1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
clc
disp("Example 12.5")
printf("\n")
printf("Given")
disp("The system ABC is DELTA connected")
disp("Maximum line voltage is 339.4V")
disp("The three impedances are 10(0 deg),10(30 deg),15(-30 deg)")
ZABmag=10;ZABph=0;
ZBCmag=10;ZBCph=30;
ZCAmag=15;ZCAph=-30;
//Let maximum line voltage is Vmax
Vmax=339.4
//From fig 12.7(a)
//VAB=Vmax(120 deg)
//VBC=Vmax(0 deg)
//VCA=Vmax(240 deg)
//From figure 12.15
IABmag=Vmax/ZABmag
IABph=120-ZABph
printf("IAB=%3.2f(%d deg)\n",IABmag,IABph);
IBCmag=Vmax/ZBCmag
IBCph=0-ZBCph
printf("IBC=%3.2f(%d deg)\n",IBCmag,IBCph);
ICAmag=Vmax/ZCAmag
ICAph=240-ZCAph
printf("ICA=%3.2f(%d deg)\n",ICAmag,ICAph);
//Applying KCL equation
//IA=IAB+IAC
//IB=IBC+IBA
//IC=ICA+ICB
x=IABmag*cos((IABph*%pi)/180);
y=IABmag*sin((IABph*%pi)/180);
z=complex(x,y)
x1=ICAmag*cos((ICAph*%pi)/180);
y1=ICAmag*sin((ICAph*%pi)/180);
z1=complex(x1,y1)
x2=IBCmag*cos((IBCph*%pi)/180);
y2=IBCmag*sin((IBCph*%pi)/180);
z2=complex(x2,y2)
IA=z-z1;
[RA,ThetaA]=polar(IA)
IB=z2-z;
[RB,ThetaB]=polar(IB)
IC=z1-z2
[RC,ThetaC]=polar(IC)
disp("Therefore")
printf("\nIA=%3.2f(%d deg)A\n",RA,ThetaA*(180/%pi));
printf("\nIB=%3.2f(%d deg)A\n",RB,ThetaB*(180/%pi));
printf("\nIC=%3.2f(%d deg)A\n",RC,ThetaC*(180/%pi));
|