error:","Input matrix should have...
 as many rows as a system matrix."]);
elseif rank(CO)<ra then
    error("system is not controllable");
end
//------------------------------------------------------------------
//controllable canonical form
[Ac,Bc,T,ind]=canon(a,b);

//CO=zeros(ra,cb);
for i=1:ra
    CO(:,ra+1-i)=Ac^(i-1)*Bc;
end
//------------------------------------------------------------------
chr_eq=poly(pl,'s');
des_chr_coeff=coeff(chr_eq);

des_chr_coeff=des_chr_coeff(1:ra);
alpha_c=Ac^ra;

for k=1:ra
    alpha_c=alpha_c + des_chr_coeff(k)*Ac^(k-1)
end
//------------------------------------------------------------------
//State feedback gain
temp=zeros(1,ra);
temp(1)=1;
K=temp*inv(CO)*alpha_c;
K=K/T;
lambda=spec(a-b*K);
endfunction
//------------------------------------------------------------------