summaryrefslogtreecommitdiff
path: root/Working_Examples/2777/CH6/EX6.6/Ex6_6.sce
diff options
context:
space:
mode:
Diffstat (limited to 'Working_Examples/2777/CH6/EX6.6/Ex6_6.sce')
-rwxr-xr-xWorking_Examples/2777/CH6/EX6.6/Ex6_6.sce106
1 files changed, 106 insertions, 0 deletions
diff --git a/Working_Examples/2777/CH6/EX6.6/Ex6_6.sce b/Working_Examples/2777/CH6/EX6.6/Ex6_6.sce
new file mode 100755
index 0000000..ec33d7a
--- /dev/null
+++ b/Working_Examples/2777/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,106 @@
+
+// ELECTRICAL MACHINES
+// R.K.Srivastava
+// First Impression 2011
+// CENGAGE LEARNING INDIA PVT. LTD
+
+// CHAPTER : 6 : SYNCHRONOUS MACHINES
+
+// EXAMPLE : 6.6
+
+clear ; clc ; close ; // Clear the work space and console
+
+
+// GIVEN DATA
+
+printf("\n EXAMPLE : 6.4 ( Data is same as Exaple 6.4 ): \n\n Given Data \n");
+printf("\n Voc(v) 215 284 320 380 400 422 452 472 488 508 520 532 540 552 560 \n");
+printf("\n If(A) 6.5 8 9 10 11 12 14 15 16 17 18 19 20 22 24 \n\n");
+m = 3; // Total Number of phase in Induction Motor
+p = 6; // Total number of Poles of Induction Motor
+V = 400; // Operating voltage of the Induction motor in Volts
+I = 13.5; // Operating current of the Induction motor in Amphere
+N = 1000; // speed of the Induction motor in RPM
+Ia_scc = 13.5; // SCC test Armature current in Amphere at If = 9.5 A
+If_scc = 9.5; // SCC test field Rated current in Amphere
+Ia_zpf = 13.5; // ZPF test Armature current in Amphere at If = 24 A
+If_zpf = 24; // ZPF test field Rated current in Amphere
+
+
+// CALCULATIONS
+// Some of the data obtained from OCC and SCC test Graph or Pottier triangle in Figure6.15 & Page no:-386
+Ra = 1.0; // Armature resistance in Ohms
+v = V/sqrt(3); // Rated phase voltage in Volts
+
+
+// For Case (a) 0.8 pf Lagging
+
+pfa_a = acosd(0.8); // Power factor angle in degree
+E_a = v+(Ia_scc*(cosd(pfa_a)-%i*sind(pfa_a))*Ra); // Induced Voltage in Volts
+R1_a = 11.8; A_a = 9.50; //From OCC the field current required for E_a (Should be in Line-line Voltage) E_a = 419.05V will get R1_a & A_a value Respectively from SCC (Figure6.15 & Page no:-386)
+angle_a = 124.95; // Angle between R1_a & A_a (Figure6.21a & Page no:-400) = 90'-1.92'+36.87' = 124.95'
+F_a = sqrt((R1_a^2)+(A_a^2)-(2*R1_a*A_a*cosd(angle_a))); // From phasor diagram in figure 6.21(a) & Page no:-400 the neccessary field excitation in Amphere
+Eo_a = 538; // Corresponding to field current F_a = 18.94 A the open circuit EMF from OCC is 538 V (Figure6.15 & Page no:-386)
+r_a = 100*((Eo_a-V)/V); // Percentage regulation
+
+
+// For Case (b) 0.8 pf Leading
+
+pfa_b = acosd(0.8); // Power factor angle in degree
+E_b = v+(Ia_scc*(cosd(pfa_b)+%i*sind(pfa_b))*Ra); // Induced Voltage in Volts
+R1_b = 11.80; A_b = 9.50; //From OCC the field current required for E_b (Should be in Line-line Voltage) E_b = 419.10V will get R1_b & A_b value Respectively from SCC (Figure6.15 & Page no:-386)
+angle_b = 55.07; // Angle between R1_b & A_b (Figure6.21b & Page no:-400) = 90'-1.92'-36.87' = 55.07'
+F_b = sqrt((R1_b^2)+(A_b^2)-(2*R1_b*A_b*cosd(angle_b))); // From phasor diagram in figure 6.21(b) & Page no:-400 the neccessary field excitation in Amphere
+Eo_b = 382; // Corresponding to field current F_b = 10.10 A the open circuit EMF from OCC is 382 V (Figure6.15 & Page no:-386)
+r_b = 100*((Eo_b-V)/V); // Percentage regulation
+
+// For Case (c) Unity pf
+
+pfa_c = acosd(1); // Power factor angle in degree
+E_c = v+(Ia_scc*(cosd(pfa_c)+%i*sind(pfa_c))*Ra) // Induced Voltage in Volts
+R1_c = 12.10; A_c = 9.50; //From OCC the field current required for E_c (Should be in Line-line Voltage) E_c = 423.50V will get R1_c & A_c value Respectively from SCC (Figure6.15 & Page no:-386)
+angle_c = 90; // Angle between R1_a & A_a (Figure6.21a & Page no:-400) = 90'
+F_c = sqrt((R1_c^2)+(A_c^2)-(2*R1_c*A_c*cosd(angle_c))); // From phasor diagram in figure 6.21(c) & Page no:-400 the neccessary field excitation in Amphere
+Eo_c = 480; // Corresponding to field current F_c = 15.38 A the open circuit EMF from OCC is 538 V (Figure6.15 & Page no:-386)
+r_c = 100*((Eo_c-V)/V); // Percentage regulation
+
+
+// For Case (d) ZPF Lagging
+
+pfa_d = acosd(0.0); // Power factor angle in degree
+E_d = v+(Ia_scc*(cosd(pfa_d)-%i*sind(pfa_d))*Ra) // Induced Voltage in Volts
+R1_d = 11.20; A_d = 9.50; //From OCC the field current required for E_d (Should be in Line-line Voltage) E_d = 400.80V will get R1_d & A_d value Respectively from SCC (Figure6.15 & Page no:-386)
+angle_d = 179.40; // Angle between R1_d & A_d = 90'-0.6'+90' = 179.40'
+F_d = sqrt((R1_d^2)+(A_d^2)-(2*R1_d*A_d*cosd(angle_d))); // From phasor diagram the neccessary field excitation in Amphere
+Eo_d = 545; // Corresponding to field current F_d = 18.12 A the open circuit EMF from OCC is 545 V (Figure6.15 & Page no:-386)
+r_d = 100*((Eo_d-V)/V); // Percentage regulation
+
+// For Case (d) ZPF Lagging
+
+pfa_e = acosd(0.0); // Power factor angle in degree
+E_e = v+(Ia_scc*(cosd(pfa_e)+%i*sind(pfa_e))*Ra) // Induced Voltage in Volts
+R1_e = 11.20; A_e = 9.50; //From OCC the field current required for E_e (Should be in Line-line Voltage) E_d = 400.80V will get R1_e & A_e value Respectively from SCC (Figure6.15 & Page no:-386)
+angle_e = 0.60; // Angle between R1_e & A_e = 90'+0.6'-90' = 0.60'
+F_e = sqrt((R1_e^2)+(A_e^2)-(2*R1_e*A_e*cosd(angle_e))); // From phasor diagram the neccessary field excitation in Amphere
+Eo_e = 63; // Corresponding to field current F_e = 1.70 A the open circuit EMF from OCC is 545 V (Figure6.15 & Page no:-386)
+r_e = 100*((Eo_e-V)/V); // Percentage regulation
+
+
+
+// DISPLAY RESULTS
+
+disp(" SOLUTION :-");
+printf("\n For Case (a) 0.8 pf Lagging \n Open circuit EMF, EMF = %.f V \n",Eo_a)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n",r_a)
+printf("\n For Case (b) 0.8 pf Leading \n Open circuit EMF, EMF = %.f V \n",Eo_b)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n",r_b)
+printf("\n For Case (c) Unity pf Lagging \n Open circuit EMF, EMF = %.f V \n",Eo_c)
+printf("\n Percenatge Regulation, R = %.f Percenatge \n",r_c)
+printf("\n For Case (d) ZPF Lagging \n Open circuit EMF, EMF = %.f V\n",Eo_d)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n",r_d)
+printf("\n For Case (e) ZPF Leading \n Open circuit EMF, EMF = %.f V \n",Eo_e)
+printf("\n Percenatge Regulation, R = %.2f Percenatge \n\n",r_e)
+disp(" Calculated Answer in Tabular Column")
+printf("\n Power Factor 0.8 Lag 0.8 Lead 1.0 ZPF Lag ZPF Lead \n")
+printf("\n Open circuit EMF (V) %.f %.f %.f %.f %.f \n",Eo_a,Eo_b,Eo_c,Eo_d,Eo_e)
+printf("\n Percenatge Regulation %.2f %.2f %.f %.2f %.2f \n",r_a,r_b,r_c,r_d,r_e)